Dr.-Ing. Christian Kier
Former Research Associate
Publications
2009
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Alfred
Mertins,
Improved Modelling of Ultrasound Contrast Agent Diminution for Blood Perfusion Analysis, in Medical Image Computing and Computer Aided Interventions -- MICCAI , 2009.
Improved Modelling of Ultrasound Contrast Agent Diminution for Blood Perfusion Analysis, in Medical Image Computing and Computer Aided Interventions -- MICCAI , 2009.
File: | Improved_Modelling_Kier_MICCAI2009.pdf |
Bibtex: | @INPROCEEDINGS{Kier2009a, author = {Christian Kier and Karsten Meyer-Wiethe and Günter Seidel and Alfred Mertins}, title = {Improved Modelling of Ultrasound Contrast Agent Diminution for Blood Perfusion Analysis}, booktitle = {Medical Image Computing and Computer Aided Interventions -- MICCAI}, year = {2009} } |
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Alfred
Mertins,
Quality improvements for ultrasound-based cerebral perfusion analysis, in Computer Assisted Radiology and Surgery -- CARS , 2009.
Quality improvements for ultrasound-based cerebral perfusion analysis, in Computer Assisted Radiology and Surgery -- CARS , 2009.
Christian
Kier,
Günter
Seidel,
Norbert
Brüggemann,
Johann
Hagenah,
Christine
Klein,
Til
Aach, and
Alfred
Mertins,
Ultraschall zur Früherkennung von Parkinson, in Medizinische Bildverarbeitung und Mustererkennung , Lübeck , 2009. pp. 1241–1248.
Ultraschall zur Früherkennung von Parkinson, in Medizinische Bildverarbeitung und Mustererkennung , Lübeck , 2009. pp. 1241–1248.
File: | 04_kier_seidel_brueggemann_hagenah_klein_aach.pdf |
Bibtex: | @INPROCEEDINGS{Kier2009, author = {Christian Kier and G{\"u}nter Seidel and Norbert Brüggemann and Johann Hagenah and Christine Klein and Til Aach and Alfred Mertins}, title = {Ultraschall zur Früherkennung von Parkinson}, booktitle = {Medizinische Bildverarbeitung und Mustererkennung}, year = {2009}, month = {Oct.}, series = {Lecture Notes in Informatics}, volume = {P154}, pages = {1241–1248}, address = {Lübeck}, organization = {GI} } |
2007
A.
Maciak,
C.
Kier,
G.
Seidel,
K.
Meyer-Wiethe, and
U. G.
Hofmann,
Automatische Erkennung von Ischämien mit Bolus Harmonic Imaging, in Bildverarbeitung für die Medizin 2007 , A. Horsch, T. M. Deserno, H. Handels, H.-P. Meinzer, T. Tolxdorf, Eds. München: Springer-Verlag, 25-.2007. pp. 81-86.
Automatische Erkennung von Ischämien mit Bolus Harmonic Imaging, in Bildverarbeitung für die Medizin 2007 , A. Horsch, T. M. Deserno, H. Handels, H.-P. Meinzer, T. Tolxdorf, Eds. München: Springer-Verlag, 25-.2007. pp. 81-86.
ISBN: | 3540710905 |
File: | PosterMaciakBVM2007.pdf |
Bibtex: | @INPROCEEDINGS{Maciak2007, author = {Maciak, A. and Kier, C. and Seidel, G. and Meyer-Wiethe, K. and Hofmann, U. G.}, title = {Automatische Erkennung von Ischämien mit Bolus Harmonic Imaging}, booktitle = {Bildverarbeitung für die Medizin 2007}, year = {2007}, editor = {A. Horsch, T. M. Deserno, H. Handels, H.-P. Meinzer, T. Tolxdorf}, pages = {81-86}, address = {München}, month = {25-27 March}, publisher = {Springer-Verlag}, isbn = {3540710905} } |
2008
A.
Maciak,
G.
Seidel,
K.
Meyer-Wiethe,
C.
Kier, and
U.G.
Hofmann,
Bolus Harmonic Imaging zur automatischen Erkennung ischämiebedingter Perfusionsdefizite im Gehirn, Ultraschall in der Medizin , vol. 29, pp. --, 2008.
Bolus Harmonic Imaging zur automatischen Erkennung ischämiebedingter Perfusionsdefizite im Gehirn, Ultraschall in der Medizin , vol. 29, pp. --, 2008.
