Segmenting the Substantia Nigra in Ultrasound Images for Early Parkinson Diagnosis

C. Kier¹ C. Cyrus¹ G. Seidel² U. G. Hofmann¹ T. Aach³

¹Institute for Signal Processing University of Lübeck

²Department of Neurology University Medical Center Schleswig-Holstein, Campus Lübeck

> ³Institute for Imaging and Computer Vision RWTH Aachen University

> > CARS 2007

Segmenting Substantia Nigra in US Images

• Parkinson's Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).

- Parkinson's Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
- Symptoms do not occur until substantial parts of SN have been irreparably damaged.

Motivation

- Parkinson's Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
- Symptoms do not occur until substantial parts of SN have been irreparably damaged.
- Neuroprotective drugs can shelter neurons in preclinical state.

Motivation

- Parkinson's Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
- Symptoms do not occur until substantial parts of SN have been irreparably damaged.
- Neuroprotective drugs can shelter neurons in preclinical state.
- Early identification of individuals at risk (1% of pop.) needed.

Introduction o●o	Methods oooo	Discussion
Recent findings		

 Transcranial sonography (TCS) detects features correlating to PD at a very early state.

Introduction	Methods	Discussior
○●○	0000	oo
Recent findings		

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.

Segmenting Substantia Nigra in US Images

Kier, Cyrus, Seidel, Hofmann, Aach

Introduction ○●○	Methods 0000	
Recent findings		

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.

Introduction	Methods
○●○	oooo
Recent findings	

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.
- Finding is based on manual image analysis.

Introduction ○●○	Methods
Recent findings	

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.
- Finding is based on manual image analysis.
- Very oberserver-dependent!

Introduction	Methods
○●○	০০০০
Recent findings	

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.
- Finding is based on manual image analysis.
- Very oberserver-dependent!

Goal of this work

(Semi-)Automatic method to determine hyperchogenic SN region.

Introduction	Methods	Discussion
○○●	oooo	oo
Image Acquisition		

 Ultrasound examination is performed from the temporal acoustic bone window.

Introduction ○○●	Methods 0000	
Image Acquisition		

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.

Introduction	Methods
○○●	০০০০
Image Acquisition	

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
- Two images per examination (both hemispheres).

ntroduction	Methods 0000	Discussion oo
mage Acquisition		

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
- Two images per examination (both hemispheres).
- Brain stem can be identified as a dark, butterfly-shaped structure.

Introduction	Methods	Discussion
○○●	0000	oo
Image Acquisition		

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
- Two images per examination (both hemispheres).
- Brain stem can be identified as a dark, butterfly-shaped structure.

Introduction	Methods	Discus
○○●	0000	oo
Image Acquisition		

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
- Two images per examination (both hemispheres).
- Brain stem can be identified as a dark, butterfly-shaped structure.

Soamontation m	•••••	00
Introduction	Methods	Discussion

Segmentation method outline

• Semi-automatic approach

Segmenting Substantia Nigra in US Images

troduction	Methods	Discussion
oo	●○○○	oo
Segmentation method	outline	

- Semi-automatic approach
- Manual segmentation of brain stem by clinical expert

roduction	Methods ●○○○	Discussion oo
equal tation meth	od outline	

- _
 - Semi-automatic approach
 - Manual segmentation of brain stem by clinical expert
 - Preprocessing of brain stem region

Segmentation method outline

- Semi-automatic approach
- Manual segmentation of brain stem by clinical expert
- Preprocessing of brain stem region
- Segmentation of SN region

Border attenuation

• Brain stem ROI may contain bright pixels from surroundings.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.
- SN enhancement
 - SN lies approximately in middle third of ROI.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.
- SN enhancement
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.
- SN enhancement
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
 - Calculate another attenuating mask based on major ellipse axis.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.
- SN enhancement
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
 - Calculate another attenuating mask based on major ellipse axis.

- Brain stem ROI may contain bright pixels from surroundings.
- Low-pass filter ROI mask image, use as attenuating mask.
- SN enhancement
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
 - Calculate another attenuating mask based on major ellipse axis.

Introduction	

Methods

SN Segmentation

• SN is brightest spot in preprocessed image.

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
- Binary image with speckle noise effects:

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
- Binary image with speckle noise effects:
 - SN is interrupted by black spots.

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
- Binary image with speckle noise effects:
 - SN is interrupted by black spots.
 - Small bright spots outside SN remain.

SN Segmentation (2)

• Dilate image with horizontal line to remove speckle noise.

• Dilate image with horizontal line to remove speckle noise.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.
- Use result to mask first binary image.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.
- Use result to mask first binary image.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been seperated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.

Introduction	Methods	Discussion
ooo	oooo	●○
Discussion		

• SN region size can automatically be determined and used as diagnostic measure.

Introduction	Methods oooo	Discussion ●○
Discussion		

- SN region size can automatically be determined and used as diagnostic measure.
- Observer dependence is reduced, measure is reproducible.

Introduction	Methods 0000	Discussion ●○
Discussion		

- SN region size can automatically be determined and used as diagnostic measure.
- Observer dependence is reduced, measure is reproducible.
- Automatic segmentation of brain stem would remove observer dependence completely.

Introduction	Methods 0000	Discussion ●○
Discussion		

- SN region size can automatically be determined and used as diagnostic measure.
 - Observer dependence is reduced, measure is reproducible.
 - Automatic segmentation of brain stem would remove observer dependence completely.
 - By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.

troduction	Methods oooo	Discussion ●○
ST 1		

Discussion

- SN region size can automatically be determined and used as diagnostic measure.
- Observer dependence is reduced, measure is reproducible.
- Automatic segmentation of brain stem would remove observer dependence completely.
- By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.
- Different from CT or MRI results.

troduction	Methods	Discussion
oo	0000	●○

- Discussion
 - SN region size can automatically be determined and used as diagnostic measure.
 - Observer dependence is reduced, measure is reproducible.
 - Automatic segmentation of brain stem would remove observer dependence completely.
 - By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.
 - Different from CT or MRI results.
 - Preliminary results comparing automatic and manual segmentation are very promising.

roduction	Methods	Discussion
		0

Discussion

- SN region size can automatically be determined and used as diagnostic measure.
- Observer dependence is reduced, measure is reproducible.
- Automatic segmentation of brain stem would remove observer dependence completely.
- By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.
- Different from CT or MRI results.
- Preliminary results comparing automatic and manual segmentation are very promising.
- Method has to be validated in a clinical study.

Introduction	

Methods

Conclusion

Conclusion

Presented method helps in developing a fast, cost-effective, and observer-independent preclinical predictor for Parkinson's disease.

Introduction	

Methods

Discussion

Conclusion

Conclusion

Presented method helps in developing a fast, cost-effective, and observer-independent preclinical predictor for Parkinson's disease.

Thank you for your attention!

Segmenting Substantia Nigra in US Images