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Abstract—Constructions of square, maximum rate complex
orthogonal space–time block codes (CO STBCs) are well known,
however codes constructed via the known methods include nu-
merous zeros, which impede their practical implementation. By
modifying the Williamson and Wallis-Whiteman arrays to apply
to complex matrices, we propose two methods of construction of
square, order-�� CO STBCs from square, order-� codes which
satisfy certain properties. Applying the proposed methods, we
construct square, maximum rate, order-8 CO STBCs with no zeros,
such that the transmitted symbols are equally dispersed through
transmit antennas. Those codes, referred to as the improved square
CO STBCs, have the advantages that the power is equally trans-
mitted via each transmit antenna during every symbol time slot
and that a lower peak-to-average power ratio (PAPR) is required
to achieve the same bit error rates as the conventional CO STBCs
with zeros.

Index Terms—Amicable orthogonal designs (AOD), Complex or-
thogonal space–time block codes (CO STBCs), multiple-input mul-
tiple-output (MIMO), orthogonal design, peak-to-average power
ratio (PAPR), space–time block code (STBC).

I. INTRODUCTION

C OMPLEX orthogonal space–time block codes (CO
STBCs) have been intensively examined, as they provide

large transmit diversity and increase the capacity of wireless
channels, while requiring a very simple maximum likelihood
(ML) decoding method [3]–[7]. A CO STBC over

variables is corresponding to transmit (Tx) antennas,
decoding delay (or memory length) of , rate and
is denoted as CO STBC. Given and , the goal is
to minimize the decoding delay . Hence, square CO STBCs
are particularly interesting because they require the minimum
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processing delay (minimum memory length as well) for the
same rate and the same number of Tx antennas. Another
consideration for practical implementation is the number of
zeros in a code. Compared to a code with fewer zeros, a code
with more zeros results in a higher peak-to-average power ratio
(PAPR), leading to the necessity of the use of circuits with the
linear characteristic within a large dynamic range. Otherwise,
the received signals may suffer from serious distortion. Having
many zeros can also impede practical implementation, espe-
cially in high data rate wireless communication systems, since
some Tx antennas must be turned off during transmission.
Furthermore, it would be more practical if the power of signals
can be equally transmitted via each Tx antenna during every
symbol time slot (STS). Given the above considerations for CO
STBCs, this paper focuses on constructing square CO STBCs
with maximum rate, minimum decoding delay, no zero entries,
and equal power transmission per Tx antenna during each STS.

The simplest square CO STBCs is the Alamouti code [3],
which achieves a rate one for two Tx antennas. In contrast,
square CO STBCs for more than two Tx antennas cannot
achieve rate one [4], [8], but they can still achieve full diversity
for a given number of Tx antennas. Constructions of square CO
STBCs for a higher number of Tx antennas, e.g., and , have
been well examined in literature, such as [4] and [7]. The code

in (1), [7] is one of the examples of the conventional square
CO STBCs for 8 Tx antennas. The conventional structures yield
square CO STBCs of maximum rate, which is, for instance,
for Tx antennas. However, these maximum rate codes have
many zero entries, which are undesirable

(1)

It is important to clarify that, according to Liang’s paper [4],
the maximum achievable rate for CO STBCs of orders

or is (see [4, eq. (130)])

(2)

However, note that this maximum rate is only achievable for
nonsquare constructions, except for the special case when
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, i.e., when or . For square constructions of orders
, where and are integers, the maximum

achievable rate is

(3)

When , (2) and (3) provide the same results. Readers
should refer to [4, Corollary 2 and Sec. II-D], or [7, Sec. IV] for
more details.

Particularly, for , i.e., and , the
maximum achievable rate of nonsquare CO STBCs following
(2) is , while the maximum achievable rate of square CO
STBCs according to (3) is only. In Liang’s paper, the au-
thors made an unclear statement in the abstract that the achiev-
able maximum rate for and is ,
but did not state if this maximum rate is achievable by nonsquare
or square constructions. This easily makes readers confused, ex-
cept when readers go deeply into the Liang’s paper.

