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Abstract

This paper presents a novel multiresolution image segmentation method based on the discrete wavelet transform and

Markov Random Field (MRF) modeling. A major contribution of this work is to add spatial scalability to the

segmentation algorithm producing the same segmentation pattern at different resolutions. This property makes it suitable

for scalable object-based wavelet coding. To optimize segmentation at all resolutions of the wavelet pyramid, with

scalability constraint, a multiresolution analysis is incorporated into the objective function of the MRF segmentation

algorithm. Examining the corresponding pixels at different resolutions simultaneously enables the algorithm to directly

segment the images in the YUV or similar color spaces where luminance is in full resolution and chrominance components

are at half resolution. Allowing for smoothness terms in the objective function at different resolutions improves border

smoothness and creates visually more pleasing objects/regions, particularly at lower resolutions where down-sampling

distortions are more visible. In addition to spatial scalability, the proposed algorithm outperforms the standard single and

multiresolution segmentation algorithms, in both objective and subjective tests, yielding an effective segmentation that

particularly supports scalable object-based wavelet coding.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Image segmentation is the process of dividing an
image into homogenous regions, which is an
essential step toward higher level image processing
such as image analysis, pattern recognition and
computer vision. In particular, effective segmenta-
tion is crucial for the emerging object-based image/
e front matter r 2005 Elsevier B.V. All rights reserved

pro.2005.09.016

ing author. Tel.: +98 2 4221 4398;

3244.

esses: fat98@uow.edu.au (F.A. Tab),

du.au (G. Naghdy),

uni-oldenburg.de (A. Mertins).
video standards such as object-based coding stan-
dards defined by MPEG-4 [1] and content-based
shape descriptor used in MPEG-7 [2].

In scalable object-based coding, a single code-
stream can be sent to different users with different
processing capabilities and network bandwidths by
selectively transmitting and decoding the related
parts of the codestream [3]. Some of the desirable
scalable functionalities are signal to noise ratio
(SNR) scalability, spatial scalability and temporal
scalability [3]. A scalable bitstream includes em-
bedded parts that offer increasingly better SNR,
greater spatial resolution or higher frame rates.
Therefore considering the spatial scalability, it is
.

www.elsevier.com/locate/sigpro
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necessary to extract and present objects’ shape at
different resolutions for the scalable object-based
encoder/decoder systems. For an effective scalable
object-based coding algorithm, it is essential that
the shapes of the extracted objects at different
resolutions be similar or equivalently, the pattern of
segmented regions should be similar at different
resolutions. We call the segmentation algorithm
with the similar patterns at different resolutions
scalable segmentation.

Multiresolution image segmentation algorithms
analyze the image at different resolutions resulting
in some advantageous over the single-resolution
segmentation such as
�
 less computational complexity,

�
 improvement in the convergence rate,

�
 reduction in over-segmentation cases,

�
 less sensitivity to noise,

�
 ability to capture the image structures at different

resolutions,

�
 less dependence on initial segmentation.

These algorithms consider the inter-scales image
data correlation in the segmentation procedure. In
the most straightforward case, these algorithms
consider inter-scale correlation by projecting the
lower resolution segmentation result to the next
higher resolution as an initial segmentation estima-
tion. The segmentation is further refined at the
current higher resolution by a single resolution
segmentation. This procedure continues progres-
sively until highest resolution is segmented [4–7].
One of the challenges arising from this approach is
that higher resolution segmentations are more
rigorous than the lower resolution segmentations
and segmentation maps at higher and lower
resolutions are not quite identical. For example,
some objects are not detected or are partly detected
at low resolutions while they are perfectly detected
at higher resolutions. This makes the higher
resolution segmentation more reliable for object
extraction applications. Therefore the semantic
segmentation and object extraction algorithms
extract objects from the highest resolution segmen-
tation.

In [4], Pappas presents an adaptive clustering
algorithm based on maximum a posteriori (MAP)
estimation which allows for slow space-varying
mean statics for each region. Local intensity
variations are considered in an iterative procedure
which estimates the Markov Random Field para-
meters over a sliding window whose size decreases
as the algorithm progresses. In the hierarchical
mode, segmentation starts at the coarsest resolu-
tion. Once the image at this resolution is segmented,
the result is used as an initial segmentation for the
next finer resolution until the finest resolution is
segmented. In [5] the Pappas algorithm is updated
by considering the edge information to increase the
accuracy of the segmentation and reduce the under-
segmentation produced by the Pappas algorithm. In
[6] noisy images are decomposed by redundant
discrete wavelet transform (RDWT). In RDWT
decomposition, first the low pass sub band image is
filtered L times and then down sampling is done
again L times. Similarly, the segmentation starts
from lower resolution and the result is propagated
to the higher resolution. One of the disadvantageous
of this algorithm is under-segmentation. In this
algorithm low resolution segmentation could be
significantly different from highest resolution seg-
mentation and scalability is not provided. Munoz
et al. [7] propose a multiresolution image segmenta-
tion which integrates both region and boundary
information. The image is decomposed into several
resolutions. First, at the coarsest resolution, the
most relevant edges are detected. Then seeds are
placed far from the edges and the region growing
algorithms obtain the regions. Using a global energy
function and a greedy optimization algorithm, all
the pixels are classified. The segmentation is
subsequently projected to the next higher resolution
where non-bounder pixels are used to model the
regions in the higher resolution. The greedy
optimization algorithm again obtains the regions.
The algorithm cannot detect small objects/regions if
they are not detected in the lowest resolutions.
Considering the inter-scale correlation in the pixel
classification procedure or extension to the scalable
mode is not easily possible.