DOI: | 10.1055/s-2008-1027190 |
File: | Maciak2008.pdf |
Bibtex: | @ARTICLE{Maciak2008, author = {Maciak, A. and Seidel, G. and Meyer-Wiethe, K. and Kier, C. and Hofmann, U.G.}, title = {Bolus Harmonic Imaging zur automatischen Erkennung ischämiebedingter Perfusionsdefizite im Gehirn}, journal = {Ultraschall in der Medizin}, year = {2008}, volume = {29}, pages = {--}, abstract = {Zusammenfassung Ziel: Die Diagnose zerebrovaskulärer Erkrankungen stützt sich zunehmend auf den Einsatz ultraschallbasierter Verfahren. Das kontrastmittelgestützte, transkranielle Bolus Harmonic Imaging (BHI) hat hierbei einen hohen Stellenwert. Die Auswertung der aufgezeichneten Bildsequenz erfolgt durch geübte Ärzte jedoch manuell und ist somit zeitaufwendig. Das Ziel der hier beschriebenen drei Verfahren ist die sichere, vollautomatische Erkennung von Perfusionsdefekten des Gehirns. Material und Methoden: Mit dem BHI werden Ultraschallbildsequenzen aufgezeichnet, die die Kontrastmitteldynamik im Gehirn wiedergeben. Diese Bilder werden mit drei verschiedenen Verfahren automatisch ausgewertet. Zum einen wird ein regelbasiertes System beschrieben, welches aus den aufgezeichneten Ultraschallbildern Parameterbilder extrahiert und diese mithilfe von Expertenwissen nach perfundierten und minderperfundierten Gehirnarealen klassifiziert. Zum zweiten erfolgt die Klassifikation der Gehirngebiete unüberwacht mit dem K-Means-Verfahren. Hierzu wird jedes der Parameterbilder als eine Dimension des zu klassifizierenden Merkmalsraums betrachtet, sodass eine unüberwachte Segmentierung der minderperfundierten Gehirnbereiche möglich ist. Drittens wird die gesamte Bildsequenz anhand der Kontrastmitteldynamik pixelweise klassifiziert. Hierbei kann darauf verzichtet werden, Parameterbilder extrahieren zu müssen. In allen drei Fällen ist es im Anschluss notwendig, die beim HI auftretenden Streifenartefakte automatisch zu erkennen. Abschließend wird ein Aussagenbild generiert, in dem die gefundenen Minderperfusionen markiert sind. Ergebnisse: Die drei Verfahren wurden auf einem 26 Patienten umfassenden Kollektiv klinisch validiert. Hierbei hat sich herausgestellt, dass insbesondere die Segmentierung anhand der Kontrastmitteldynamik dazu geeignet ist, Minderperfusionen automatisch zu erkennen. Es konnte auf diesem Patientenkollektiv eine Sensitivität von 100 % bei einer Spezifität von 100 % erreicht werden. Schlussfolgerungen: Alle drei Verfahren erscheinen geeignet, ischämische Gehirngebiete zu erkennen. Hierbei liefert die Klassifikation von Gehirngebieten nach der Kontrastmitteldynamik die besten Ergebnisse, da sie robust gegenüber Rauschen ist. Zudem ist es das schnellste Verfahren, da die Extraktion von Parameterbildern entfällt. Es ist notwendig, die Sensitivität und Spezifität auf einem größeren Patientenkollektiv zu validieren. Eine sichere, vollautomatische Erkennung von Perfusionsdefekten direkt am Patientenbett scheint somit möglich zu sein. Abstract Purpose: The diagnosis of ischemic stroke relies increasingly on the usage of ultrasound-based methods. One of the recent methods is the transcranial, contrast agent-based Bolus Harmonic Imaging (BHI) method. The captured image sequence is manually examined by clinical experts thus resulting in a time-consuming procedure. The purpose of this study is to evaluate three different methods to analyze BHI image sequences automatically for the detection of ischemic brain tissue. Materials and Method: BHI captures an image sequence that provides information on the dynamic behavior of the ultrasound contrast agents. This image sequence is analyzed using three different procedures. First a system relying on expert knowledge is used to determine perfusion defects. This procedure requires parametric images, which are previously extracted from the image sequence. The parameter images are then categorized by an unsupervised classification method in well-perfused and ischemic tissue by regarding the parametric images as features describing the perfusion. Thirdly, the whole image sequence can be interpreted as a pixel-by-pixel behavior out of contrast agents. The dynamic curve of each pixel can be automatically classified as perfused and ischemic tissue by the K-Means method without extracting parametric images. In all three cases a closing step is necessary for the accurate interpretation of the results. Transcranial ultrasound imaging produces typical stripe artifacts that have to be detected and eliminated. A result image is then created and provides a conclusion about perfusion reduction in brain tissue. Results: All three methods have been validated on the basis of 26 patients by clinical experts. The segmentation on the contrast agent kinetics has proven to be most effective. According to our patient database, it provides the highest detection accuracy, resulting in a sensitivity of 100 % and a specificity of 100 %. Conclusion: The presented methods seem to be adequate for detecting ischemic brain tissue. The classification of contrast agent kinetics provides the best results and has further advantages. It is robust with respect to noise and the calculation is fast because the extraction of parametric images is omitted. The very high sensitivity and specificity must be validated in a larger patient population. Reliable and automated detection of perfusion defects at the bedside seems to be possible.}, booktitle = {Automatic Detection of Perfusion Deficits with Bolus Harmonic Imaging}, doi = {10.1055/s-2008-1027190}, refid = {101055S20081027190} } |
C.
