
2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

AN ADAPTIVE TREE-BASED PROGRESSIVE AUDIO COMPRESSION SCHEME

Stefan Strahl, Huan Zhou, Alfred Mertins

Signal Processing Group, Department of Physics
University of Oldenburg

26111 Oldenburg, Germany

alfred.mertins@uni-oldenburg.de

stefan.strahl@mail.uni-oldenburg.de

ABSTRACT

A fine-grain scalable and efficient audio compression scheme

based on adaptive significance-trees is presented. Common

approaches for 2-D image compression like EZW (embedded

wavelet zero tree) and SPIHT (set partitioning in hierarchical trees)

use a fixed significance-tree that captures well the inter- and intra-

band correlations of wavelet coefficients. For 1-D audio signals,

such rigid coefficient correlations are not present. We address this

problem by dynamically selecting an optimal significance-tree for

the actual audio frame from a given set of possible trees. Experi-

mental results are given, showing that this coding scheme outper-

forms single-type tree coding schemes and performs comparable

to the MPEG AAC coder while additionally achieving fine-grain

scalability.

1. INTRODUCTION

Recent advances in wireless audio streaming ([1],[2]) and the

increase of heterogeneous networks like the Internet introduced

problems such as bitrate fluctuation, different target channel ca-

pacities or storage costs for multi-bitrate files. Storing the data in

an embedded manner can address this issue in a generic manner.

Bitplane coding and significance-trees have been successfully

applied to image coding ([3],[4]). Such coding schemes success-

fully capture the structure of the wavelet-based image represen-

tation, making very efficient sorting passes and a low number of

sorting bits possible. Such natural rigid correlations cannot be

found in audio signal representations like the MDCT transform,

necessitating the derivation of optimal significance-trees in a data

dependent manner.

How to generate these significance-trees capturing the variant

spectral distribution of audio data and the principle of our pro-

gressive compression scheme, called combined significance-tree

quantization (CSTQ) using these significance-trees, are discussed

in Section 2. In Section 3, we present experimental results on au-

dio compression including subjective listening tests.

This work was partly funded by the German Science Foundation
(DFG) through the International Graduate School for Neurosensory Sci-
ence and Systems

2. BASIC CONCEPTS

2.1. Significance trees

Significance-tree coding algorithms like EZW [3] or SPIHT [4]

exploit the fact that it can be beneficial to describe significant co-

efficients of a bitplane via their position and value information in-

stead of transmitting all values one by one. These spatial orienta-

tion trees can be mathematically represented using parent-children

coefficient coordinate relationships. Figure 1a shows the case

of image compression, were the offspring O(i, j) of the wavelet

parent coefficients at position (i, j), except for the highest and

lowest pyramid level, have been defined as O(i, j) = {(2i, 2j),
(2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1)}. Due to the fact that

the 2-dimensional wavelet transformation has a typical coefficient

inter- and intra-band correlation [5], this rigid tree structure can

capture the correlation with a reasonable computational complex-

ity, giving an efficient compression scheme.

*

(a)

coefficient

index i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(b)

Figure 1: Parent-offspring dependencies in SPIHT with different

styles. (a) 2-D tree. (b) 1-D tree following the offspring rule

O(i) = iN + {0, N − 1}.

For 1-dimensional audio signals, the problem of selecting the

optimal tree structures remains unsolved despite considerable ef-

forts. Most existing algorithms use a single type of tree as shown

in Figure 1b with the fixed parent-children relationship O(i) =
iN + {0, 1, · · · , N − 1} for different positive integers N . For

the MDCT transform, N = 4 was adopted in [6, 7, 8, 9] and the

2190-7803-9154-3/05/$20.00 ©2005 IEEE

2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

wavelet packet transform was encoded using N = 2 in [10, 11].

This type of tree will be referenced in the following as SPIHT-style

significance trees.

