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Abstract

In industrial quality inspection obtaining the training
data needed for classification problems is still a very costly
task. Nevertheless, the classifier quality is crucial for eco-
nomic success. Thus, the question whether the influence of
the training data on the classification error has been fully
exploited and enough data has been obtained is very impor-
tant. This paper introduces a method to answer this ques-
tion for a specific problem. To be able to make a concrete
statement and not only general recommendations, we fo-
cus on the k-NN classifier, since it is widely used in indus-
trial implementations. The method is tested on four different
multiclass problems: original data from an optical media
inspection problem, the MNIST database, and two artificial
problems with known probability densities.

1. Introduction

1 In industrial quality inspection tasks often go beyond
only separating good from faulty products. Instead, the oc-
curing defects have to be sorted into different error classes
to specifically identify erroneous elements in the production
process. This results in multiclass classification problems
that have to be solved with an optimal use of resources, i.e.
manpower, money and time. A very costly task in the design
of a classification system is obtaining the training data with
sufficient information for representing the class density dis-
tributions. Usually, training data are obtained directly from
the production line and not from a separate test environ-
ment. Thus, one has to wait until errors occur. No manufac-
turer would deliberately produce errors in his products only
to generate training data for a classification system since it
is too expensive and it is not sure that these provoked errors
are similar to the errors occuring in the production line.
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Nevertheless, the classification system quality is crucial
for economic success. Because of the phenomenon of de-
creasing error rate with increasing training set cardinality
usually as many training samples as possible are obtained.
Thereby, the question whether the influence of the training
data on the classification error has been fully exploited and
enough data has been obtained is very important. In [11]
and [12] the authors give formulae for the required number
of samples in dependence of the dimensionality to reach an
error rate 1.5 times the Bayes error. But usually a designer
is more interested in the number of samples beyond which
the error rate does not improve significantly. In [9] the data
are assumed to be multivariate normally distributed and a
criterion estimating the quality of the covariance matrix is
developed. Based on this criterion the necessary number
of training samples for maximum likelihood classification
is predicted. The Gaussian assumption can not always be
retained in industrial context. Further attention has been
devoted to handling small sample set cardinalities without
making statements about set expansion [4, 5, 14].

Usually, an asymptotical error rate e∞ = limn→∞ e(n)
exists for the chosen classifier that can be reached with an
infinite number of training samples. But often the error rate
e(n) converges fast towards e∞ and a low number of sam-
ples is sufficient for good performance. In place of general
recommendations regarding sample size considerations as
in [7], [8], or [12], this work tries to give a specific state-
ment, whether the extension of the sample set is worth the
additional effort. A specific statement can neither be made
for problems in a general manner nor independent of the
classifier used. Hence, some assumptions have to be made.
Our method analyses a specific classification problem and
concentrates on the k-Nearest-Neighbour rule. The k-NN
classifier is frequently used throughout industrial classifica-
tion systems because it is non-parametric, intuitively com-
prehensible, and provides acceptable classification perfor-
mance. Downsides of k-NN classification are large com-
putation requirements during operation. They can be over-
come by editing and condensing methods [1, 2]. The in-



fluence of editing on the sample size has also been exam-
ined [6], but no concrete statement could be made. Hence,
a method giving hints about optimal training sample sizes
prevents the use of resources to obtain unnecessary training
data while assuring optimal classification results in places
where a k-NN classifier is used for multiclass classification.

2. Dependency of error rate on sample size

The basic idea of this work is to model the sample size
dependent error rate curve e(n) through measurements per-
formed on a specific data set of size N . Starting with N the
sample size is decreased by randomly removing samples.
For every step the corresponding e(n) is estimated by cross-
validation. The obtained values are used to parametrise a
model function enabling the classifier designer to extrapo-
late e(n) beyond N .

An approach to derive the error rate model function
em(n) is based on estimating the probability of error pe

from the class-conditional probability densities p(x|ωi),
since the high error rate at small n is based on inaccurate
estimation of p(x|ωi) by the k-NN classifier [3]. The k-NN
probability density estimates are given by [13]:

p(x|ωi) =
k

ni · Vk
=

k

ni · cd · ri
k(x)d

(1)

with ni being number of samples of class ωi, cd the vol-
ume of the unit sphere of dimension d, and ri

k(x) the dis-
tance to the kth nearest neighbour of class ωi. Thus, Vk

is the volume of the hypershere around x spanning over k
nearest neighbours. Let c be the number of classes, Ri the
decision region for ωi, P (ωi) the prior and P (ωi|x) the pos-
terior probabilities. The overall error probability pe is given
by (mutatis mutandis to [3]):
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To estimate pe, (1) is used to estimate the prior probabil-
ities. Even with the assumption of equal prior probabilities
and equal class cardinalities this expression only simplifies
to
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Figure 1. Measured error rate and fitted error
curve for optical media inspection data set.
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Due to the occurrence of rj
k(x) this expression is hard to

handle. Thus, an artificial model function is used to esti-
mate the error rate. Since with growing n the coefficient n

ni

should remain almost constant and rj
k(x) becomes smaller

the simplest model matching the character of equation 2 and
simultaneously yielding the best results would be:

em(n) =
1
na

+ e∞. (3)

The values obtained through the measurements with de-
creasing n are used to determine the two parameters a and
e∞ with nonlinear regression analysis. A good starting
value for a is