In the second group of segmentation algorithms,
the inter-scale correlations is considered in the
statistical models and decision at each pixel/block
is based on the information of the different
resolutions [8–12]. However, often only the causal
inter-scale correlation with the latest lower resolu-
tion [8,9,12,11] or the next higher resolution is
considered [10]. Considering the other resolutions,
results in a very complex model and increases the
computational complexity. Bouman et al. [8]
introduce hierarchical MRF variables defined as a
coarse to fine Markov chain of levels. The
associated interaction structure is a quadtree which
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correlates the current node with the parent at the
last resolution. It does not include the spatial
correlation at the same resolution and also it is
not shift invariant since two pixels that would be
adjacent in terms of spatial lattice may be actually
apart in the graph structure. In [9] Comer et al.
consider the inter-scale correlation as well as intra-
scale correlation. They propose a multiresolution
texture segmentation which fits an auto regressive
model to the pyramid representation of the image.
The MAP optimization criterion is replaced with the
multiresolution maximization of the posteriori
marginal (MMPM) estimation which facilitates the
use of EM algorithm to estimate the parameters
such as auto regressive model coefficients and
prediction variances of different textures. The
coarsest resolution is segmented in a single resolu-
tion mode and the segmentation is propagated
down to the other levels of the pyramid. In this
approach, correlation is only between adjacent
resolutions and low resolution segmentation error
will propagate to higher resolutions. Although some
parameters are estimated, many parameters such as
spatial interaction or number of segmentation
classes are determined experimentally. Wilson
et al. [12] update the statistical models used by
Bouman et al. [8] with the view that each scale or
resolution data is conditioned not only on its
immediate predecessor but also directly dependent
on its neighbors at its own scale. Segmentation
starts from the coarse resolution and is projected to
the next resolution as an initial estimation. At each
resolution, the image is divided into blocks and
every block is classified by a MRF-based segmenta-
tion. Because the classification is block based, after
the highest resolution optimization, a line proces-
sing refines the regions’ borders to the actual
borders. This methods suffers from a number of
short comes. Detecting new regions in higher
resolutions specially small regions is not possible.
Interaction between different resolutions are causal
from low to highest resolution. It needs a region
boundary refinement which increases the computa-
tional complexity and also its procedure does not
interact with region labeling. The method cannot be
extended to scalable mode easily. Kato et al. [10]
introduce a novel hierarchical segmentation which
includes a three dimensional neighborhood system.
In addition to spatial correlation, the interaction
with both higher and lower resolutions are con-
sidered. The algorithm alternates between para-
meter estimation and segmentation algorithm.
Unfortunately, the resulting parameter estimation
and segmentation procedures require considerable
computing time. In addition considering both high-
er and lower resolutions produces a complex model
and increases the computational complexity.

None of these works and similar ones in the
literature, consider inter-scale correlation between
all pyramid resolutions. In addition their extension
to scalable segmentation, producing the same
segmentation patterns at different resolution, is
nearly impossible or results in an algorithm with
large computational complexity. In order to pro-
duce similar objects/regions at different resolutions,
we present a novel MRF-based multiresolution
grey/color image segmentation algorithm which
extends the statistical model to consider the
correlation between all the resolutions without
overly increasing the computational complexity. It
produces the same segmentation patterns at differ-
ent resolutions and it is applicable to object-based
wavelet coding algorithms. Bearing in mind the
down-sampling of pixels to lower resolution in
wavelet decomposition, corresponding pixels at
different resolutions are considered as vector of
pixels which are supposed to have the same
segmentation label. A vector or multiresolution/
multidimensional analysis is incorporated in the
objective function of the MRF-based segmentation
algorithm which aligns the segmentation algorithm
with the object-based wavelet coding spatial scal-
ability. This vector analysis keeps wavelet spatial
scalability as a constraint which fits multiresolution
MRF segmentation to wavelet-based scalable object
coding.

The multiscale analysis uses different-resolution
information concurrently, which produces better
results than regular single and multiresolution
Bayesian segmentation algorithms. It combines
and processes both coarse global information of
low resolution with fine local information obtained
from higher resolutions of the wavelet decomposi-
tion pyramid. Therefore, it combines good features
of both single and multiresolution segmentations.
While it is noise resistance, it detects objects/regions
better than regular multiresolution segmentation
and also results in a lower number of regions than
single level segmentation. To optimize the objective
function of the segmentation algorithm, the Iterated
Condition Mode (ICM) algorithm according to [4],
matched to the scalable multiscale analysis, is used.

In this work, a smoothness criterion is incorpo-
rated in the objective function of the segmentation
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Fig. 1. Circles in different resolutions: (a) closer approximation of a digital circle at high resolution; (b) down-sampling to low resolution;

(c) worse approximation of a digital circle at high resolution; (d) down-sampling of (c) to low resolution.
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algorithm which results in a more normal or visually
pleasing objects/regions. Many natural objects
exhibit smooth borders/edges, and distortions such
as down sampling often result in rough borders/
edges. Hence, to some extent there is correlation
between visually pleasing objects and smoothness.
In order to accentuate smoothness at lower resolu-
tions, bigger smoothness coefficients are chosen for
lower resolutions. By considering different coeffi-
cients for the smoothness term of different resolu-
tions, the distortion effects of down-sampling is
reduced.

Color images have more information than grey-
level images which results in more reliable separa-
tion of foreground regions from background in
color image segmentation algorithms. It has been
recognized that selection of an appropriate color
space produces more perceptually effective segmen-
tation results [13,14]. In particular, segmentation in
YUV or LUV spaces produces more favorable
results than the RGB space [13–15]. Many of the
images and image sequences in the databases are in
YUV format where Y is in full resolution while U
and V components are in half resolution. The fact
that the Y, U, and V channels are presented at
different resolutions is not considered in any of the
existing regular single or multiresolution color
image segmentation algorithms. However, this fact
calls for a fitted multiresolution algorithm to
perform the segmentation task effectively. The
proposed algorithm has enough flexibility to
directly segment color images. In the vector
analysis, only available components of color data
at different resolutions are used to classify the
vector to one of the segmentation labels. For this
reason, the proposed algorithm can segment grey-
level images as well.

In order to produce similar objects/regions at
different resolutions, an alternative method is
single-resolution segmentation followed by down-
sampling. In single-resolution region-based image/
video segmentation algorithms, features such as
intensity/color, texture, motion, etc. are considered
at the highest resolution. In this method, good
features of multiresolution segmentation such as
reduced noise sensitivity are lost, and producing
optimized and visually pleasing objects/regions at
different resolutions, as a criterion, is not consid-
ered. Furthermore, down-sampling distorts shapes
and cannot preserve their topology at lower
resolutions for all possible shapes [16]. In other
words, achieving visually pleasing objects/regions at
higher resolution does not necessarily ensure similar
quality at lower resolutions. For example in Fig. 1,
down-sampling of two digital circles is compared. It
can be seen that down sampling of the better
approximation of a digital circle at high resolution
can result in worse shape at lower resolution.

This paper is organized as follows. Section 2
refers to the scalability in object-based wavelet
coding. In Section 3, the proposed scalable multi-
resolution segmentation algorithm, which includes a
statistical image modeling and optimization pro-
cesses, is explained. Some experimental results and
discussion are presented in Section 4, and finally,
conclusions are drawn in Section 5.

