
2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

ON CUDA IMPLEMENTATION OF A MULTICHANNEL ROOM IMPULSE RESPONSE
RESHAPING ALGORITHM BASED ON P-NORM OPTIMIZATION

Radoslaw Mazur, Jan Ole Jungmann, and Alfred Mertins

Institute for Signal Processing
University of Lübeck

23562 Lübeck, Germany
{mazur,jungmann,mertins}@isip.uni-luebeck.de

ABSTRACT

By using room impulse response shortening and shaping it is possi-
ble to reduce the reverberation effects and therefore improve speech
intelligibility. This may be achieved by a prefilter that modifies
the overall impulse response to have a stronger attenuation. For
achieving a spatial robustness, multichannel approaches have been
proposed. Unfortunately, these approaches suffer from a very high
computational cost and are far too slow for being of practical use in
applications where filters have to be designed in real-time. In this
work we tackle this drawback using a CUDA implementation and
achieve a speedup of over 130 times.

Index Terms— Optimization, reshaping, shortening, room im-
pulse response (RIR), CUDA

1. INTRODUCTION

Room impulse response (RIR) shaping is a method for reducing the
perceived echoes in acoustic scenes. It may be performed using a
prefilter that modifies the overall impulse response. It is not neces-
sary to invert the channel and get the exact signal [1, 2]. As pro-
posed in [3, 4] it is sufficient to shape the overall RIR with respect
to the human auditory system. Therefore, in order to reduce the re-
verberation, it is sufficient to equalize the RIR in a such way that
the audible echoes are removed, while the inaudible ones may stay
unaffected. As a further benefit, this approach lightens the pressure
of designing the prefilter [5].

The approach in [4] takes advantage of the fact that echoes may
remain in the signal and are unperceivable if they fall below the
temporal masking curve of the human auditory system. Although
the exact temporal masking curve is signal dependent [6], an av-
erage signal-independent masking curve has been found in [7] that
is triggered by the direct sound and was used in [4] to design the
prefilter.

The methods for prefilter design in [3, 4, 5] are gradient de-
scent approaches, which minimize either an Euclidean norm, an `p-
norm, the ∞-norm or a combination of them. Depending on the
used norm, these algorithms have different computational costs, but
usually this is not a problem using a modern hardware.

This single-channel approach from [4] is not spatially robust in
the sense that already small movements of speaker or microphones
may results in substantially changed RIRs and a reduced overall

This work has been supported by the German Research Foundation un-
der Grant No. ME1170/3-1.

performance. Based on the spatial sampling principle [8] a multi-
channel extension has been proposed in [9]. It allows for an equal-
ization of multiple points in space by using several loudspeakers
and microphones. When the sampling points are chosen according
to the spatial sampling principle an entire area can be equalized.
This approach is much more robust, as it allows for movements of
the listener in this whole area.

Unfortunately, the multichannel approach is computationally
very demanding. Even for a mid-size configuration with 13 loud-
speakers and 57 microphones, as proposed in [9], several hours of
computation are needed before the `p-norm based gradient descent
converges. In this work we propose to use the computational power
of modern, CUDA enabled graphics hardware [10]. By carefully
designing the CUDA programs an over 130 times speedup will be
achieved, and the computation time can be reduced to only few min-
utes or even seconds. When going to smaller sized configurations,
a near real-time processing will be possible.

2. PROBLEM STATEMENT

In a multichannel RIR reshaping setup, Nm microphones in the lis-
tening area are used. The source signals are played using Ns loud-
speakers. The individual RIRs with lengthLc from loudspeaker k to
microphone i are denoted as cik(n). With hk(n) being a length-Lh

prefilter to the k-th loudspeaker, the overall RIR to the i-th micro-
phone is given by

gi(n) =

NsX
k=1

hk(n) ∗ cik(n) =

NsX
k=1

Cikhk (1)

with Cik being an Lg × Lh convolution matrix of cik(n). The
length of the overall RIRs gi(n) is Lg = Lc + Lh − 1.

