Dr.-Ing. Christian Kier
Former Research Associate
Publications
2009
Christian
Kier,
Günter
Seidel,
Norbert
Brüggemann,
Johann
Hagenah,
Christine
Klein,
Til
Aach, and
Alfred
Mertins,
Ultraschall zur Früherkennung von Parkinson, in Medizinische Bildverarbeitung und Mustererkennung , Lübeck , Oct.2009. pp. 1241–1248.
Ultraschall zur Früherkennung von Parkinson, in Medizinische Bildverarbeitung und Mustererkennung , Lübeck , Oct.2009. pp. 1241–1248.
| File: | |
| Bibtex: | @INPROCEEDINGS{Kier2009,
author = {Christian Kier and G{\"u}nter Seidel and Norbert Brüggemann and Johann Hagenah and Christine Klein and Til Aach and Alfred Mertins},
title = {Ultraschall zur Früherkennung von Parkinson},
booktitle = {Medizinische Bildverarbeitung und Mustererkennung},
year = {2009},
month = {Oct.},
series = {Lecture Notes in Informatics},
volume = {P154},
pages = {1241–1248},
address = {Lübeck},
organization = {GI}
}
|
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Alfred
Mertins,
Improved Modelling of Ultrasound Contrast Agent Diminution for Blood Perfusion Analysis, in Medical Image Computing and Computer Aided Interventions -- MICCAI , 2009.
Improved Modelling of Ultrasound Contrast Agent Diminution for Blood Perfusion Analysis, in Medical Image Computing and Computer Aided Interventions -- MICCAI , 2009.
| File: | |
| Bibtex: | @INPROCEEDINGS{Kier2009a,
author = {Christian Kier and Karsten Meyer-Wiethe and Günter Seidel and Alfred
Mertins},
title = {Improved Modelling of Ultrasound Contrast Agent Diminution for Blood
Perfusion Analysis},
booktitle = {Medical Image Computing and Computer Aided Interventions -- MICCAI},
year = {2009}
}
|
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Alfred
Mertins,
Quality improvements for ultrasound-based cerebral perfusion analysis, in Computer Assisted Radiology and Surgery -- CARS , 2009.
Quality improvements for ultrasound-based cerebral perfusion analysis, in Computer Assisted Radiology and Surgery -- CARS , 2009.
2008
A.
Maciak,
G.
Seidel,
K.
Meyer-Wiethe,
C.
Kier, and
U.G.
Hofmann,
Bolus Harmonic Imaging zur automatischen Erkennung ischämiebedingter Perfusionsdefizite im Gehirn, Ultraschall in der Medizin , vol. 29, pp. --, 2008.
Bolus Harmonic Imaging zur automatischen Erkennung ischämiebedingter Perfusionsdefizite im Gehirn, Ultraschall in der Medizin , vol. 29, pp. --, 2008.
| DOI: | 10.1055/s-2008-1027190 |
| File: | |
| Bibtex: | @ARTICLE{Maciak2008,
author = {Maciak, A. and Seidel, G. and Meyer-Wiethe, K. and Kier, C. and Hofmann, U.G.},
title = {Bolus Harmonic Imaging zur automatischen Erkennung ischämiebedingter
Perfusionsdefizite im Gehirn},
journal = {Ultraschall in der Medizin},
year = {2008},
volume = {29},
pages = {--},
abstract = {Zusammenfassung
Ziel: Die Diagnose zerebrovaskulärer Erkrankungen stützt sich zunehmend
auf den Einsatz ultraschallbasierter Verfahren. Das kontrastmittelgestützte,
transkranielle Bolus Harmonic Imaging (BHI) hat hierbei einen hohen
Stellenwert. Die Auswertung der aufgezeichneten Bildsequenz erfolgt
durch geübte Ärzte jedoch manuell und ist somit zeitaufwendig. Das
Ziel der hier beschriebenen drei Verfahren ist die sichere, vollautomatische
Erkennung von Perfusionsdefekten des Gehirns. Material und Methoden:
Mit dem BHI werden Ultraschallbildsequenzen aufgezeichnet, die die
Kontrastmitteldynamik im Gehirn wiedergeben. Diese Bilder werden
mit drei verschiedenen Verfahren automatisch ausgewertet. Zum einen
wird ein regelbasiertes System beschrieben, welches aus den aufgezeichneten
Ultraschallbildern Parameterbilder extrahiert und diese mithilfe
von Expertenwissen nach perfundierten und minderperfundierten Gehirnarealen
klassifiziert. Zum zweiten erfolgt die Klassifikation der Gehirngebiete
unüberwacht mit dem K-Means-Verfahren. Hierzu wird jedes der Parameterbilder
als eine Dimension des zu klassifizierenden Merkmalsraums betrachtet,
sodass eine unüberwachte Segmentierung der minderperfundierten Gehirnbereiche
möglich ist. Drittens wird die gesamte Bildsequenz anhand der Kontrastmitteldynamik