2. Object-based wavelet coding scalability

Scalability means the capability of decoding a
compressed sequence at different data rates. It is
useful for image/video communication over hetero-
genous networks which require a high degree of
flexibility from the coding system. Some of the
desirable scalable functionalities are SNR scalabil-
ity, spatial scalability and temporal scalability [3]. In
particular spatial scalability means that, depending
on the end user’s capabilities (bandwidth, display
resolution, etc.), a resolution is selected and all the
shape and texture information is sent and decoded
at the appropriate resolution. Scalable image/video
coding has also different applications such as web
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Fig. 2. Decomposition of a non rectangular object with odd-length filters: (a) the object, shown in dark grey; (b) the decomposed object

after horizontal filtering; (c) decomposed object after vertical filtering. The letters ‘‘E’’ and ‘‘O’’ indicate the position (even or odd) of a

pixel in the horizontal and vertical dimensions.

F.A. Tab et al. / Signal Processing 86 (2006) 1670–16871674
browsing, image/video database systems, video
telephony, etc.

In wavelet-based spatial scalability applications,
due to the self similarity feature of the wavelet
transform, the shape in lower scale is the shape in
the lowpass (LL) subband. The exact relationship
between the full-resolution shape and its low-
resolution versions depends on the kind of wavelet
transform used for the decomposition. In this paper
we use an odd length filter (e.g. 9/7), where all shape
points with even indices1 are downsampled for the
lowpass band [17]. Fig. 2 further illustrates the
wavelet decomposition of arbitrarily shaped objects
when using an odd-length filter. The final four-band
decomposition is depicted in Fig. 2(c). As a result,
every shape pixel with even indices has a corre-
sponding pixel on the lower resolution and every
shape pixel on the lower level has a corresponding
pixel on the next higher level. By considering the self
similarity of the wavelet transform, it is straightfor-
ward to suppose that the pixels of a shape with even
indices have the same segmentation classifications
as the corresponding pixels on the lower level.

The wavelet self similarity extends to all low pass
subband shapes of different levels. Therefore the
discussed relationship between corresponding pixels
is extended to shapes at different scales. Corre-
sponding pixels at different resolutions have the
same segmentation class.
3. Spatial segmentation algorithm

Markov Random Field statistical modeling is
used in many image processing applications. In
order to solve an image processing problem by the
MRF technique, a statistical image model has to be
1Suppose indices start from zero or an even number.
fitted to the application which captures the intrinsic
character of the image in a few parameters. Image/
Video processing problems, including all uncertain-
ties and constraints, can therefore be converted to a
mathematical parameter optimization problem [18].
3.1. Statistical color image model

The main challenge in multiresolution image
segmentation for scalable object-based wavelet
coding is to keep the same relation between
extracted objects/regions at different resolutions as
it exists between the decomposed objects/regions at
different resolutions in a shape adaptive wavelet
transform. The other constraint is border smooth-
ness particularly in lower resolutions. Different
smoothness coefficients defined at different resolu-
tions give some degree of freedom to put more
emphasis on the low-resolution smoothness. To
meet these challenges, Markov random field model-
ing is selected as it includes low level processing at
pixel level and has enough flexibility in defining
objective functions matched with the problem at
hand [18]. We first explain the statistical model of
single resolution grey/color image segmentation and
then extend it to the scalable multiresolution
segmentation mode. In a regular single-level
MRF-based image segmentation the problem is
formulated using a criterion such as the maximum
a posteriori (MAP) probability. The desired seg-
mentation is denoted by X, and Y is the observed
color image with three channels shown by a three
dimensional vector Y ¼ ½Y 1;Y 2;Y 3�. Then accord-
ing to the Bayes rule, the a posteriori prob-
ability density of the segmentation variables can
be written as

PðX jY Þ / PðY jX ÞPðX Þ, (1)
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where PðX jY Þ represents the conditional probabil-
ity of the segmentation label, given the observation
Y. By assuming the conditional independence of the
channels given the segmentation field [13], we have
PðY jX Þ ¼ PðY 1jX ÞPðY 2jX ÞPðY 3jX Þ, and the con-
ditional probability in (1) becomes

PðX jY Þ / PðY 1jX ÞPðY 2jX ÞPðY 3jX ÞPðX Þ. (2)

The label field X is normally modeled by a MRF
stochastic variable. Spatial continuity is easily
incorporated into the segmentation, because it is
inherent to MRFs [19]. Using a four or eight pixel
neighborhood system considering only pairwise
cliques, PðX Þ is then a Gibbs distribution [4] and
is defined by its energy function UðX Þ such that

PðX Þ ¼
1

Z
exp �

1

T
UðX Þ

� �
; UðX Þ ¼

X
c2C

V cðX Þ,

(3)

where C is the set of all cliques, and V c is the clique
potential function. A clique is a set of neighboring
pixels. A clique function depends only on the pixels
that belong to the clique. In single-resolution
segmentation, usually one or two pixel cliques are
used as shown in Fig. 3(a), and for one pixel cliques
we assume that the one pixel clique potentials are
zero, which means that all region types are equally
likely [4]. Spatial connectivity of the segmentation is
imposed by assigning the following clique function:

V cðs; rÞ ¼
�b if X ðsÞ ¼ X ðrÞ;

þb if X ðsÞaX ðrÞ;
ðs; rÞ 2 C:

(
(4)

Herein b is a positive number and s and r are a
pair of neighboring pixels. Note that a low potential
or energy corresponds to a higher probability for
pixel pairs with identical labels and lower prob-
ability for pairs with different labels, which auto-
matically encourages spatially connected regions.

The conditional probability density PðY ijX Þ,
i ¼ 1; 2; 3, is modeled as a white Gaussian process,
(a)

Fig. 3. (a) Normal one and two pixels cliques sets. (b) A clique
with mean mi
X ðsÞðsÞ and variance s2i for channel i.

Each region is characterized by a mean vector
½m1X ðsÞðsÞ, m

2
X ðsÞðsÞ, m

3
X ðsÞðsÞ� which is a slowly varying

function of s. Therefore PðY jX Þ can be described by
the following equation:

PðY jX Þ / exp �
X

s

X3
i¼1

1

2s2i
ðY iðsÞ � mi

X ðsÞðsÞÞ
2

 !( )
.