The task of filter shaping in this multichannel setup is to de-
sign the prefilters hk(n) in such a way that all overall RIRs gi(n)
have reduced perceived echoes. For achieving this, we define the
unwanted part of the reshaped RIRs as

gui(n) = wui(n)gi(n) (2)

with wui(n) being a window function with the length Lg designed
according to the average temporal masking curve from [7]. The
windows wui(n) usually have the same basic shape, with their
nonzero parts starting 4 ms after the main peaks of the correspond-
ing impulse responses gi(n).

In addition, we also define the desired parts

gdi(n) = wdi(n)gi(n) (3)

2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

of the overall responses, with windows wdi(n) being nonzero (and
constant) from the main peaks of gi(n) until 4 ms after that. The
task is now to minimize some function of |gui(n)| while keeping
|gdi(n)| constant. Here we follow the approach from [4] using the
p-norm, as it allows for a shaping without major changes of the
frequency responses of filters gi(n). The optimization problem is
given by

MINh : f(h) = log

„
fu(h)

fd(h)

«
(4)

with

fu(h) = ||gu||pu =

0@NmX
i=1

Lg−1X
k=0

|gui(k)|pu

1A 1
pu

(5)

and

fd(h) = ||gd||pd =

0@NmX
i=1

Lg−1X
k=0

|gdi(k)|pd

1A 1
pd

(6)

where h = [h1,h2, . . . ,hNs], gu = [gu1,gu2, . . . ,guNm], and
gd = [gd1,gd2, . . . ,gdNm]. For the minimization of (4) we use a
gradient descent approach with the learning rule

hl+1 = hl − µ(l)∇hf(hl) (7)

with

∇hf(h)=

"
NmX
k=1

CT
k1ζk,

NmX
k=1

CT
k2ζk, . . . ,

NmX
k=1

CT
kNs

ζk

#
(8)

and
ζk =

1

fu(h)pu
buk −

1

fd(h)pd
bdk, (9)

where

buk(n) = wuk(n) · sgn(guk(n)) · |guk(n)|pu−1, (10)
bdk(n) = wdk(n) · sgn(gdk(n)) · |gdk(n)|pd−1, (11)

and µ(l) is an adaptive step-size parameter. Here, we use pu = 20
and pd = 10 as proposed in [4].

Using the gradient descent, as in (7), all prefilters are calcu-
lated in dependency of all overall RIRs gi(n) simultaneously. This
assures an equalization of all filters and, according to the spatial
sampling principle, the whole listening area is equalized. Unfortu-
nately, for achieving convergence the step size µ(l) in (7) has to be
very small in the vicinity of the optimum, and therefore a very huge
number of iterations is needed. This means that even when deal-
ing with mid-sized configurations, the computational costs are too
high for the algorithm being useful for a quick design of optimal
prefilters.

Therefore we propose an implementation using the CUDA
framework on modern graphics hardware. But before we present
this CUDA implementation, we first discuss the traditional ap-
proach using a CPU and identify the computational complexity
which slows down the whole process.

3. CPU/MATLAB IMPLEMENTATION

The whole algorithm can be separated into four parts: (a) Calcu-
lation of the overall RIRs gi(n) using (1). (b) Calculation of ζk

Table 1: Comparison of the duration of the calculation of the single
steps of one iteration of the algorithm using an implementation in
Matlab. Problem size: 13× 57. Times are given in ms.

Calculation Time % Step Time %

FFT 1.45 0.4
(a) Eq. (1) 144.99 41.3 M+A 136.66 38.9

IFFT 6.88 2.0
(b) Eq. (9) 57.51 16.4 57.51 16.4

FFT 6.88 2.0
(c) Eq. (8) 148.12 42.2 M+A 139.79 39.8

IFFT 1.45 0.4
(d) Eq. (7) 0.20 0.1 0.20 0.1

Total 350.82 100.0

using (9), which is actually the main part of the algorithm. (c) Us-
ing ζk to estimate the gradient ∇hf(h) using (8). (d) Estimating
the step size µ(l) and making the gradient descent using (7). The
timings of these parts are given in Table 1. Using an Intel Xeon
CPU with 3Ghz and overdrive technique, a highly optimized Mat-
lab implementation needs roughly 350 ms for a single iteration of
the previously mentioned (13 × 57)-system with Lc = 2000 and
Lh = 3000. As for convergence usually 104 to 105 iterations are
needed, the whole process is too slow for being of practical use.