Kier,
G.
Seidel,
N.
Brüggemann,
J.
Hagenah,
C.
Klein,
T.
Aach, and
A.
Mertins,
Transcranial sonography as early indicator for genetic Parkinson’s disease, in 4th European Congress for Medical and Biomedical Engineering , 2008. pp. 456--459.
Transcranial sonography as early indicator for genetic Parkinson’s disease, in 4th European Congress for Medical and Biomedical Engineering , 2008. pp. 456--459.
File: | 0256.pdf |
Bibtex: | @INPROCEEDINGS{Kier2008, author = {C. Kier and G. Seidel and N. Brüggemann and J. Hagenah and C. Klein and T. Aach and A. Mertins}, title = {Transcranial sonography as early indicator for genetic Parkinson’s disease}, booktitle = {4th European Congress for Medical and Biomedical Engineering}, year = {2008}, pages = {456--459}, abstract = {Early diagnosis of Parkinson’s disease (PD) is of immense importance, since clinical symptoms do not occur until substantial parts of the brain stem have been irreparably damaged. Recent work suggests that by means of transcranial sonography (TCS) it is possible to determine the formation of monogenic forms of parkinsonism at a very early state. In TCS images, the mesencephalon shows a distinct hyperechogenic pattern in about 90% of patients with PD, despite its normal appearance on CT and MRI scans. At present, this pattern is manually segmented and the region size is used as an early PD indicator. In order to remove investigator dependence inherent to manual segmentation, we develop and validate semi-automatic features to serve as risk factors for PD manifestation. We show in a clinical study that some of the features correlate significantly with the presence of specific genetic mutations causing PD.}, file = {Kier2008.pdf:christian/Kier2008.pdf:PDF}, keywords = {parkinson}, owner = {kier}, timestamp = {2009.01.22} } |
2006
Christian
Kier, and
Til
Aach,
Predicting the benefit of sample size extension in multiclass k-NN classification, in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on , 20-.2006. pp. 332--335.
Predicting the benefit of sample size extension in multiclass k-NN classification, in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on , 20-.2006. pp. 332--335.
DOI: | 10.1109/ICPR.2006.942 |
File: | Kier-Predicting_01.pdf |
Bibtex: | @INPROCEEDINGS{Kier2006a, author = {Christian Kier and Til Aach}, title = {Predicting the benefit of sample size extension in multiclass k-NN classification}, booktitle = {Pattern Recognition, 2006. ICPR 2006. 18th International Conference on}, year = {2006}, volume = {3}, pages = {332--335}, month = {20-24 Aug.}, doi = {10.1109/ICPR.2006.942} } |
2007
C.
Kier,
K.
Meyer-Wiethe,
G.
Seidel, and
T.
Aach,
Ultrasound Cerebral Perfusion Analysis Based on a Mathematical Model for Diminution Harmonic Imaging, Methods of Information in Medicine , vol. 46, no. 3, pp. 308--13, 2007.
Ultrasound Cerebral Perfusion Analysis Based on a Mathematical Model for Diminution Harmonic Imaging, Methods of Information in Medicine , vol. 46, no. 3, pp. 308--13, 2007.