(5)

Considering Eqs. (1), (3) and (5), the conditional
probability density of the segmentation variable
becomes

PðX jY Þ / exp �
X

s

X3
i¼1

1

2s2i
ðY iðsÞ � mi

X ðsÞðsÞÞ
2

 (

þ
1

T

X
r2qs

V cðs; rÞ

!)
. ð6Þ

It is easy to see that the parameters si, i ¼ 1; 2; 3, T

and b are interdependent. Therefore, to simplify the
expression, the parameters 2s2i , i ¼ 1; 2; 3, and T are
set to one, and the segmentation result is controlled
by the value of b in the V c function. The probability
density function has two components. One forces
the region intensity to be close to the data, and the
other imposes spatial continuity. Considering the
MAP criterion, we maximize the probability
PðX jY Þ, which is equivalent to minimizing the
negative value of argument of the exponential
function in Eq. (6). This results in the following
cost or objective function which has to be mini-
mized with respect to X ðsÞ:

EðX Þ ¼
X

s

X3
i¼1

ðY iðsÞ � mi
X ðsÞðsÞÞ

2
þ

1

T

X
r2qs

V cðs; rÞ

 !
.

(7)

In grey-scale images only the intensity channel
exists, and the terms Y 1 and Y 2 in Eq. (7) have to be
deleted.
(b)

of two vectors with the vectors’ dimension equal to two.
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To obtain the final segmentation, this objective
function is minimized by one of the several MRF
objective minimization methods [18]. To tailor this
objective function to scalable multiresolution color
image segmentation, initially, the wavelet transform
is applied to the original image and a pyramid of
decomposed images at various resolutions is cre-
ated. Let Y ¼ ½Y 1;Y 2;Y 3�, where Y i; i ¼ 1; 2; 3, is
the intensity of channel i of the pyramid’s pixels.
The segmentation of the image into regions at
different resolutions will be denoted by X.

As mentioned earlier, considering scalability, a
pixel and its corresponding pixels at all other
pyramid levels have the same segmentation label.
Therefore they change together during the segmen-
tation process. To change the segmentation label of
a pixel, the pixel and all its corresponding pixels at
all other levels have to be analyzed together. As a
result, an analysis of a set of pixels in a multi-
dimensional space instead of a single resolution
analysis needs to be used. The term ‘‘vector’’ is used
to refer to multidimensional space. A vector
includes corresponding pixels at different resolu-
tions of the pyramid. A symbol fsg shows a vector
which includes pixel s. The dimension of a vector is
equal to the number of it’s pixels which are located
at different resolutions. If the corresponding pixels
are determined according to the wavelet trans-
form down-sampling, the vector dimension depends
on the index of pixels, and it can be 1, 2 or
more. Using these primary definitions, the clique
concept is extended to vector space. The extended
cliques act on two vectors instead of two pixels.
Fig. 3(a) shows regular one and two pixels clique
sets. In Fig. 3(b), the extension of one of these
cliques to the array mode in two dimensional space
can be seen.

The extension of clique functions is achieved
through the following steps: Eq. (4) is used for
cliques of length two at a resolution where pixels s

and r are two neighboring pixels at the same
resolution level. Eq. (8) is defined for multiple
levels, where fsg and frg are vectors corresponding
to two neighboring pixels s and r. The neighboring
pixels of the two vectors fsg and frg at level k are
denoted as sk and rk. The lowest resolution which
include a pixel of vector fsg is denoted as M and N is
the dimension of vectors fsg and frg. A positive
value is assigned to the parameter b, so that
adjacent pixels, of two neighboring vectors, are
more likely to belong to a same region than to
different regions. Increasing the value of b decreases
the sensitivity to intensity changes [4].

V cðfsg; frgÞ ¼

PMþN�1
k¼M LK

N

 ! XMþN�1

k¼M

ð�1ÞLk :b,

Lk ¼
1 if X ðskÞ ¼ X ðrkÞ;

0 if X ðskÞaX ðrkÞ;

(

sk 2 fsg; rk 2 frg; rk 2 qsk. ð8Þ

It is notable that Eq. (8) extends the clique
definition to multiresolution mode. In vector fSg
corresponding pixels at different resolutions are
determined according to the down-sampling rela-
tionship of arbitrary shape wavelet transform. In
other words the pixels of the lower resolution occur
at down-sampled positions of the higher-resolution
pixels in the pyramid. However, pixels of frg are
neighbors of fsg at different resolutions. As a result
of the clique extension to multiresolution space,
segmentation processing will continue in the vector
space, therefore, intensity average and segmentation
label functions are also extended to vector space.
The intensity of pixels at different channels in set fsg
form a vector Y ðfsgÞ ¼ ½Y 1ðfSgÞ;Y 2ðfSgÞ;Y 3ðfSgÞ�,
and similarly, mðfsgÞ ¼ ½m1ðfSgÞ;m2ðfSgÞ;m3ðfSgÞ� is
the mean vector. Therefore, the objective function is
extended to vector space as follows:

EðX Þ ¼
X
fSg

X3
i¼1

kY iðfsgÞ � mi
X ðfsgÞðfsgÞk

2

(

þ
X
frg2qfsg

V cðfsg; frgÞ

)
. ð9Þ

The outer summation is over vectors, while the
first inner summation is related to the distances of
the pixel’s intensities from the estimated average for
each channel of color images. The second inner
summation is over all neighborhood vectors of
vector fsg. The two vectors fsg and frg are neighbors
if pixels of fsg and frg located at the same resolution
are also neighbors. The approach used in this
section, expressed by Eqs. (7)–(9), is a generalization
of regular single-resolution segmentation to scalable
multiresolution segmentation.

3.2. Smoothness criterion

Traditionally, in region-based image/video seg-
mentation algorithms, the image features such as
pixels’ grey level or color have been considered. In
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most of these approaches, emphasis is put on the
accuracy of segmentation. However objects/regions
shape delineation, and producing a well-pleasing
objects’/regions’ shape has not attracted enough
attention due to the ill-posed problem nature of the
segmentation task [20,21]. In contour/edge-based
segmentation algorithms, another important criter-
ion, related to the appearance of the extracted
objects/regions, has been considered. In these
algorithms, the extracted objects/regions borders
are smoothed [22,23]. Ideally, borders are edges in
the image, which are one of the most important
properties for visual perception. Because most
natural objects exhibit smooth edges and distortions
such as down-sampling often creates rough edges,
there is a correlation between border smoothness
and visually pleasing objects. Therefore border
smoothness terms corresponding to different resolu-
tions have been added to the objective function to
contribute in our MRF-based segmentation ap-
proach.