In the following we go through the single calculation steps and
identify the time consuming parts.

The calculation of gi(n) using (1) in part (a) consists of a sum-
mation of multiple convolutions. This can be performed efficiently
in the frequency domain, where the convolution becomes a multipli-
cation. As the RIRs cik(n) do not change, they may be transformed
in advance using the FFT:Cik = FFT(cik, Ln) with Ln > Lg be-
ing the FFT size. For a reduced number of FFTs the additions may
also be performed in the frequency domain. The rule reads

gi = Re

IFFT

"
NsX
k=1

Cik � FFT[hk, Ln]

#!
(12)

with � being a point-wise multiplication of two vectors. With
caching of the intermediate results, onlyNs+Nm FFTs are needed.
(Here, we assume the complexity of FFT and IFFT is the same.)
Unfortunately, the computational load of the additions can not be
reduced analogously.

On the right side of Table 1 the individual timings for the
needed operations are given. The complex multiplications and ad-
ditions take most of the computing time, while the FFTs, due to
the reduced number, are almost negligible. When calculating the
gradient in (8) by using

∇hi = Re

IFFT

"
NmX
k=1

C∗
ki � FFT[ζk, Ln]

#!
(13)

in part (c), the situation is almost the same, as the only difference
is the complex transpose of Cki and its different indexing scheme.
These two calculations, consisting of simple multiplications and ad-
ditions, are responsible for about 78% of the total computation time,
as shown in Table 1 in the rows marked by “M+A”, and therefore
should be the primary target for optimization.

The calculation of ζk using (9) in part (b), which represents
the essential part of the algorithm, can actually be computed quite

2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

Table 2: Comparison of the duration of the calculation of the single
steps of one iteration of the algorithm using an implementation in
CUDA. Problem size: 13 × 57. Times are given in ms. The last
row shows the speedup in comparison to the Matlab implementation
from Table 1.

Calc Time % Step Time % S-Up

FFT 0.061 2.3 23
(a) Eq. (1) 1.010 38.5 M+A 0.728 27.8 188

IFFT 0.221 8.4 31
(b) Eq. (9) 0.563 21.4 0.563 21.4 102

FFT 0.221 8.4 31
(c) Eq. (8) 1.038 39.6 M+A 0.756 28.9 184

IFFT 0.061 2.3 23
(d) Eq. (7) 0.013 0.5 0.013 0.5 15

Total 2.626 100.0 133

fast. It only takes about 16% of the total time. This is the secondary
target for optimization.

The last steps consist of the calculation of the step size and mak-
ing the gradient descent using (7). These parts are computationally
negligible.

4. CUDA IMPLEMENTATION

In order to speed up the computation, we propose to offload the cal-
culations to a CUDA enabled graphics hardware [10]. Due to the
small stepsize µ(l) and high range of the coefficients of a RIR, dou-
ble precision calculations are needed. Therefore, we have to use a
hardware with at least 1.3 compute capability [10]. We have chosen
to make our implementation on a TESLA M2050 card, which is, at
the moment, the fastest available CUDA hardware with 512 double
precision units.

For the calculation of FFT and IFFT the cufft-library, in-
cluded in the CUDA framework, can be used. Although it is highly
optimized for the target architecture and the implementation uses
the batch mode, there is only a 20 to 30 times speedup compared to
the CPU implementation, as shown in Table 2. This is mainly due
to the fact that the used FFT length of 8192 is too small in order to
fully utilize the processing power of CUDA hardware. But since all
FFT operations combined are responsible for only about 21% of the
running time, this is not a problem in this context.