pixelweise klassifiziert. Hierbei kann darauf verzichtet werden,
Parameterbilder extrahieren zu müssen. In allen drei Fällen ist es
im Anschluss notwendig, die beim HI auftretenden Streifenartefakte
automatisch zu erkennen. Abschließend wird ein Aussagenbild generiert,
in dem die gefundenen Minderperfusionen markiert sind. Ergebnisse:
Die drei Verfahren wurden auf einem 26 Patienten umfassenden Kollektiv
klinisch validiert. Hierbei hat sich herausgestellt, dass insbesondere
die Segmentierung anhand der Kontrastmitteldynamik dazu geeignet
ist, Minderperfusionen automatisch zu erkennen. Es konnte auf diesem
Patientenkollektiv eine Sensitivität von 100 % bei einer Spezifität
von 100 % erreicht werden. Schlussfolgerungen: Alle drei Verfahren
erscheinen geeignet, ischämische Gehirngebiete zu erkennen. Hierbei
liefert die Klassifikation von Gehirngebieten nach der Kontrastmitteldynamik
die besten Ergebnisse, da sie robust gegenüber Rauschen ist. Zudem
ist es das schnellste Verfahren, da die Extraktion von Parameterbildern
entfällt. Es ist notwendig, die Sensitivität und Spezifität auf einem
größeren Patientenkollektiv zu validieren. Eine sichere, vollautomatische
Erkennung von Perfusionsdefekten direkt am Patientenbett scheint
somit möglich zu sein.
Abstract
Purpose: The diagnosis of ischemic stroke relies increasingly on the
usage of ultrasound-based methods. One of the recent methods is the
transcranial, contrast agent-based Bolus Harmonic Imaging (BHI) method.
The captured image sequence is manually examined by clinical experts
thus resulting in a time-consuming procedure. The purpose of this
study is to evaluate three different methods to analyze BHI image
sequences automatically for the detection of ischemic brain tissue.
Materials and Method: BHI captures an image sequence that provides
information on the dynamic behavior of the ultrasound contrast agents.
This image sequence is analyzed using three different procedures.
First a system relying on expert knowledge is used to determine perfusion
defects. This procedure requires parametric images, which are previously
extracted from the image sequence. The parameter images are then
categorized by an unsupervised classification method in well-perfused
and ischemic tissue by regarding the parametric images as features
describing the perfusion. Thirdly, the whole image sequence can be
interpreted as a pixel-by-pixel behavior out of contrast agents.
The dynamic curve of each pixel can be automatically classified as
perfused and ischemic tissue by the K-Means method without extracting
parametric images. In all three cases a closing step is necessary
for the accurate interpretation of the results. Transcranial ultrasound
imaging produces typical stripe artifacts that have to be detected
and eliminated. A result image is then created and provides a conclusion
about perfusion reduction in brain tissue. Results: All three methods
have been validated on the basis of 26 patients by clinical experts.
The segmentation on the contrast agent kinetics has proven to be
most effective. According to our patient database, it provides the
highest detection accuracy, resulting in a sensitivity of 100 % and
a specificity of 100 %. Conclusion: The presented methods seem to
be adequate for detecting ischemic brain tissue. The classification
of contrast agent kinetics provides the best results and has further
advantages. It is robust with respect to noise and the calculation
is fast because the extraction of parametric images is omitted. The
very high sensitivity and specificity must be validated in a larger
patient population. Reliable and automated detection of perfusion
defects at the bedside seems to be possible.},
booktitle = {Automatic Detection of Perfusion Deficits with Bolus Harmonic Imaging},
doi = {10.1055/s-2008-1027190},
refid = {101055S20081027190}
}
|
C.
Kier,
G.
Seidel,
N.
Brüggemann,
J.
Hagenah,
C.
Klein,
T.
Aach, and
A.
Mertins,
Transcranial sonography as early indicator for genetic Parkinson’s disease, in 4th European Congress for Medical and Biomedical Engineering , 2008. pp. 456--459.