√
2. For e∞ the error rate at the maximum

available n should be chosen as starting value.
When all parameters have been determined, the esti-

mated asymptotic error rate e∞ tells the classifier designer
how good the classifier could asymptotically become. One
can also calculate em(n) at values n > N to get an in-
dication whether obtaining additional samples is worth the
effort. The expression in (3) could also be used to calculate
the number of samples needed for a desired error rate:

n = a

√
1

em(n)− e∞
. (4)

3. Experiments

The method has been tested on four different data sets –
two real world problems and two artificially generated prob-



Figure 2. Measured error rate and fitted error
curve for the MNIST data set.

lems. For each data set, the samples have been split ran-
domly in equally sized train and test subsets. To be able to
assess the method’s quality N/2 training samples have been
used to fit (3) to the measured error rate values e(n). The
asymptotic error rate e∞is compared to the minimum error
rate minn≤N e(n) in sets 1 and 2 and with the Bayes error
probability pB(e) in sets 3 and 4. Furthermore, the mea-
sured error rate e(N) is compared to the extrapolated error
rate em(N) and the number of samples N̂ to reach e(N) is
compared to N . The results for all data sets are shown in ta-
ble 2. All error rate curves e(n) have also been obtained for
different values of k but the results differed only marginally.
Thus, only the results for k = 3 are shown.

The following data sets have been used:

1. Optical Media Inspection (OMI) set
This data set comes from industrial quality inspection
in optical media production. From the obtained images
20 features are calculated. The set consists of 1000
samples in 10 classes, i.e. N = 500 (see fig. 1).

2. Modified NIST (MNIST) set
This data set consists of hand-written digits from 0 to
9 originating from zip code images [10]. The images
are of size 28x28 pixels resulting in 784 features. In
[10] the minimum 3-NN error rate is given as 5.0%.
The original data set consists of 60000 train images
and 10000 test images but here only 4000 samples are
used, i.e. N = 2000 (see fig. 2).

3. Artificial Gaussian distributed set A
This data set is artificially generated to be able to cal-
culate the Bayes error probability for comparison. It is
two-dimensional and consists of 400 samples in four

Figure 3. Measured error rate and fitted error
curve for the artificial data set A.

Table 1. Feature-wise class means for data
sets A and B.

Set A Set B
Class Feat. 1 Feat. 2 Feat. 1 Feat. 2

ω1 1 1 2 2
ω2 1 -1 2 -2
ω3 -1 1 -2 2
ω4 -1 -1 -2 -2

classes, i.e. N = 200. The class distributions are
Gaussian and differ only in their means (see table 1).
They all have variance σ2 = 1. The Bayes error prob-
ability of this set is pB(e) = 39.6% (see fig. 3).

4. Artificial Gaussian distributed set B
This data set is similar to set A except for the class
means (see table 1) resulting in a Bayes error probabil-
ity pB(e) = 4.78% (see fig. 4).

For sets 3 and 4 values of e(n) below the corresponding
values of pB(e) occur due to the fact that subsets are chosen
randomly resulting in possibly “better” class distributions.

4. Discussion and Conclusions

For the OMI data set the method works pretty well. The
error rate at 500 samples is almost exactly predicted from
the first 250 samples. The number of samples needed to
reach e(N) = 16.82% is exactly predicted as well. Notice-
able is the rather strong deviation of e∞from the minimum
measured error rate. But since this is a real world problem



Figure 4. Measured error rate and fitted error
curve for the artificial data set B.

where no more samples are available no statement can be
made concerning the accuracy of e∞.

With the MNIST data set an inherent shortcoming of the
method becomes evident. The predicted value of e∞ is neg-
ative. Nevertheless, the measured error rate curve is well
approximated with em(N) being slightly larger than e(N).
The number of needed samples N̂ is misleading though,
since em(N) can already be reached with 1200 samples.

For the artificial set A it is not possible to calculate N̂
since e(N) < e∞. For set B N and N̂ differ quite strongly.
But unlike the MNIST data set this shows a strength of the
method since N̂ < N . The figures 3 and 4 show that the
minimum error rate has already been reached at lower val-
ues of n. This tells the designer that is even possible to
remove samples from the training set. The values of e∞
are moderately accurate: Slightly too high for set A and too
low for set B. The approximation of the error rate with N
samples is pretty good for set A. For set B the value is too
low. This is due to the fact, that the minimum error rate has
already been reached, but em(n) is still further decreasing.

It is noticeable that the presented method is performing
best for the OMI data set – a problem for which it is in-
tended to be used. This result can still be improved if the
total number of available samples is used for parameter de-
termination. From the two calculated parameters e∞ can
only be used as some kind of quality measure for the other
values. If it is negative or differs strongly from eb, the other
values are to be treated with care. The parameter a gives a
hint how fast the curve is decreasing.

To summarise, if N̂ < N or e(N) < e∞ samples can
be removed from the training set. If N̂ ≈ N and e(N) ≈
em(N) the error rate model can be used to determine error
rates beyond N .

Table 2. Estimation results for all four data
sets.

Data set OMI MNIST A B
a 0.3721 0.2021 1.0176 0.8933

N 500 2000 200 200
N̂ 499 3577 – 43
eb 15.75% 5.0% 39.6% 4.78%

e∞ 6.91% -6.47% 40.56% 3.12%
e(N) 16.82% 12.64% 38.76% 4.62%

em(N) 16.79% 15.02% 41.01% 4.0%

eb = min. error rate for sets 1 and 2 and eb = pB(e) forA and B.
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