The proposed smoothness definition is based on
the border’s curvature, which is the rate of the angle
change between a curve and the tangent line to the
curve. In a digital environment an estimation of
curvature can be used. The estimation is explained
in Fig. 4. Minimizing the proposed estimation of
smoothness prevents unwanted fluctuations in the
border pixels.

A large number of pixels ensures border smooth-
ness at high resolutions, however, at lower
resolutions the visual quality can suffer due to
down-sampling distortion and lack of sufficient
information. To reduce this effect, the smoothness
could be enhanced at lower resolutions more
rigorously than higher resolutions. The priority is
realized by bigger coefficients for lower resolution
smoothness. Therefore the objective function is
 

   β2β2

 
A A

β1

α2α2

α1

β2β2

β1

(a) (b)

Fig. 4. Curvature estimation; kðAÞ ¼ 05:absðða2þ a1Þ � ðb2þ b1ÞÞ: (a
direction point, b1 ¼ b2 ¼ 45; a1 ¼ a2 ¼ 0; k ¼ 45; (c) b1 ¼ b2 ¼ 45; a1
updated according to the following equation:

EðX Þ ¼
X
fSg

X3
i¼1

jjY iðfsgÞ � mi
X ðfsgÞðfsgÞjj

2

(

þ
X
frg2qfsg

V cðfsg; frgÞ þ
X
q2fsg

lresðqÞ � nðqÞ

)
,

ð10Þ

where nðqÞ shows the curvature estimation of pixel q

a pixel of vector fsg, and lresðqÞ is a coefficient which
decreases when resolution increases. In grey-level
images, only the grey-intensity channels are avail-
able, therefore it is enough to only consider Y 1 in
the second summation in Eq. (10) which gives the
following objective function for grey-level images:

EðX Þ ¼
X
fSg

½Y ðfsgÞ � mX ðfsgÞðfsgÞ�
2

�

þ
X
frg2qfsg

V cðfsg; frgÞ þ
X
q2fsg

lresðqÞ � nðqÞ

)
,

ð11Þ

where Y is the grey-intensity function and m is the
grey-intensity average function.

The proposed smooth object extraction is differ-
ent from a simple objects’ border smoothness as has
been done in [24] which is a filtering of the extracted
video object shape to remove the small elongation
introduced during the segmentation process, in the
following areas. (1) Our smoothing process takes
part in the segmentation algorithm and changes the
segmentation outcome. (2) With sufficient contrast,
the proposed algorithm produces borders that are
more faithful to the regions shape. (3) On some
occasions, some background pixels are added to the
foreground regions to produce better looking
shapes especially at different resolution. (4) The
smoothness factor could be adjusted for different
α 2 = α 2 = α1= 01= 0
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¼ a2 ¼ 45; k ¼ 0 same direction.



ARTICLE IN PRESS

Fig. 5. Scalable segmentation of a digital circle with emphasis on low level smoothness: (a) original image; (b) noisy Image; (c)

segmentation at 20� 20 resolution; (d) segmentation at 10� 10 resolution.
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resolutions to produce visually pleasing shapes at
different resolutions with scalability as a constraint.

As an example of smoothness effect in spatial
segmentation, consider the circle in Fig. 5(a). It has
two grey levels, 100 in the background area and 200
in the foreground area. We consider a uniform noise
in the range ð0; 50Þ added to the background and
subtracted from the object intensity. This noise
changes the image from binary to grey level and
reduces the pixels intensity variation of the fore-
ground to the background pixels. The image is
segmented by the proposed algorithm at two
resolutions 20� 20 and 10� 10. We augment the
lower resolution smoothness by decreasing the
smoothness coefficients to zero for the highest level
and increasing the smoothness coefficient for lower
resolution. The results are shown in Fig. 5(c) and
(d). In this example, the smoothness criterion has
deleted some pixels of the shapes at different
resolution. The results could be compared with
Fig. 1(a), (b) at low and high resolutions considered
as regular segmentation. The proposed segmenta-
tion method extracts a more pleasing shape at lower
resolutions, albeit sometimes adding some distor-
tion at higher resolution. However, large number of
pixels at higher resolutions ensures more smooth-
ness and visually pleasing objects.

3.3. MAP estimation

The ICM optimization method [25] is used to
minimize the objective function in Eq. (10). The
segmentation is initialized with the k-means cluster-
ing algorithm for each channel separately. Then
neighboring pixels with equal labels at all three
channels form a region. The segmentation estima-
tion is improved using ICM optimization [25]. In
single-resolution image segmentation, ICM opti-
mizes the objective function pixel by pixel in a
raster-scan order until convergence is achieved. At
each pixel, the segmentation of the processed pixel is
updated given the current X at all other pixels.
Therefore only the terms in the objective function
related to the current pixel need to be minimized:

EðX ðsÞÞ ¼
X3
i¼1

ðY iðsÞ � mi
X ðsÞðsÞÞ

2
�
X
r2qs

V cðs; rÞ. (12)

ICM, as used in the single-level segmentation
algorithm for grey-level images by Pappas [4], and
extended to color images by Chang et al. [13], is
modified to adapt to the scalable multiresolution
segmentation algorithm. Similarly, the objective
function term corresponding to the current vector
is optimized given the segmentation at all other
vectors of the pyramid. The resulting objective
function terms related to the current vector are

EðX fsgÞ ¼
X3
i¼1

jjY iðfsgÞ � mi
X ðfsgÞðfsgÞjj

2

þ
X
frg2qfsg

V cðfsg; frgÞ þ
X
q2fsg

lqnðqÞ. ð13Þ

For grey-level images there is only the intensity
channel and the objective function is simplified to

EðX fsgÞ ¼ ðY ðfsgÞ � mX ðfsgÞðfsgÞ
2

þ
X
frg2qfsg

V cðfsg; frgÞ þ
X
q2fsg

lqnðqÞ. ð14Þ

During the optimization process for each pixels s

of a vector fsg, the terms miðsÞ; i ¼ 1; 2; 3, are
estimated by averaging the channel intensities of
all pixels that belong to the region i and are inside a
window with width w centered at pixels s. The
window size w is doubled when we move to the next
higher resolution. The average of any pixel s and its
correspondences at all other levels in fsg are used to
classify the pixels of fsg to a label which minimizes
Eq. (13). To reduce computational complexity, it is
enough to consider only labels of fsg and its
neighboring vectors to select the best label by the
energy minimization through Eq. (13). Therefore
for the pixels inside a region there is no computation
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Table 1

Number of vectors with different lengths

Length of vectors 1 2 3 4 5

Number of vectors 3=4 M �N 3=16 M �N 3=64 M �N 3=256 M �N 1=256 M �N
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and the regions’ border are gradually refined.
Furthermore, this border processing prevents iso-
lated noise pixels from becoming a new cluster,
resulting in fewer wrongly detected boundaries [26].