Transcranial sonography as early indicator for genetic Parkinson’s disease, in 4th European Congress for Medical and Biomedical Engineering , 2008. pp. 456--459.
| File: | |
| Bibtex: | @INPROCEEDINGS{Kier2008,
author = {C. Kier and G. Seidel and N. Brüggemann and J. Hagenah and C. Klein
and T. Aach and A. Mertins},
title = {Transcranial sonography as early indicator for genetic Parkinson’s
disease},
booktitle = {4th European Congress for Medical and Biomedical Engineering},
year = {2008},
pages = {456--459},
abstract = {Early diagnosis of Parkinson’s disease (PD) is of immense importance,
since clinical symptoms do not occur until substantial parts of the
brain stem have been irreparably damaged. Recent work suggests that
by means of transcranial sonography (TCS) it is possible to determine
the formation of monogenic forms of parkinsonism at a very early
state. In TCS images, the mesencephalon shows a distinct hyperechogenic
pattern in about 90% of patients with PD, despite its normal appearance
on CT and MRI scans. At present, this pattern is manually segmented
and the region size is used as an early PD indicator. In order to
remove investigator dependence inherent to manual segmentation, we
develop and validate semi-automatic features to serve as risk factors
for PD manifestation. We show in a clinical study that some of the
features correlate significantly with the presence of specific genetic
mutations causing PD.},
file = {Kier2008.pdf:christian/Kier2008.pdf:PDF},
keywords = {parkinson},
owner = {kier},
timestamp = {2009.01.22}
} |
2007
Christian
Kier,
Christina
Cyrus,
Günter
Seidel,
Ulrich G.
Hofmann, and
Til
Aach,
Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson's disease, International Journal of Computer Assisted Radiology and Surgery , vol. 2, no. S1, pp. S83--S85, Jun. 2007.
Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson's disease, International Journal of Computer Assisted Radiology and Surgery , vol. 2, no. S1, pp. S83--S85, Jun. 2007.
| DOI: | 10.1007/s11548-007-0086-4 |
| File: | |
| Bibtex: | @ARTICLE{Kier2007,
author = {Christian Kier and Christina Cyrus and Günter Seidel and Ulrich G. Hofmann and Til Aach},
title = {Segmenting the substantia nigra in ultrasound images for early diagnosis
of Parkinson's disease},
journal = {International Journal of Computer Assisted Radiology and Surgery},
year = {2007},
volume = {2},
pages = {S83--S85},
number = {S1},
month = {June},
doi = {10.1007/s11548-007-0086-4},
keywords = {parkinson}
} |
A.
Maciak,
C.
Kier,
G.
Seidel,
K.
Meyer-Wiethe, and
U. G.
Hofmann,
Automatische Erkennung von Ischämien mit Bolus Harmonic Imaging, in Bildverarbeitung für die Medizin 2007 , A. Horsch, T. M. Deserno, H. Handels, H.-P. Meinzer, T. Tolxdorf, Eds. München: Springer-Verlag, Mar.2007. pp. 81-86.
Automatische Erkennung von Ischämien mit Bolus Harmonic Imaging, in Bildverarbeitung für die Medizin 2007 , A. Horsch, T. M. Deserno, H. Handels, H.-P. Meinzer, T. Tolxdorf, Eds. München: Springer-Verlag, Mar.2007. pp. 81-86.
| ISBN: | 3540710905 |
| File: | |
| Bibtex: | @INPROCEEDINGS{Maciak2007,
author = {Maciak, A. and Kier, C. and Seidel, G. and Meyer-Wiethe, K. and Hofmann, U. G.},
title = {Automatische Erkennung von Ischämien mit Bolus Harmonic Imaging},
booktitle = {Bildverarbeitung für die Medizin 2007},
year = {2007},
editor = {A. Horsch, T. M. Deserno, H. Handels, H.-P. Meinzer, T. Tolxdorf},
pages = {81-86},
address = {München},
month = {25-27 March},
publisher = {Springer-Verlag},
isbn = {3540710905}
}
|
A.
Maciak,
C.
Kier,
G.
Seidel,
K.
Meyer-Wiethe, and
U. G.
Hofmann,
Detecting Stripe Artifacts in Ultrasound Images, Journal of Digital Imaging , 2007.
Detecting Stripe Artifacts in Ultrasound Images, Journal of Digital Imaging , 2007.
| DOI: | 10.1007/s10278-007-9049-0 |
| File: | |
| Bibtex: | @ARTICLE{Maciak2007a,
author = {A. Maciak and C. Kier and G. Seidel and K. Meyer-Wiethe and U. G.