2.2. Bitplane coding using significance trees

The set of M transform coefficients to be encoded for an audio

frame is denoted by the vector X = (X1, X2, . . . , XM), and the

according coordinates set is denoted by M = (1, 2, · · · , M). The

algorithm starts with the most significant bitplane nmax, which

can be easily computed with nmax = �log2(max
i∈M

{| Xi |})�. A

coefficient Xi can then be expressed as

Xi = s

nmax∑

k=nmin

bi,k2k

with bi,k ∈ {0, 1} and s ∈ {±1} being the sign. If Xi is an

integer value, then nmin = 0. To encode real-valued coefficients,

nmin can be negative.

During the bitplane-coding process, all bitplanes n ≤ nmax

are processed iteratively (i.e., the bits bi,n, i = 1, 2, . . . , M are

transmitted) in so-called sorting and refinement passes [4]. In a

sorting pass, all coefficients that become significant with respect

to the actual bitplane n are found by employing tests on the coeffi-

cient absolute values, and these test results are written to the output

bitstream. For coefficients that are found to be significant, also a

sign bit is transmitted. During the refinement passes, the lower bit-

planes of already identified significant coefficients are transmitted.

The sequence of the coefficient sorting is defined by the

significance-tree so that all elements in the coefficient set X are

uniquely mapped into nodes in the trees. Each significance tree

T is composed of several nodes that link coefficient coordinates i
(position information) of scalars Xi in a hierarchical manner. A

tree T is said to be significant with respect to bitplane n if any

scalar inside the tree is significant, that is, if the magnitude of at

least one coefficient in the set is larger than 2n. The pseudocode

of the sorting pass is as follows:

TreeSignificance (current tree T , current threshold 2n)

• If T is insignificant with respect to 2n, emit ‘0’ and return;

• If T is significant with respect to 2n, emit ‘1’;

• If root node N(T) is significant with respect to 2n, emit

‘1’, otherwise emit ‘0’;

• Call TreeSignificance() for each subtree with root node as

offspring of N(T) with threshold 2n;

• Return;

2.3. Proposed adaptive significance-tree selection

The SPIHT-style significance trees proposed for audio coding so

far are rather arbitrary. They are simply derived by projecting

the known 2-D trees into the vector notation of 1-D structures.

To establish better tree structures and to capture the dynamically

variant spectral behavior of audio signals, we predefine a set of

significance-trees and dynamically select the locally optimal ones

for each audio frame.

For tree construction, in general, it is important to recall that

trees should be built in such a way that the coefficients that are

most likely to be large in magnitude are located close to the roots

of the trees, whereas the small coefficients should be located at the

outer leaves. The larger the (sub)-trees that contain small coeffi-

cients are, the more efficient the coding will be.

In this paper we design the set of μ possible significance

trees by partitioning an audio frame into m different segments for

which separate subtrees with individually chosen sorting orders

are built. Each subtree is selected from four different types of trees

that are designed for ascending, descending, concave, and convex

coefficient-magnitude behavior within a segment. For example, a

tree for a descending model is constructed under the assumption

that the coefficients in a segment, denoted by xi, i = 1, 2, . . . , I
satisfy the condition |xi| ≥ |xi+1|. The structure of a subtree for

a descending model with treeorder N = 2 (number of offspring)

can then take on the form illustrated in Figure 2. The trees for the

other models can be easily derived from the one for the descending

model by rearranging the coefficient indices.

Note that the above mentioned condition |xi| ≥ |xi+1| is just

the assumption behind the subtree construction. The actual coef-

ficients in a segment will, of course, not follow such a strict rule.

For a given frame segment to be encoded, we select the model that

allows us to encode the largest number of high-magnitude coeffi-

cients within the first ν tree levels. In the experiments, ν was set

to 3.

In Section 3, we consider m = 8 with equally sized subtrees

and m = 10 with logarithmically sized subtrees. For logarithmi-

cally sized subtrees, the number of coefficients in a segment dou-

bles from segment to segment. With m segments and four trees

to choose from in each segment, this yields μ = 65.536 possi-

ble trees (tree selection needs 16 bits per frame) for the equally

sized and μ = 1.048.576 (bit cost of 20 bits per frame) for the

logarithmically sized subtrees.