Let us consider the overall optimization algo-
rithm now. As mentioned above, the initial segmen-
tation of the pyramid is obtained by the k-means
clustering algorithm [27,28]. The pyramid’s pixels
are processed progressively from low to high
resolutions. At each resolution, pixels are visited
in a raster scan order. The intensity average miðsÞ,
i ¼ 1; 2; 3, at each pixel s and its corresponding
pixels at the other resolutions for all possible classes
are estimated with a pre-determined window size w

used for estimation. We then update the estimate of
X fsg using the ICM approach with a multi-level
analysis using Eq. (14). By updating the segmenta-
tion labels of pixels at the current resolution, the
corresponding pixels at the other levels are also
updated. After convergence at the current resolu-
tion, the algorithm moves to the next higher
resolution and updates the estimates of m and X

and so on, until all resolutions are processed. The
stopping criterion at each resolution is the number
of X update which should be below a pre-defined
threshold. To reduce the number of iterations, other
convergence criteria can also be used. The whole
procedure is repeated with a smaller window size.
The algorithm stops when the minimum window
size for the lowest level is reached. We have
considered the minimum window size being eight
for the lowest level.

Scalable and multi-dimensional analysis ties
pixels in high and low resolutions together, so that
high resolution refinement influences low resolution
refinement, too. On the other hand, optimization
includes several stages of refinements from low to
high resolution with decreasing window size. There-
fore, the proposed segmentation algorithm with its
objective function and the optimization routine
performs repeated low to high resolution segmenta-
tion refinement and feedback from high to low
resolution segmentation until convergence is
reached. The combination of the proposed objective
function and the optimization method provide
effective low to high resolution and high to low
resolution interactions, therefore providing a reli-
able and scalable segmentation algorithm.

To quantify the computational complexity of the
proposed vector-based processing, the vector size as
well as the number of iterations required for the
optimization process have to be considered. Because
the down-sampling from a given resolution to the
next lower one reduces the number of pixels to 1

4
th,

the average length of vectors is not much larger than
one. To give an example, we consider the segmenta-
tion of an image of size M �N, using five levels of
down-sampling. This means that vectors exist with
lengths from one to five. Table 1 shows the number
of vectors of each length. The average vector length
is easily calculated to be equal to 1:33. Since the
number of iterations needed for convergence is
image dependent, it is difficult to assign a value to it.
However, from the average vector size it can be
confidently asserted that vector-based processing
increases the computational complexity only mod-
erately. Experimental results confirm that vector
processing along with the proposed optimization
process increases the computational complexity by
less than a factor of 2:5. The major part of this
increase is related to the proposed optimization
process, which includes several times low to high
resolution processing, and not to the vector length
itself. On the other hand, as experiments have
shown, imposing the smoothness criterion to the
segmentation algorithm contributes more towards
increasing the computational complexity than the
vector-based processing. Smoothness estimation is
repeated at each pixel increasing the computational
complexity considerably. In different examples, it
has been seen that the smoothness criterion
increases the complexity of the scalable segmenta-
tion by more than a factor of 6.

4. Experimental results and discussion

In this section, experimental results obtained
using the algorithm introduced in Section 3 are
presented. The results are compared with the
regular single-level and multiresolution segmenta-
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tion algorithms [4,13]. In the first step, the image is
decomposed into three resolutions, using the ð97Þ
wavelet filter. Then in each level of the decomposi-
tion, the image is segmented while scalability
between regions in different resolutions, as required
for the arbitrary shape wavelet transform, is
achieved with the proposed algorithm. Some para-
meters such as the number of the labels, the
continuity b and smoothness coefficients are entered
into the algorithm. Automatic determination of
these parameters is beyond the scope of this work
and could be the subject of further research.

As a first example, the proposed algorithm is
tested using frame 5 of the SIF sequence Table
Tennis. For grey-level images only the intensity of
the grey channel is considered in Eq. (14). Fig. 6
represent the results achieved by the proposed
multiresolution scalable, regular single and multi-
resolution segmentation algorithms. The result of
the proposed scalable multiresolution segmentation
algorithm is presented only at the finest resolution,
because the lower resolutions results have the same
patterns and figures.

In regular multiresolution segmentation algo-
rithms, brief, coarse and filtered versions of the
image are processed at the lower resolutions,
therefore, some small size or low contrast regions
are not detected. This drawback is called under-
segmentation. In contrast in the proposed algorithm
the effects of high resolutions on low-resolution
results in the detection of details which is not
possible using regular multiresolution segmentation.
In other words, the sensitivity to grey-level changes
is increased, resulting in a better detection of small
or low-contrast objects especially in low resolutions.
Table 2 shows the number of detected regions of the
Table Tennis image in three spatial resolutions for
different segmentation algorithms. The proposed
scalable segmentation detects more relevant regions
than the regular multiresolution algorithm. For
example, consider the segmentation of the textured
wall and detection of the ball in the Table Tennis
image as presented in Fig. 6 by the proposed
Table 2

Number of regions in Table Tennis segmentation

Seg. algorithm 60� 120 120� 176 240� 352

Multiresolution 19 55 164

Scalable 42 83 184

Single level — — 314
multiresolution scalable, the regular single-resolu-
tion, and the multiresolution segmentation algo-
rithm. The single-level segmentation detects the ball,
but it also detects a number of spurious regions due
to the textured background as the number of
regions in Table 2 shows. This drawback is called
over-segmentation. The regular multiresolution
algorithm misses the ball at different resolutions
altogether. The proposed algorithm, however,
detects the ball as well as avoiding unsightly
segmentation of the textured background.

It is significant to note that while our algorithm
has improved sensitivity to grey-level variation it
still maintains noise tolerance. To test the scalable
segmentation algorithm on noisy images, first a
uniform noise in the range ð�30;þ30Þ is added to
the Table Tennis images, and then different
segmentation algorithms were performed. The
number of misclassified pixels for the Table Tennis
object including arm, racket and ball (11 033 pixels)
as well as the entire image pixels are counted. The
results in Table 3 confirm that the proposed
algorithm can deal with noisy images as effectively
as multiresolution segmentation and much better
than single-level segmentation. This result confirms
that the introduced multilevel segmentation algo-
rithm maintains most advantages of multiresolution
segmentations over single-level segmentations such
as better segmentation of noisy images.