DOI: | 10.1160/ME9048 |
File: | Kier2007a.pdf |
Bibtex: | @ARTICLE{Kier2007a, author = {C. Kier and K. Meyer-Wiethe and G. Seidel and T. Aach}, title = {Ultrasound Cerebral Perfusion Analysis Based on a Mathematical Model for Diminution Harmonic Imaging}, journal = {Methods of Information in Medicine}, year = {2007}, volume = {46}, pages = {308--13}, number = {3}, doi = {10.1160/ME9048}, keywords = {perfuscope} } |
Christian
Kier,
Christina
Cyrus,
Günter
Seidel,
Ulrich G.
Hofmann, and
Til
Aach,
Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson's disease, International Journal of Computer Assisted Radiology and Surgery , vol. 2, no. S1, pp. S83--S85, 2007.
Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson's disease, International Journal of Computer Assisted Radiology and Surgery , vol. 2, no. S1, pp. S83--S85, 2007.
DOI: | 10.1007/s11548-007-0086-4 |
File: | Kier2007Presentation.pdf |
Bibtex: | @ARTICLE{Kier2007, author = {Christian Kier and Christina Cyrus and Günter Seidel and Ulrich G. Hofmann and Til Aach}, title = {Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson's disease}, journal = {International Journal of Computer Assisted Radiology and Surgery}, year = {2007}, volume = {2}, pages = {S83--S85}, number = {S1}, month = {June}, doi = {10.1007/s11548-007-0086-4}, keywords = {parkinson} } |
Adam
Maciak,
Christian
Kier,
Günter
Seidel,
Karsten
Meyer-Wiethe,
Ulrich
Hofmann, and
Til
Aach,
Robuste Ermittlung parametrischer Bilder für die Ultraschall-Perfusionsbildgebung basierend auf einem Modell der Boluskinetik von Kontrastmitteln, Biomedizinische Technik. Ergänzungsband. , vol. 52, pp. Session A2, 2007.
Robuste Ermittlung parametrischer Bilder für die Ultraschall-Perfusionsbildgebung basierend auf einem Modell der Boluskinetik von Kontrastmitteln, Biomedizinische Technik. Ergänzungsband. , vol. 52, pp. Session A2, 2007.
File: | Maciak2007b.pdf |
Bibtex: | @ARTICLE{Maciak2007b, author = {Adam Maciak and Christian Kier and G{\"u}nter Seidel and Karsten Meyer-Wiethe and Ulrich Hofmann and Til Aach}, title = {Robuste Ermittlung parametrischer Bilder für die Ultraschall-Perfusionsbildgebung basierend auf einem Modell der Boluskinetik von Kontrastmitteln}, journal = {Biomedizinische Technik. Ergänzungsband.}, year = {2007}, volume = {52}, pages = {Session A2}, address = {Berlin}, issn = {0939-4990}, keywords = {perfuscope} } |
A.
Maciak,
C.
Kier,
G.
Seidel,
K.
Meyer-Wiethe, and
U. G.
Hofmann,
Detecting Stripe Artifacts in Ultrasound Images, Journal of Digital Imaging , 2007.
Detecting Stripe Artifacts in Ultrasound Images, Journal of Digital Imaging , 2007.
DOI: | 10.1007/s10278-007-9049-0 |
File: | Maciak2007a.pdf |
Bibtex: | @ARTICLE{Maciak2007a, author = {A. Maciak and C. Kier and G. Seidel and K. Meyer-Wiethe and U. G. Hofmann}, title = {Detecting Stripe Artifacts in Ultrasound Images}, journal = {Journal of Digital Imaging}, year = {2007}, doi = {10.1007/s10278-007-9049-0}, url = {http://www.springerlink.com/content/rm058658xpv37ph2/?p=fbae785cac25420b93dd3c1a6b1428a9&pi=0} } |
2006
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Til
Aach,
Ultraschall-Perfusionsbildgebung für die Schlaganfalldiagnostik auf Basis eines Modells für die Destruktionskinetik von Kontrastmittel , in Bildverarbeitung für die Medizin 2006 , H. Handels and J. Ehrhardt and A. Horsch and H.-P. Meinzer and T. Tolxdoff , Eds. Heidelberg: Springer, 2006. pp. 41--45 .
Ultraschall-Perfusionsbildgebung für die Schlaganfalldiagnostik auf Basis eines Modells für die Destruktionskinetik von Kontrastmittel , in Bildverarbeitung für die Medizin 2006 , H. Handels and J. Ehrhardt and A. Horsch and H.-P. Meinzer and T. Tolxdoff , Eds. Heidelberg: Springer, 2006. pp. 41--45 .