Hofmann},
title = {Detecting Stripe Artifacts in Ultrasound Images},
journal = {Journal of Digital Imaging},
year = {2007},
doi = {10.1007/s10278-007-9049-0},
url = {http://www.springerlink.com/content/rm058658xpv37ph2/?p=fbae785cac25420b93dd3c1a6b1428a9&pi=0}
}
|
Adam
Maciak,
Christian
Kier,
Günter
Seidel,
Karsten
Meyer-Wiethe,
Ulrich
Hofmann, and
Til
Aach,
Robuste Ermittlung parametrischer Bilder für die Ultraschall-Perfusionsbildgebung basierend auf einem Modell der Boluskinetik von Kontrastmitteln, Biomedizinische Technik. Ergänzungsband. , vol. 52, pp. Session A2, 2007.
Robuste Ermittlung parametrischer Bilder für die Ultraschall-Perfusionsbildgebung basierend auf einem Modell der Boluskinetik von Kontrastmitteln, Biomedizinische Technik. Ergänzungsband. , vol. 52, pp. Session A2, 2007.
| File: | |
| Bibtex: | @ARTICLE{Maciak2007b,
author = {Adam Maciak and Christian Kier and G{\"u}nter Seidel and Karsten Meyer-Wiethe
and Ulrich Hofmann and Til Aach},
title = {Robuste Ermittlung parametrischer Bilder für die Ultraschall-Perfusionsbildgebung
basierend auf einem Modell der Boluskinetik von Kontrastmitteln},
journal = {Biomedizinische Technik. Ergänzungsband.},
year = {2007},
volume = {52},
pages = {Session A2},
address = {Berlin},
issn = {0939-4990},
keywords = {perfuscope}
} |
C.
Kier,
K.
Meyer-Wiethe,
G.
Seidel, and
T.
Aach,
Ultrasound Cerebral Perfusion Analysis Based on a Mathematical Model for Diminution Harmonic Imaging, Methods of Information in Medicine , vol. 46, no. 3, pp. 308--13, 2007.
Ultrasound Cerebral Perfusion Analysis Based on a Mathematical Model for Diminution Harmonic Imaging, Methods of Information in Medicine , vol. 46, no. 3, pp. 308--13, 2007.
| DOI: | 10.1160/ME9048 |
| File: | |
| Bibtex: | @ARTICLE{Kier2007a,
author = {C. Kier and K. Meyer-Wiethe and G. Seidel and T. Aach},
title = {Ultrasound Cerebral Perfusion Analysis Based on a Mathematical Model
for Diminution Harmonic Imaging},
journal = {Methods of Information in Medicine},
year = {2007},
volume = {46},
pages = {308--13},
number = {3},
doi = {10.1160/ME9048},
keywords = {perfuscope}
}
|
2006
G.
Seidel,
H.
Cangür,
K.
Meyer-Wiethe,
G.
Renault,
A.
Herment,
A.
Schindler, and
C.
Kier,
On the ability of ultrasound parametric perfusion imaging to predict the area of infarction in acute ischemic stroke., Ultraschall Med , vol. 27, no. 6, pp. 543--548, Dec. 2006.
On the ability of ultrasound parametric perfusion imaging to predict the area of infarction in acute ischemic stroke., Ultraschall Med , vol. 27, no. 6, pp. 543--548, Dec. 2006.
| DOI: | 10.1055/s-2006-927023 |
| File: | |
| Bibtex: | @ARTICLE{Seidel2006,
author = {G. Seidel and H. Cangür and K. Meyer-Wiethe and G. Renault and A. Herment and A. Schindler and C. Kier},
title = {On the ability of ultrasound parametric perfusion imaging to predict
the area of infarction in acute ischemic stroke.},
journal = {Ultraschall Med},
year = {2006},
volume = {27},
pages = {543--548},
number = {6},
month = {Dec},
abstract = {PURPOSE: Cerebral perfusion deficits in acute ischemic stroke can
be detected by means of transcranial harmonic imaging after ultrasound
contrast agent bolus injection. We evaluated five different parameters
of the bolus kinetics as parametric images and correlated areas of
disturbed perfusion with the area of definite infarction. MATERIALS
AND METHODS: Perfusion harmonic imaging after SonoVue bolus injection
(BHI) was used to investigate 22 patients suffering from acute internal
carotid artery infarction. For each subject, we calculated five different
images based on the following parameters from the time-intensity
curve in each pixel: pixelwise peak intensity (PPI), area under the
curve (AUC), positive gradient (PG), time to peak (TTP), and a three
factor image from the factor analysis of medical image sequences
(FAMIS). The findings in the diencephalic imaging plane were compared
with the definite area of infarction, as diagnosed by cranial CT.