The proposed segmentation can be used in
general segmentation applications. However, it is
especially suited to scalable wavelet-based image
object coding which allows us only the pixels
belonging to an arbitrarily shaped object to be
coded [29,30]. To facilitate ‘‘object-of-interest’’
extraction, in a semi-automatic procedure the user
determines the rough boundary of the ‘‘object-of-
interest’’ through a graphical user interface (GUI).
Subsequently, all the regions with a predetermined
percentage of their area inside this closed con-
tour are selected as the regions belonging to the
‘‘object-of-interest’’. Combining all the selected
regions creates the final object. As an example, a
Table 3

Misclassified pixels in noisy image

Algorithm Multiresolution Scalable Single

resolution

Object. %4:13 %3:04 %8:85
Image %7:96 %6:20 %18:74
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user has roughly determined the objects of interest
in Fig. 8. Subsequently the exact borders of the
object at different resolutions are determined. The
extracted objects by both the scalable segmentation
and regular single-resolution segmentation algo-
rithms at three different resolutions are shown in
Fig. 7. A comparison of the extracted objects
confirms the superiority of the scalable segmenta-
tion algorithm in a subjective test. As a comple-
mentary step, using a quantitative test, the border
smoothness is measured at different resolutions.
Table 4 shows the average smoothness for all border
pixels in scalable segmentation and single-resolution
Fig. 6. Table Tennis image segmentation with k ¼ 6 clusters and b ¼ 1

algorithm at 240� 352; (c) regular single level segmentation; (d)

segmentation; (f) 60� 88 segmentation.

Fig. 7. Table Tennis object extraction, objects are extracted form sc

segmentation in the second row: (a) 240� 352 ; (b) 120� 176; (c) 60�
segmentation, down-sampled to lower levels at three
different resolutions. The quantitative test results,
similar to subjective test, show that the proposed
algorithm ensures smoother edges compared to
the down-sampled versions of single-resolution
segmentation. Finally, the extracted image object
can be coded by scalable object-based coding
algorithms [30].

In the second example, frame 34 of the Mother
and Daughter sequence is segmented. The image is
in qcif format and is given in the YUV color space.
Similar to many other sequences in databases, U
and V, the chrominance components, are in half
00: (a) the main image; (b) segmentation by the proposed scalable

regular multiresolution segmentation 240� 352; (e) 120� 176

alable segmentation in the first row and form single-resolution

88; (d) 240� 352; (e) 120� 176; (f) 60� 88.
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resolution. Regular color-image segmentation needs
the information in the same resolution. Therefore,
in the first solution, the image is segmented in grey-
Table 4

Means of segmentation curvature estimation

Algorithm 60� 88 120� 176 240� 352

Downsample 25:58 22:68 21:33
Scalable 17 17:3 15:17
Improvement %33:2 %23:65 %28:9

Fig. 9. Frame 34 of qcif size Mother and Daughter image sequence se

level image; (b) regular grey-level single-resolution segmentation; (c) c

resolution; (d) proposed scalable segmentation.

Fig. 8. Table Tennis object selection by user.
level space by a single-resolution statistical image
segmentation algorithm [4]. The result is shown in
Fig. 9(b). The left area of the daughter’s face has not
been well separated from the background because
there is not enough grey-level contrast between face
and background. The same shortcoming happens
for the other grey-level segmentation algorithms
except when there is over-segmentation with a large
number of detected regions, which is not desired for
segmentation applications. To successfully separate
object’s regions from background, color segmenta-
tion is performed as an alternative solution. The
proposed scalable segmentation algorithm can per-
form color segmentation using half-resolution
chrominance components. The result of segmenta-
tion by the scalable color image segmentation is
shown in Fig. 9(d). The number of regions in grey-
level segmentation is 273 while in color segmenta-
tion it is 112, which shows a reasonable color image
segmentation algorithm.

In the third example, the color image of Lena in
YUV space, where Y is in 256� 256 resolution and
the chrominance components U and V are in half
resolution, is segmented. The original image is
shown in Fig. 10(a). In the first experiment, U and
V are projected to higher resolution by a 1:4 pixel
gmentation with k ¼ 7; 2; 2 clusters and b ¼ 40: (a) original grey-

olor image of Mother and Daughter where U and V are in half
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Fig. 10. Lena image segmentation at 256� 256 with k ¼ 6; 4; 4 clusters and b ¼ 100: (a) original image; (b) regular single-resolution

segmentation where U and V are projected to higher resolution; (c) proposed scalable segmentation where U and V are in half resolution.

F.A. Tab et al. / Signal Processing 86 (2006) 1670–1687 1683
transform and then single-resolution segmentation
is performed [13]. The result is shown in Fig. 10(b).
It can be seen that the top part of the hat is not well
separated from the background. Finally, result for
the proposed multiresolution scalable segmentation
algorithm, which uses half resolution U and V, is
shown in Fig. 10(c). This algorithm can separate all
the foreground (Lena) regions from the background
successfully. It is interesting to note that the single-
resolution method divides the image into 578
regions, while the proposed scalable segmentation
separates the image into 427 regions, which is a %26
reduction in the number of regions. This confirms
that the proposed algorithm reduces the number of
regions or over-segmentation compared to single-
level segmentations while still separating the objects’
regions from the background. Similarly, single-
resolution segmentation in RGB space cannot
separate the hat from the background and divides
the image into 779 regions with similar parameters.
Considering the over-segmentation and under-seg-
mentation of respectively of single resolution
segmentation and multiresolution segmentation
algorithms, the failure to separate object’s regions
in single resolution will for sure lead to even bigger
failure in multiresolution segmentation algorithm.
In the next example, frame 30 of the qcif sequence
foreman is considered. The original image is in
YUV format where Y is in full resolution but U and
V are in half resolution. In Fig. 11(a) the original
image can be seen. The image is segmented with the
proposed scalable multiresolution segmentation.
The result is compared with the other segmentation
algorithms. To perform other algorithms, U and V
of color components are again projected to full
resolution by a 1:4 pixel transform and the regular
single, multiresolution and the proposed scalable
segmentation algorithms are performed. The initial
segmentation estimation comes from k-means clus-
tering for different channels and the number of
classes were chosen as k ¼ 10; 4; 2 for the used YUV
or RGB color channels, respectively. In the first
experiment the components U and V are projected
to the next higher resolution and then the proposed
scalable and the regular multiresolution segmenta-
tion algorithms are performed. The results can be
seen in Figs. 11(b) and (c). It is clear that in this
example regular multiresolution segmentation can-
not separate the foreground (foreman) from back-
ground regions. This is more pronounced in
separating the left area of the hat from the back-
ground. Furthermore some other details such as the
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Fig. 11. Segmentation of frame 32 of qcif size foreman sequence with K ¼ 10, 4, 2 clusters at different channels: (a) original image; (b)

scalable segmentation where U and V are projected to higher resolution; (c) regular multiresolution segmentation; (d) scalable

segmentation where YUV are in full resolution; (e) scalable segmentation in YUV space where U and V are in half resolution; (f) scalable

segmentation in RGB space where components are in full resolution.