File: | Kie06a_01.pdf |
Bibtex: | @Inproceedings{Kie06a, author = { Christian Kier and Karsten Meyer-Wiethe and G{\"u}nter Seidel and Til Aach }, title = { Ultraschall-Perfusionsbildgebung für die Schlaganfalldiagnostik auf Basis eines Modells für die Destruktionskinetik von Kontrastmittel }, pages = { 41--45 }, month = {March}, year = 2006, editor = { H. Handels and J. Ehrhardt and A. Horsch and H.-P. Meinzer and T. Tolxdoff }, publisher = {Springer}, series = { Informatik Aktuell }, address = {Heidelberg}, booktitle = { Bildverarbeitung für die Medizin 2006 } } |
G.
Seidel,
H.
Cangür,
K.
Meyer-Wiethe,
G.
Renault,
A.
Herment,
A.
Schindler, and
C.
Kier,
On the ability of ultrasound parametric perfusion imaging to predict the area of infarction in acute ischemic stroke., Ultraschall Med , vol. 27, no. 6, pp. 543--548, 2006.
On the ability of ultrasound parametric perfusion imaging to predict the area of infarction in acute ischemic stroke., Ultraschall Med , vol. 27, no. 6, pp. 543--548, 2006.
DOI: | 10.1055/s-2006-927023 |
File: | Seidel2006.pdf |
Bibtex: | @ARTICLE{Seidel2006, author = {G. Seidel and H. Cangür and K. Meyer-Wiethe and G. Renault and A. Herment and A. Schindler and C. Kier}, title = {On the ability of ultrasound parametric perfusion imaging to predict the area of infarction in acute ischemic stroke.}, journal = {Ultraschall Med}, year = {2006}, volume = {27}, pages = {543--548}, number = {6}, month = {Dec}, abstract = {PURPOSE: Cerebral perfusion deficits in acute ischemic stroke can be detected by means of transcranial harmonic imaging after ultrasound contrast agent bolus injection. We evaluated five different parameters of the bolus kinetics as parametric images and correlated areas of disturbed perfusion with the area of definite infarction. MATERIALS AND METHODS: Perfusion harmonic imaging after SonoVue bolus injection (BHI) was used to investigate 22 patients suffering from acute internal carotid artery infarction. For each subject, we calculated five different images based on the following parameters from the time-intensity curve in each pixel: pixelwise peak intensity (PPI), area under the curve (AUC), positive gradient (PG), time to peak (TTP), and a three factor image from the factor analysis of medical image sequences (FAMIS). The findings in the diencephalic imaging plane were compared with the definite area of infarction, as diagnosed by cranial CT. RESULTS: In predicting the definite area of infarction in follow-up CT, we found the following sensitivities and positive predictive values (PPV): PPI (100 \%/95 \%), AUC (100 \%/90 \%), FAMIS (89 \%/89 \%), PG (84 \%/94 \%) and TTP (47 \%/100 \%). The areas of disturbed perfusion in all five types of parametric images correlated significantly with the area of infarction in CT. Images from the FAMIS algorithm and PPI images showed the highest Spearman rank correlation with the area of definite infarction as displayed in CT (both r = 0.76, p < 0.001). Images from the other parameters correlated as follows: PG: r = 0.62 (p = 0.003), AUC: r = 0.53 (p = 0.014), TTP: r = 0.50 (p = 0.021). CONCLUSION: BHI can detect disturbed perfusion in acute hemispheric stroke. In their ability to predict the development of an infarction, intensity-based parameters and FAMIS were determined to have a high sensitivity, and TTP was found to have a high PPV and specificity.}, doi = {10.1055/s-2006-927023}, pmid = {17146746}, url = {http://dx.doi.org/10.1055/s-2006-927023} } |
Adam
Maciak,
Christian
Kier,
Günter
Seidel,
Karsten
Meyer-Wiethe, and
Til
Aach,
Parameterfreie Erkennung von Ischämien mit ultraschallbasiertem Harmonic Imaging, in Proceedings BMT , Zürich , 2006. pp. V76.
Parameterfreie Erkennung von Ischämien mit ultraschallbasiertem Harmonic Imaging, in Proceedings BMT , Zürich , 2006. pp. V76.