Figure 2: Significance tree for descending model and N = 2.

2.4. CSTQ algorithm

Let us assume that a set of optimal local significance

trees for transmitting a coefficient set X has been found,

for example, through testing the efficiencies of various

possible trees as mentioned above. The compression

scheme then operates as follows: Iteratively, all bitplanes

n = nmax, nmax − 1, nmax − 2, . . . , nmin are processed in

sorting and refinement passes. In a sorting pass, all coefficients

that become for the first time significant (i.e., their magnitude

exceeds the current threshold 2n) are logged to a list of significant

coefficients (LSC) and their signs are encoded. This means, at any

point in the encoding process, the LSC contains the coordinates

of all coefficients that have been found to exceed the current test

threshold of 2n. When all significant coefficients with respect to

the current threshold 2n have been identified and their coordinates

have been moved to the LSC, the refinement pass stores the

bitplane information for the significant coefficients by processing

the LSC, except for the coefficients that were included in the last

sorting pass. The overall algorithm is as follows.

220

2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

CSTQ Algorithm:

1. Tree Generation: select one of the μ possible significance-

trees, containing m local subtrees;

2. Initialization: output n = �log2(max
i∈M

{| Xi |})�; output

selected significance-tree; sequentially do: set LSC (list of

significant coefficients) as an empty list.

3. Sorting Pass: sequentially call TreeSignificance, move all

significant coefficients into the according LSC, output their

signs.

4. Refinement Pass: sequentially, for each coefficient in ac-

cording LSCs, except those included in the last sorting pass,

output the nth most significant bit of Xi.

5. Quantization-Step Update: decrement n by 1 and go to

Step 3.

The process is repeated until the desired bit budget is achieved,

or, in case of lossless compression, all bits in all coefficients have

been encoded.

3. EXPERIMENTAL RESULTS

3.1. Comparison of significance-tree models

In this section, we compare the performance of adaptively se-

lected and fixed significance trees. The number of possible trees

for our algorithm was set to μ = 65.536 (equally sized) and

μ = 1.048.576 (logarithmically sized), respectively, as described

in Section 2.3.

The audio signal was selected as the cha2.wav file [12]

(mono, 16 bits, 48 kHz) and the bitrate was set to R = 96 kbps.

An MDCT filterbank was used to remove the signal redundancy

and the framesize was set to M = 1024. The frame bit budget Rf

was computed as Rf = �R · M/Fs� where Fs is the sampling

rate in Hz, yielding Rf = 2048 bits per frame for 96 kbps. The

treeorder of the significance trees has been set to N = 4. As a

quality measure, the frame-wise signal-to-noise ratio (SNR) was

used, which was computed as the ratio of a frame’s energy, di-

vided by the energy of the reconstruction error in the frame. The

two scenarios gave the results listed in Table 1.

Table 1: Average frame-wise SNRs in dB for the cha2.wav sig-

nal coded at 96 kbps, using different algorithms.

scenario SPIHT CSTQ CSTQ

linear spaced log-spaced

segSNR 32.99 34.27 34.56

From Table 1 it can be seen that the CSTQ algorithm, which

uses the proposed adaptive significance-tree selection, gives better

results than the SPIHT scheme with a fixed, signal independent

tree. Moreover, it can be seen that the use of a logarithmic spacing,

similar to the one that can be found in the human auditory system,

is a good strategy to exploit the structure of audio signals.

3.2. Combination with the MPEG AAC standard

In this experiment, we use the state-of-the-art MPEG AAC com-

pression scheme and combine it with our CSTQ algorithm in order

to achieve progressive coding. For this, we keep the AAC scheme

unchanged up to the point where Huffman coding is employed,

then apply the CSTQ algorithm to realize the compression of the

quantizer indices. In all experiments, the reference software of

[13] was used.