The multiplication and summation in the frequency domain in
(12), which uses most of the processing power, can be implemented
very efficiently in one single kernel [11]. This is based on the fact
that the computations for all frequencies and all filters are indepen-
dent of each other, which perfectly corresponds to the CUDA prin-
ciple of starting a huge amount of identical and simple threads [12].
In the previous example, this means we start 57× 4097 = 233529
threads, and each of them calculates just 13 complex multiplica-
tions and additions. In this setup, all threads have the same length
and consecutive threads access also consecutive memory addresses.
This simple structure allows for a full coalesced memory access
[12], which is essential for achieving the best performance by mem-
ory bounded operations. Exact measurements show that our imple-
mentation runs at about 124 GB/s, which is the peak memory band-
width for the Tesla card with ECC memory turned on.

The kernel for calculating the multiplication and additions in
(13) is implemented in an analogous way. Here, we start 13 ×
4097 = 53261 threads which compute 57 complex multiplications

and additions. The complex conjugations do not affect the speed,
as this kernel is also memory bandwidth and not computationally
limited. In both cases, we achieve an over 180 times speed up, as
shown in Table 2. As these two kernels dominate the computational
load, this is the main contribution for the acceleration of the whole
implementation.

The calculations for (9), which represent the main part of the al-
gorithm, can be split into two parts, which are then implemented by
two separate kernels. The first part, the calculation of buk and ac-
cordingly bdk in (10) and (11), can be performed by just one kernel
that is invoked twice. As all computations are again independent
of each other, we start one thread for every element of bk. This
kernel consists of four simple operations (two multiplications, ab-
solute value and a sign function) and one computationally expen-
sive power operation. This is due to the fact that in current CUDA
hardware, there is only direct support for single precision power
operation, and the double precision calculation has to be emulated
internally by using some more complex routines. For integer expo-
nents, a small additional acceleration can be achieved via repeated
multiplications instead of the power operation. Additionally, we
also calculate and save |guk|pu = |guk|pu−1 · |guk| at a cost of one
extra multiplication, as it allows for a very simple implementation
of the second part of (9). Here, we need to calculate a norm without
the final power operation, and with already calculated |guk|pu this
reduces to a simple addition of all elements. For this summation, we
use a very efficient reduction scheme as in [11, 12]. Using all these
optimizations, even with the expensive power operation, the CUDA
implementation is about 100 times faster than the CPU version.

The different speedup factors for the different parts result in a
130-fold reduction of overall computation time, which allows for a
near real-time operation for smaller setups.

The source code is available at [13].

5. SIMULATIONS

In the following simulations we tested the performance of the im-
plementation for different sized setups. In all cases, we used RIRs
of length Lc = 2000 taps, prefilters with Lh = 3000 taps, which
resulted in overall RIRs of length 4999 taps.

In Table 3 the results for different sized setups are summarized.
For small ones, convergence could be achieved after 2500 itera-
tions. With the CUDA implementation a real-time operation can
be achieved, as the total computational time is about only one sec-
ond. But for theses small cases, the overall speedup, compared to
the CPU implementation, is only 30 fold. In this case, there could
not be enough threads started to fully utilize the processing power
of the CUDA hardware. Furthermore, the slow FFT operations use
a relatively large part of the computation time and slow down the
whole process. In Figure 1 the speedup for one iteration in depen-
dency on the problem size Nm ·Ns is shown.

For bigger setups, more iterations are needed for convergence.
For the 13 × 57 setup using 104 iterations an acceptable solution
can be found, but for an optimum result 105 iterations are needed.
In Figure 2 the results are presented. Figure 2 (a) depicts the RIR
magnitudes |gi(n)| without any preprocessing. The black line is
the average temporal masking curve. The reshaped RIRs gi(n) in
Figure 2 (b) are under the the average temporal masking curve and
should not cause perceivable echoes. In Figure 2 (c) the average
RIR of 30 random points in the listening area is shown. Here almost
all taps are under the average temporal masking curve and, usually,
only small reverberation should be perceived.

2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

Table 3: Total runtime for different configurations.