File: | bmt2006_v76_01.pdf |
Bibtex: | @INPROCEEDINGS{Maciak2006, author = {Adam Maciak and Christian Kier and G{\"u}nter Seidel and Karsten Meyer-Wiethe and Til Aach}, title = {Parameterfreie Erkennung von Ischämien mit ultraschallbasiertem Harmonic Imaging}, booktitle = {Proceedings BMT}, series = {ISSN 0939-4990}, year = {2006}, pages = {V76}, address = {Zürich}, month = {September}, keywords = {perfuscope} } |
K.
Meyer-Wiethe,
A.
Schindler,
C.
Kier,
H.
Cangür,
C.
Koch, and
G.
Seidel,
Transkraniell-sonographische Analyse der Wiederauffüll- und Destruktionskinetik von Ultraschallkontrastmittel im akuten Hirninfarkt, Aktuelle Neurologie , vol. 33, no. S1, pp. P538, 2006.
Transkraniell-sonographische Analyse der Wiederauffüll- und Destruktionskinetik von Ultraschallkontrastmittel im akuten Hirninfarkt, Aktuelle Neurologie , vol. 33, no. S1, pp. P538, 2006.
DOI: | 10.1055/s-2006-953362 |
2005
Christian
Kier,
Daniel
Toth,
Karsten
Meyer-Wiethe,
Angela
Schindler,
Hakan
Cangür,
Günter
Seidel, and
Til
Aach,
Cerebral Perfusion Imaging with Bolus Harmonic Imaging , in Ultrasonic Imaging and Signal Processing , William F. Walker and Stanislav Y. Emelianov , Eds. San Diego, CA , 2005. pp. 437--446 .
Cerebral Perfusion Imaging with Bolus Harmonic Imaging , in Ultrasonic Imaging and Signal Processing , William F. Walker and Stanislav Y. Emelianov , Eds. San Diego, CA , 2005. pp. 437--446 .
File: | paper_01.pdf |
Bibtex: | @Inproceedings{Kie05a, author = { Christian Kier and Daniel Toth and Karsten Meyer-Wiethe and Angela Schindler and Hakan Cangür and Günter Seidel and Til Aach }, title = { Cerebral Perfusion Imaging with Bolus Harmonic Imaging }, volume = {5750}, pages = { 437--446}, month = {February}, year = {2005}, editor = { William F. Walker and Stanislav Y. Emelianov }, series = { Proceedings of SPIE }, address = { San Diego, CA }, booktitle = { Ultrasonic Imaging and Signal Processing }, } |
Antje
Vollrath,
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Til
Aach,
Detecting Stripe Artefacts in Ultrasound Parametric Images , Biomedizinische Technik , vol. 50, no. suppl. vol. 1 , pp. 1235--1236 , 2005. Fachverlag Schiele und Schön .
Detecting Stripe Artefacts in Ultrasound Parametric Images , Biomedizinische Technik , vol. 50, no. suppl. vol. 1 , pp. 1235--1236 , 2005. Fachverlag Schiele und Schön .
File: | Vol05a_01.pdf |
Bibtex: | @Article{Vol05a, author = { Antje Vollrath and Christian Kier and Karsten Meyer-Wiethe and G{\"u}nter Seidel and Til Aach }, title = { Detecting Stripe Artefacts in Ultrasound Parametric Images }, journal = { Biomedizinische Technik }, volume = 50, number = { suppl. vol. 1 }, pages = { 1235--1236 }, month = {September}, year = 2005, publisher = { Fachverlag Schiele und Schön }, address = {Berlin} } |
G
Seidel,
H
Cangör,
K
Meyer-Wiethe,
G
Renault,
A
Herment,
A
Schindler,
C
Kier, and
T
Aach,
Sonographische Darstellung der Hirnperfusion zur Prädiktion des Hirninfarkts bei Patienten mit akutem Schlaganfall, 2005.
Sonographische Darstellung der Hirnperfusion zur Prädiktion des Hirninfarkts bei Patienten mit akutem Schlaganfall, 2005.
2004
Günter
Seidel,
Christian
Kier,
Karsten
Meyer-Wiethe,
Daniel
Toth,
Angela
Schindler, and
Til
Aach,
Sonografische Parameterbilder zur Darstellung der Hirnperfusion bei Patienten mit akutem Hirninfarkt, 2004.
Sonografische Parameterbilder zur Darstellung der Hirnperfusion bei Patienten mit akutem Hirninfarkt, 2004.