RESULTS: In predicting the definite area of infarction in follow-up
CT, we found the following sensitivities and positive predictive
values (PPV): PPI (100 \%/95 \%), AUC (100 \%/90 \%), FAMIS (89 \%/89
\%), PG (84 \%/94 \%) and TTP (47 \%/100 \%). The areas of disturbed
perfusion in all five types of parametric images correlated significantly
with the area of infarction in CT. Images from the FAMIS algorithm
and PPI images showed the highest Spearman rank correlation with
the area of definite infarction as displayed in CT (both r = 0.76,
p < 0.001). Images from the other parameters correlated as follows:
PG: r = 0.62 (p = 0.003), AUC: r = 0.53 (p = 0.014), TTP: r = 0.50
(p = 0.021). CONCLUSION: BHI can detect disturbed perfusion in acute
hemispheric stroke. In their ability to predict the development of
an infarction, intensity-based parameters and FAMIS were determined
to have a high sensitivity, and TTP was found to have a high PPV
and specificity.},
doi = {10.1055/s-2006-927023},
pmid = {17146746},
url = {http://dx.doi.org/10.1055/s-2006-927023}
}
|
Adam
Maciak,
Christian
Kier,
Günter
Seidel,
Karsten
Meyer-Wiethe, and
Til
Aach,
Parameterfreie Erkennung von Ischämien mit ultraschallbasiertem Harmonic Imaging, in Proceedings BMT , Zürich , Sep.2006. pp. V76.
Parameterfreie Erkennung von Ischämien mit ultraschallbasiertem Harmonic Imaging, in Proceedings BMT , Zürich , Sep.2006. pp. V76.
| File: | |
| Bibtex: | @INPROCEEDINGS{Maciak2006,
author = {Adam Maciak and Christian Kier and G{\"u}nter Seidel and Karsten Meyer-Wiethe and Til Aach},
title = {Parameterfreie Erkennung von Ischämien mit ultraschallbasiertem Harmonic Imaging},
booktitle = {Proceedings BMT},
series = {ISSN 0939-4990},
year = {2006},
pages = {V76},
address = {Zürich},
month = {September},
keywords = {perfuscope}
}
|
Christian
Kier, and
Til
Aach,
Predicting the benefit of sample size extension in multiclass k-NN classification, in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on , Aug.2006. pp. 332--335.
Predicting the benefit of sample size extension in multiclass k-NN classification, in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on , Aug.2006. pp. 332--335.
| DOI: | 10.1109/ICPR.2006.942 |
| File: | |
| Bibtex: | @INPROCEEDINGS{Kier2006a,
author = {Christian Kier and Til Aach},
title = {Predicting the benefit of sample size extension in multiclass k-NN
classification},
booktitle = {Pattern Recognition, 2006. ICPR 2006. 18th International Conference
on},
year = {2006},
volume = {3},
pages = {332--335},
month = {20-24 Aug.},
doi = {10.1109/ICPR.2006.942}
}
|
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Til
Aach,
Ultraschall-Perfusionsbildgebung für die Schlaganfalldiagnostik auf Basis eines Modells für die Destruktionskinetik von Kontrastmittel , in Bildverarbeitung für die Medizin 2006 , H. Handels and J. Ehrhardt and A. Horsch and H.-P. Meinzer and T. Tolxdoff , Eds. Heidelberg: Springer, Mar.2006. pp. 41--45 .
Ultraschall-Perfusionsbildgebung für die Schlaganfalldiagnostik auf Basis eines Modells für die Destruktionskinetik von Kontrastmittel , in Bildverarbeitung für die Medizin 2006 , H. Handels and J. Ehrhardt and A. Horsch and H.-P. Meinzer and T. Tolxdoff , Eds. Heidelberg: Springer, Mar.2006. pp. 41--45 .
| File: | |
| Bibtex: | @Inproceedings{Kie06a,
author = { Christian Kier and Karsten Meyer-Wiethe and G{\"u}nter Seidel
and Til Aach },
title = { Ultraschall-Perfusionsbildgebung für die Schlaganfalldiagnostik auf Basis eines Modells für die Destruktionskinetik von Kontrastmittel },
pages = { 41--45 },
month = {March},
year = 2006,
editor = { H. Handels and J. Ehrhardt and A. Horsch and H.-P. Meinzer
and T. Tolxdoff },
publisher = {Springer},
series = { Informatik Aktuell },
address = {Heidelberg},
booktitle = { Bildverarbeitung für die Medizin 2006 }
} |
K.