Setup Iterations Matlab Cuda Speed Up

2× 4 2500 26.9 s 0.88 s 30

4× 8 2500 61.8 s 1.06 s 58

6× 16 5000 4.6 min 3.65 s 77

10× 32 10000 24.3 min 14.30 s 101

13× 57 10000 58.5 min 26.26 s 133

13× 57 100000 9.7 h 4.37 min 133

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

Problem Size

S
p

e
e

d
 U

p

Figure 1: The speedup of the CUDA implementation depending on
the problem size Nm ·Ns.

6. SUMMARY

Multichannel room impulse response reshaping algorithms are able
to equalize a listening area. Unfortunately, the computational costs
are too high for a quick real-time design of the optimal filters. In this
work, we studied a CUDA implementation which is able to speed
up these calculation by a factor of 130. The new implementation
is able to perform near real-time. The algorithm has been tested on
different configurations.

7. REFERENCES

[1] S. T. Neely and J. B. Allen, “Invertibility of a room impulse
response,” J. Acoustical Society of America, vol. 68, pp. 165–
169, July 1979.

[2] B. D. Radlovic and R. A. Kennedy, “Nonminimum-phase
equalization and its subjective importance in room acoustics,”
IEEE Transactions on Speech and Audio Processing, vol. 8,
no. 6, pp. 728–737, Nov. 2000.

[3] M. Kallinger and A. Mertins, “Room impulse response short-
ening by channel shortening concepts,” in Proc. Asilomar
Conference on Signals, Systems, and Computers, Pacific
Grove, CA , USA, Oct. 30 - Nov. 2 2005, pp. 898–902.

[4] A. Mertins, T. Mei, and M. Kallinger, “Room impulse re-
sponse shortening/reshaping with infinity- and p-norm opti-
mization,” IEEE Trans. Audio, Speech, and Language Pro-
cessing, vol. 18, no. 2, pp. 249–259, Feb. 2010.

[5] T. Mei, A. Mertins, and M. Kallinger, “Room impulse re-
sponse reshaping/shortening based on least mean squares op-
timization with infinity norm constraint,” in Proc. 16th Inter-
national Conference on Digital Signal Processing, July 5–7,
2009, pp. 1–6.

[6] J. Blauert, J. Mourjopoulos, and J. Buchholz, “Room mask-
ing: Understanding and modelling the masking of reflections

0 500 1000 1500 2000
−100

−80

−60

−40

−20

0

Samples

d
B

(a)

0 1000 2000 3000 4000 5000
−100

−80

−60

−40

−20

0

Samples

d
B

(b)

0 1000 2000 3000 4000 5000
−100

−80

−60

−40

−20

0

Samples

d
B

(c)

Figure 2: RIR magnitudes and spatial reshaping: (a) |gi(n)|without
preprocessing; (b) |gi(n)| after convergence; (c) Averaged global
RIR of 30 random points in the listening area. The black line is the
average temporal masking curve.

in rooms,” in Audio Engineering Society Convention 110, 5
2001.

[7] L. D. Fielder, “Practical limits for room equalization,” in Au-
dio Engineering Society Convention 111, 11 2001, pp. 1–19.

[8] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic func-
tion and its sampling,” Signal Processing, IEEE Transactions
on, vol. 54, no. 10, pp. 3790 –3804, oct. 2006.

[9] T. Mei and A. Mertins, “On the robustness of room impulse re-
sponse reshaping,” in Proc. International Workshop on Acous-
tic Echo and Noise control (IWAENC), Tel Aviv, Israel, Aug.
2010.

[10] http://www.nvidia.com/object/cuda home new.html.
[11] J. Sanders and E. Kandrot, CUDA by Example: An In-

troduction to General-Purpose GPU Programming, 1st ed.
Addison-Wesley Professional, 7 2010.

[12] D. B. Kirk and W.-M. W. Hwu, Programming Massively Par-
allel Processors: A Hands-on Approach (Applications of GPU
Computing Series), 1st ed. Morgan Kaufmann, 2 2010.

[13] http://www.isip.uni-luebeck.de/index.php?id=610.