The compression of quantizer indices can either be lossless or

lossy, depending on the number of bits transmitted. On the decoder

side, the received quantizer indices (either exact values or approx-

imations, depending on the bitrate) are injected into the standard

AAC decoder. All other side information is transmitted as pro-

duced by the AAC coder.

Table 2 shows the average segmental SNRs for the algorithms

at different bitrates, using signals from the sound quality access

material (SQAM) [14] and from the 1990 MPEG evaluation [12].

Note that the results for the AAC coder were produced by encod-

ing the signal individually for each bitrate. For CSTQ, the encod-

ing was done once at 64 kbps, and then lower rates were realized

by truncating the frame-wise embedded bitstream produced by the

CSTQ algorithm. As the results in Table 2 show, the SNR for

CSTQ is slightly lower at the highest bitrate, but it is better for all

lower bitrates. A similar behavior could be found for other audio

material as well. This could be explained by to the fact that at 64

kbps, not all frames could be compressed by the CSTQ scheme

in a lossless manner within the given bit budget. At lower rates,

however, CSTQ has the advantage that it can exactly meet the tar-

get bitrate without the need of including any padding bits, which

are quite common in the AAC bitstream produced by the reference

software.

Table 2: Average segmental SNRs in dB for different signals, bi-

trates and algorithms

audio Time Bitrate AAC AAC AAC AAC

file (min) (kbps) BSAC CSTQ CSTQ

linearly log.

spaced spaced

N = 2 N = 2
16 10.46 1.26 7.65 8.02

24 12.90 8.25 9.57 10.32

Tracy 0:37 32 14.19 12.08 13.63 13.87

Chapman 40 15.04 14.04 14.89 14.96

[12] 48 15.59 14.94 15.43 15.49

56 16.09 15.51 16.01 16.03

64 16.47 15.54 16.43 16.44

16 7.65 5.59 9.74 9.98

female 24 10.48 10.03 12.51 13.30

English 0:21 32 12.54 12.66 15.50 15.74

speech 40 13.70 15.53 18.07 18.12

[14] 48 15.28 16.97 19.36 19.41

56 16.75 17.05 19.89 19.91

64 19.98 17.07 19.98 19.98

16 7.42 6.03 8.51 8.95

24 9.59 9.48 10.67 11.03

quartet 0:28 32 11.32 11.43 13.37 13.51

[14] 40 12.73 13.89 15.23 15.30

48 14.29 14.77 16.32 16.36

56 15.82 14.95 16.84 16.86

64 17.05 14.95 17.03 17.03

221

2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

-4

-3

-2

-1

0

1

16 kbps 32 kbps 48 kbps 64 kbps

A
A

C

C
S

T
Q

B
S

A
C

A
A

C

C
S

T
Q

B
S

A
C

A
A

C

C
S

T
Q

B
S

A
C

A
A

C

C
S

T
Q

B
S

A
C

Bitrate

D
if

fg
ra

d
e

Figure 3: Subjective difference grades for different codecs at bi-

trates between 16 and 64 kbps for one mono channel.

3.3. Subjective listening tests

In order to see whether the objective results based on the segmen-

tal SNR translate into similar subjective quality impressions, we

carried out listening tests with twenty test persons for the sce-

nario with eight equally sized subtrees per frame. In these tests,

the CSTQ-scheme was compared with the MPEG2-AAC stan-

dard and the MPEG-4-AAC-BSAC standard, which is currently

the only standardized fine-grain progressive audio compression

scheme. Also for MPEG-4-AAC-BSAC, the reference software

from [13] was used. The measurement procedure was set up ac-

cording to the ITU recommendation BS.1116-1 [15]. The quality

ratings between one (very annoying) and five (indistinguishable

from the original) were translated into the subjective difference

grade, which is the difference between the rating for the encoded

test item and the hidden reference and ranges from zero (equal

quality) down to -4 (the lowest grade). The results for three dif-

ferent test signals are depicted in Figure 3. As one can see, the

performance of CSTQ is almost equal to the AAC performance,

and it is significantly better than the BSAC one.