Meyer-Wiethe,
A.
Schindler,
C.
Kier,
H.
Cangür,
C.
Koch, and
G.
Seidel,
Transkraniell-sonographische Analyse der Wiederauffüll- und Destruktionskinetik von Ultraschallkontrastmittel im akuten Hirninfarkt, Aktuelle Neurologie , vol. 33, no. S1, pp. P538, 2006.
Transkraniell-sonographische Analyse der Wiederauffüll- und Destruktionskinetik von Ultraschallkontrastmittel im akuten Hirninfarkt, Aktuelle Neurologie , vol. 33, no. S1, pp. P538, 2006.
| DOI: | 10.1055/s-2006-953362 |
2005
Antje
Vollrath,
Christian
Kier,
Karsten
Meyer-Wiethe,
Günter
Seidel, and
Til
Aach,
Detecting Stripe Artefacts in Ultrasound Parametric Images , Biomedizinische Technik , vol. 50, no. suppl. vol. 1 , pp. 1235--1236 , Sep. 2005. Fachverlag Schiele und Schön .
Detecting Stripe Artefacts in Ultrasound Parametric Images , Biomedizinische Technik , vol. 50, no. suppl. vol. 1 , pp. 1235--1236 , Sep. 2005. Fachverlag Schiele und Schön .
| File: | |
| Bibtex: | @Article{Vol05a,
author = { Antje Vollrath and Christian Kier and Karsten Meyer-Wiethe and G{\"u}nter Seidel and Til Aach },
title = { Detecting Stripe Artefacts in Ultrasound Parametric Images },
journal = { Biomedizinische Technik },
volume = 50,
number = { suppl. vol. 1 },
pages = { 1235--1236 },
month = {September},
year = 2005,
publisher = { Fachverlag Schiele und Schön },
address = {Berlin}
} |
Christian
Kier,
Daniel
Toth,
Karsten
Meyer-Wiethe,
Angela
Schindler,
Hakan
Cangür,
Günter
Seidel, and
Til
Aach,
Cerebral Perfusion Imaging with Bolus Harmonic Imaging , in Ultrasonic Imaging and Signal Processing , William F. Walker and Stanislav Y. Emelianov , Eds. San Diego, CA , Feb.2005. pp. 437--446 .
Cerebral Perfusion Imaging with Bolus Harmonic Imaging , in Ultrasonic Imaging and Signal Processing , William F. Walker and Stanislav Y. Emelianov , Eds. San Diego, CA , Feb.2005. pp. 437--446 .
| File: | |
| Bibtex: | @Inproceedings{Kie05a,
author = { Christian Kier and Daniel Toth and Karsten Meyer-Wiethe and Angela Schindler and Hakan Cangür and Günter Seidel and Til Aach },
title = { Cerebral Perfusion Imaging with Bolus Harmonic Imaging },
volume = {5750},
pages = { 437--446},
month = {February},
year = {2005},
editor = { William F. Walker and Stanislav Y. Emelianov },
series = { Proceedings of SPIE },
address = { San Diego, CA },
booktitle = { Ultrasonic Imaging and Signal Processing },
}
|
G
Seidel,
H
Cangör,
K
Meyer-Wiethe,
G
Renault,
A
Herment,
A
Schindler,
C
Kier, and
T
Aach,
Sonographische Darstellung der Hirnperfusion zur Prädiktion des Hirninfarkts bei Patienten mit akutem Schlaganfall, 2005.
Sonographische Darstellung der Hirnperfusion zur Prädiktion des Hirninfarkts bei Patienten mit akutem Schlaganfall, 2005.
2004
Günter
Seidel,
Christian
Kier,
Karsten
Meyer-Wiethe,
Daniel
Toth,
Angela
Schindler, and
Til
Aach,
Sonografische Parameterbilder zur Darstellung der Hirnperfusion bei Patienten mit akutem Hirninfarkt, 2004.
Sonografische Parameterbilder zur Darstellung der Hirnperfusion bei Patienten mit akutem Hirninfarkt, 2004.

