Segmenting the Substantia Nigra in Ultrasound Images for Early Parkinson Diagnosis

C. Kier1 C. Cyrus1 G. Seidel2 U. G. Hofmann1 T. Aach3

1Institute for Signal Processing
University of Lübeck

2Department of Neurology
University Medical Center Schleswig-Holstein, Campus Lübeck

3Institute for Imaging and Computer Vision
RWTH Aachen University

CARS 2007
Parkinson’s Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
Motivation

- Parkinson’s Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
- Symptoms do not occur until substantial parts of SN have been irreparably damaged.
Motivation

- Parkinson’s Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
- Symptoms do not occur until substantial parts of SN have been irreparably damaged.
- Neuroprotective drugs can shelter neurons in preclinical state.
Motivation

- Parkinson’s Disease (PD) is caused by death of dopamine producing cells in the Substantia Nigra (SN).
- Symptoms do not occur until substantial parts of SN have been irreparably damaged.
- Neuroprotective drugs can shelter neurons in preclinical state.
- Early identification of individuals at risk (1% of pop.) needed.
Recent findings

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
Recent findings

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
Recent findings

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.
Recent findings

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.
- Finding is based on manual image analysis.
Recent findings

- Transcranial sonography (TCS) detects features correlating to PD at a very early state.
- SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.
- Differences not visible on CT or MRI scans.
- Finding is based on manual image analysis.
- Very observer-dependent!
Transcranial sonography (TCS) detects features correlating to PD at a very early state.

SN shows hyperechogenicity in ultrasound images of the brain stem in about 90% of patients.

Differences not visible on CT or MRI scans.

Finding is based on manual image analysis.

Very observer-dependent!

Goal of this work

(Semi-)Automatic method to determine hyperchogenic SN region.
Ultrasound examination is performed from the temporal acoustic bone window.
Image Acquisition

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
Image Acquisition

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
- Two images per examination (both hemispheres).
Ultrasound examination is performed from the temporal acoustic bone window.

Closer half of brain stem is analysed.

Two images per examination (both hemispheres).

Brain stem can be identified as a dark, butterfly-shaped structure.
Ultrasound examination is performed from the temporal acoustic bone window.

Closer half of brain stem is analysed.

Two images per examination (both hemispheres).

Brain stem can be identified as a dark, butterfly-shaped structure.
Image Acquisition

- Ultrasound examination is performed from the temporal acoustic bone window.
- Closer half of brain stem is analysed.
- Two images per examination (both hemispheres).
- Brain stem can be identified as a dark, butterfly-shaped structure.
Segmentation method outline

- Semi-automatic approach
Segmentation method outline

- Semi-automatic approach

1. Manual segmentation of brain stem by clinical expert
Segmentation method outline

- Semi-automatic approach

1. Manual segmentation of brain stem by clinical expert
2. Preprocessing of brain stem region
Segmentation method outline

- Semi-automatic approach

1. Manual segmentation of brain stem by clinical expert
2. Preprocessing of brain stem region
3. Segmentation of SN region
Preprocessing

1. Border attenuation
 - Brain stem ROI may contain bright pixels from surroundings.
Preprocessing

1. **Border attenuation**
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.
Preprocessing

1. **Border attenuation**
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.
Preprocessing

1. Border attenuation
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.
Preprocessing

1. Border attenuation
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.

2. SN enhancement
 - SN lies approximately in middle third of ROI.
Preprocessing

1. **Border attenuation**
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.

2. **SN enhancement**
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
Preprocessing

1. **Border attenuation**
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.

2. **SN enhancement**
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
 - Calculate another attenuating mask based on major ellipse axis.
Preprocessing

1. Border attenuation
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.

2. SN enhancement
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
 - Calculate another attenuating mask based on major ellipse axis.
Preprocessing

1. Border attenuation
 - Brain stem ROI may contain bright pixels from surroundings.
 - Low-pass filter ROI mask image, use as attenuating mask.

2. SN enhancement
 - SN lies approximately in middle third of ROI.
 - Fit ellipse to ROI.
 - Calculate another attenuating mask based on major ellipse axis.
SN Segmentation

- SN is brightest spot in preprocessed image.

Introduction

Methods

Discussion

Kier, Cyrus, Seidel, Hofmann, Aach
SN Segmentation

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
SN Segmentation

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
- Binary image with speckle noise effects:
SN Segmentation

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
- Binary image with speckle noise effects:
 1. SN is interrupted by black spots.
SN Segmentation

- SN is brightest spot in preprocessed image.
- Threshold image with heuristically determined threshold.
- Binary image with speckle noise effects:
 1. SN is interrupted by black spots.
 2. Small bright spots outside SN remain.

Segmenting Substantia Nigra in US Images

Kier, Cyrus, Seidel, Hofmann, Aach
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
Methods

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
Dilate image with horizontal line to remove speckle noise.
Select largest object.
Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
Dilate image with horizontal line to remove speckle noise.
Select largest object.
Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
Use result to mask first binary image.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
- Use result to mask first binary image.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.
SN Segmentation (2)

- Dilate image with horizontal line to remove speckle noise.
- Select largest object.
- Dilate again with circle element to include smaller objects which have been separated by remaining speckle.
- Use result to mask first binary image.
- Apply closing to obtain smooth contour.
Discussion

SN region size can automatically be determined and used as a diagnostic measure.
SN region size can automatically be determined and used as diagnostic measure.

Observer dependence is reduced, measure is reproducible.

Automatic segmentation of brain stem would remove observer dependence completely.

By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.

Different from CT or MRI results.

Preliminary results comparing automatic and manual segmentation are very promising.

Method has to be validated in a clinical study.
Discussion

- SN region size can **automatically** be determined and used as diagnostic measure.
- Observer dependence is reduced, measure is **reproducible**.
- Automatic segmentation of brain stem would remove observer dependence completely.
SN region size can automatically be determined and used as diagnostic measure.

Observer dependence is reduced, measure is reproducible.

Automatic segmentation of brain stem would remove observer dependence completely.

By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.
Discussion

- SN region size can **automatically** be determined and used as diagnostic measure.
- Observer dependence is reduced, measure is **reproducible**.
- Automatic segmentation of brain stem would remove observer dependence completely.
- By using ultrasound this measure is **fast, inexpensive, and uncomplicated** to use on immobile patients.
- Different from CT or MRI results.
SN region size can automatically be determined and used as diagnostic measure.

Observer dependence is reduced, measure is reproducible.

Automatic segmentation of brain stem would remove observer dependence completely.

By using ultrasound this measure is fast, inexpensive, and uncomplicated to use on immobile patients.

Different from CT or MRI results.

Preliminary results comparing automatic and manual segmentation are very promising.
SN region size can **automatically** be determined and used as diagnostic measure.

Observer dependence is reduced, measure is **reproducible**.

Automatic segmentation of brain stem would remove observer dependence completely.

By using ultrasound this measure is **fast, inexpensive, and uncomplicated** to use on immobile patients.

Different from CT or MRI results.

Preliminary results comparing automatic and manual segmentation are **very promising**.

Method has to be validated in a clinical study.
Conclusion

Presented method helps in developing a fast, cost-effective, and observer-independent preclinical predictor for Parkinson’s disease.
Conclusion

Presented method helps in developing a fast, cost-effective, and observer-independent preclinical predictor for Parkinson’s disease.

Thank you for your attention!