4. CONCLUSIONS

The fine-grain scalable audio signal compression problem has

been addressed in this study. While in almost all existing algo-

rithms, a single type of significance-tree has been adopted for sort-

ing significant coefficients and transmitting position information,

we have proposed a novel adaptive significance-tree technique.

Such a tree is generated dynamically to suit variant spectral be-

havior from frame to frame. It could be shown that a logarithmic

tree size scaling captures better the harmonic structure of an audio

signal. Based on the dynamic tree selection, a compression scheme

called CSTQ has been proposed, which provides both high com-

pression quality and fine-grain bitrate scalability. Experimental re-

sults clearly demonstrate the following properties: the method out-

performs the existing SPIHT-like algorithms and yields competi-

tive quality as the nonscalable AAC audio compression scheme,

yet with fine scalability of one-bit granularity per frame.

5. REFERENCES

[1] Bluetooth Audio Video Working Group, “Advanced Audio

Distribution Profile Specification (A2DP),” Bluetooth Spe-

cial Interest Group, 2003.

[2] Apple Inc., “AirTunes,” 2004. [Online]. Available:

http://www.apple.com/airportexpress/airtunes.html

[3] J. M. Shapiro, “Embedded image coding using zerotrees

of wavelet coefficients,” IEEE Trans. on Signal Processing,

vol. 41, no. 12, pp. 3445–3462, 1993.

[4] A. Said and W. A. Pearlman, “A new, fast and efficient image

codec based on set partitioning in hierarchical trees,” IEEE

Trans. on Circuits and Systems for Video Technology, vol. 6,

no. 3, pp. 243–250, 1996.

[5] Z. Liu and L. J. Karam, “Quantifying the intra and inter

subband correlations in the zerotree-based wavelet image

coders,” in Conf. Record of the 36th Asilomar Conf. on Sig-

nals, Systems and Computers, Sep. 2002, pp. 1730–1734.

[6] C. Dunn, “Efficient audio coding with fine-grain scalabil-

ity,” in AES 111th Convention, NY, USA, preprint 5492, Sep.

2001.

[7] M. Raad, A. Mertins, and R. Burnett, “Audio coding based

on the modulated lapped transform (MLT) and set partition-

ing in hierarchical trees,” in Prof. 6th World Multiconference

on Systemics, Cybernetics and Informatics, Orlando, USA,

Jul. 2002, pp. 303–306.

[8] M. Raad and A. Mertins, “From lossy to lossless audio cod-

ing using SPIHT,” in Proc. of the 5th Int. Conf. on Digital

Audio Effects, Hamburg, Germany, Sep. 2002, pp. 245–250.

[9] M. Raad, A. Mertins, and R. Burnett, “Scalable to lossless

audio compression based on perceptual set partitioning in hi-

erarchical trees (PSPIHT),” in Proc. Int. Conf. on Acoustics,

Speech, and Signal Processing, Apr. 2003, pp. V624–627.

[10] Z. Lu and W. A. Pearlman, “An efficient, low-complexity au-

dio coder delivering multiple levels of quality for interactive

applications,” in Proc. IEEE Signal Processing Society Work-

shop on Multimedia Signal Processing, Dec. 1998, pp. 529–

534.

[11] ——, “High quality scalable stereo audio coding,”

1999. [Online]. Available: http://www.cipr.rpi.edu/ pearl-

man/papers/scal audio.ps.gz

[12] ISO/MPEG, “Audio test report. ISO/IEC/JTC 1/SC 2/WG

11 MPEG MPEG90/N0030,” International Organization for

Standardization, 1990.

[13] “Mpeg-4 audio reference software.” [Online]. Available:

http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/

ISO IEC 14496-5 2001 Software Reference/

[14] “Sound quality assessment material.” [Online]. Available:

http://sound.media.mit.edu/mpeg4/audio/sqam/

[15] ITU-R Recommendation BS.1116-1, “Methods for the sub-

jective assessment of small impairments in audio sys-

tems including multichannel sound systems,” International

Telecommunication Union, Geneva, Dec. 1997.

222