Table 5

Misclassified pixels in Foreman image segmentation

Resolution 72� 88 144� 176 288� 352

Algorithm A 50 186 786

Algorithm B 123 511 2118

Improvement %59 %64 %63
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left eyebrow has not been detected. Similarly, the
scalable segmentation using projected U and V to
higher resolution could not detect the corner of the
hat.

The image with real full resolution size of U and
V is segmented and will be considered as a ground
truth for comparison in the following. The qcif size
U and V components are taken from the available
YUV, CIF size image sequence. Segmentation by
the scalable segmentation which uses real full
resolution qcif size U and V are in Fig. 11(c).
Fig. 11(d) shows the segmentation with the pro-
posed algorithm which uses full resolution Y and
half resolution U and V components. As can be
seen, the proposed algorithm separates the fore-
ground regions from the background successfully,
as the scalable algorithm with the full-resolution
information does. As a statistical test, scalable
segmentation using half resolution U and V (Algo-
rithm A) and scalable segmentation using projected
U and V (Algorithm B) are compared with the
ground truth. The number of misclassified pixels in
the proposed algorithm using half resolution U
(Algorithm A) and V is about %30 of the ones of
the algorithm which uses the projected U and V
components in high resolution (Algorithm B). The
numbers of misclassified pixels at different resolu-
tions are shown in Table 5. In the Fig. 11(e) the
segmented image in the RGB space using the full
resolution information is shown. The right and top
area of the hat are not separated well. To remedy
the problem, we have to increase the number of
classes from 10, 4, 2, to 10, 10, 10 classes to separate
the hat resulting in the increase of the number of
regions which is over-segmentation. Increasing the
number of regions will increase the computational
complexity of the segmentation algorithm. The
number of regions with K ¼ 10, 4, 2 is 279 for the
proposed algorithm in YUV space and 337 for RGB
space which increases to 739 regions for K ¼ 10, 10,
10 in RGB space.

As the last segmentation example, the 256� 256
Guitar image is segmented. The original grey-level
image and the single resolution segmentation are
shown in Figs. 12(a) and (b). The segmentation
result shows that many meaningful regions are not
well detected, and border fluctuations occur in some
areas of the image. Figs. 12(c)–(e) show the multi-
resolution segmentation results. Although multireso-
lution segmentation has less border fluctuations, the
resulting under-segmentation means that more
semantic regions are missed than in single resolution
segmentation. Table 6 shows the number of regions
for single and multiresolution segmentation algo-
rithms at different resolutions.
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Fig. 12. Guitar segmentation: (a) the 256� 256 grey image; (b) single-resolution segmentation; (c) multiresolution 64� 64 segmentation;

(d) multiresolution 128� 128 segmentation; (e) multiresolution 256� 256 segmentation.

Table 6

Number of regions for segmentation of grey Guitar

Segmentation 88� 72 144� 176 288� 352

Uni-resolution seg. 82 189 447

Multiresolution seg. 82 98 157
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To enhance the segmentation process, in a further
experiment, color information has been used in the
segmentation algorithm. Fig. 13(a) shows the
original 256� 256 Guitar color image. The single-
resolution segmentation of the color image in the
YUV color space is shown in Fig. 13(b). 560 regions
have been detected with many non-meaningful
regions, which indicates over-segmentation. Border
roughness decreases for many regions creating a
better visual quality. Figs. 13(c)–(e) show the
standard multiresolution segmentations of the color
image at different resolutions. While border
smoothness is increased, many meaningful regions
have not been detected. This, therefore, over-
corrects the over-segmentation of the single-resolu-
tion segmentation, resulting in under-segmentation.
Many meaningful regions of the Guitar instrument
and filing cabinet have not been well detected and
are mixed irreversibly with the background. The
numbers of regions are shown in Table 7. Finally,
the proposed scalable multiresolution segmentation
with the smoothness constraint at three different
resolutions is shown in Figs. 13(f)–(h). It can be seen
that the most important and meaningful regions
have been extracted and that the segmentation maps
at different resolutions are similar. The borders are
significantly smoother.

5. Conclusions

We have presented a multiresolution scalable
grey-level/color image segmentation algorithm
which extracts objects/regions with similar segmen-
tation pattern at different resolutions, which is
useful for object-based wavelet coding applications.
In addition to scalability, a new quantitative
criterion is added to the segmentation algorithm.
This criterion, which is a smoothness function based
on the pixel segmentation labels, represents the
visual quality of the objects/regions at different
resolutions. To reduce the down-sampling distor-
tion in object-based wavelet transforms, different
smoothness coefficients are considered for different
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Fig. 13. Guitar segmentation: (a) the 256� 256 grey image of Guitar; (b) single-resolution segmentation; (c) multiresolution segmentation

at 64� 64; (d) multiresolution segmentation at 128� 128; (f) scalable segmentation at 64� 64; (g) scalable segmentation at 128� 128; (h)

scalable segmentation at 256� 256.

Table 7

Number of regions for segmentation of color Guitar

Segmentation 88� 72 144� 176 288� 352

Single resolution seg. 139 308 447

Multiresolution seg. 139 143 172

Scalable seg. 173 288 342

F.A. Tab et al. / Signal Processing 86 (2006) 1670–16871686
resolutions. The proposed multiscale analysis in-
corporate in the objective function of Bayesian
segmentation, improves the sensitivity to grey-level
variations while maintaining high performance in
noisy environments. The novel objective function
gives flexibility to the proposed algorithm to
segment YUV color images where Y is in full
resolution but U and V are in half resolution.
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