Square CO STBCs have a great advantage over nonsquare
CO STBCs that they require a much smaller length of the codes,
i.e., much smaller processing delay, with the consequence of the
slightly smaller maximum code rate compared to the achievable
maximum code rate of nonsquare CO STBCs. To demonstrate
this, let us consider CO STBCs for Tx antennas. An ex-
ample for this case is the nonsquare CO STBC given

in Appendix E in Liang’s paper [4], that achieves the maximum
rate and requires the length of STSs. It was proved later
in [9] that the minimal length of complex orthogonal designs
(COD) for 8 Tx antennas with the maximal rate is , rather
than . This observation has been confirmed by Liang in [10]
where the nonsquare CO STBC with the maximal rate

and minimal length has been derived.
As opposed to nonsquare CO STBCs, square CO STBCs only

require the length of 8 STSs to achieve the maximum rate ,
which is slightly smaller than the maximum rate of nonsquare
CO STBCs. Clearly, square CO STBCs require a much shorter
length, especially for a large number of Tx antennas, with the
consequence of a slightly lower maximum code rate. For this
reason, in this paper, we only consider square CO STBCs.

Square CO STBCs with no zero entries have been proposed
in the literature, such as [3] and [6], for orders , . In [11],
from Amicable Orthogonal Designs (AODs), we constructed
two square, order CO STBCs and [see (4) and (5) at the
bottom of the page] with fewer zeros than the conventional codes
[4], [7]. The background knowledge on AODs can be found in
[12]. Later, in [1] and [13], we constructed a square, order CO
STBC without any zero, which is given in (6), shown at the
bottom of the page, where .

As pointed out in [1] and [13], the entries
of are composed of the real

(4)

(5)

(6)

Authorized licensed use limited to: Alfred Mertins. Downloaded on October 19, 2009 at 10:28 from IEEE Xplore.  Restrictions apply. 



TRAN et al.: NOVEL CONSTRUCTIONS OF IMPROVED SQUARE CODS 4441

part of one indeterminate and the imaginary part of another
indeterminate, e.g., . This observation means
that if the indeterminates are chosen from the com-
plex signal constellations where or can
be equal to zero, e.g., the QPSK constellation
then, some of the entries of the matrix can be equal to
zero depending on the transmitted data. Therefore, such con-
stellations should be avoided. An example of the constellation
where the power is evenly spread among the Tx antennas
independently of the transmitted data is the QPSK constellation

.
The square CO STBC in (6) has the following advantages:

1) It is not required to turn off any Tx antenna during trans-
mission, unlike in the conventional CO STBC [4], [7].

2) When the indeterminates are chosen from a suitable con-
stellation, has no zero entries, hence, it requires a
smaller peak power per Tx antenna to achieve the same
BER as in the conventional square CO STBCs with zeros
[4], [7]. Equivalently, it provides a better BER compared
to the conventional square CO STBCs with the same peak
power at Tx antennas.

Independently, also based on AODs, Yuen et al. [14] con-
structed a solitary, square, order-8 CO STBC with no zeros,
which is referred to as and is given in (7) at the bottom of the
page. This square CO STBC has an advantage over our code
in that it does not require the restriction on signal constellations.
However, it is always difficult to construct square CO STBCs
based on AODs, especially for those codes of high orders, since
various weighting matrices must be incorporated. For instance,
to construct a square, maximum rate CO STBC of order , eight
matrices of size (four weighting matrices for the real parts
of variables and four other weighting matrices for the imaginary
parts), which simultaneously satisfy several strong conditions of
AODs [14], [12], [15], must be found.

In this paper, by modifying the Williamson and Wallis-
Whiteman arrays to apply to complex matrices, we propose
two novel methods of construction of square, order- CO
STBCs from square, order- codes which satisfy certain prop-
erties. Applying the proposed methods, we construct square,
maximum rate, order- CO STBCs with no zeros, such that
the transmitted symbols equally disperse through Tx antennas.
Besides having the maximum rate, the minimal decoding
delay, and no zero entries, the resultant codes, referred to as
the improved square CO STBCs, have the following practical
advantages: a) They do not require any restriction on allowable

signal constellations; b) It is possible to transmit symbols with
equal power for any STS at any Tx antenna; and c) A lower
peak power per Tx antenna is required to achieve the same bit
error rates as for the conventional CO STBCs with zeros.

As mentioned in more details later in this paper, in order to
construct, for instance, CO STBCs, the main task in
our methods is to find two submatrices of size which
satisfy certain properties, rather than finding 8 weighting ma-
trices of size simultaneously as in the AOD approaches,
such as in [14]. More importantly, our methods give a transition
from square, order- CO STBCs satisfying certain properties to
square, order- CO STBCs. A good reference highly related to
the topic of this paper is [16] where their constructions might, in
some cases, result in a structure similar to one of the structures
mentioned in this paper. However, the structures reported there
were gained via AODs while they are constructed, in this paper,
via an independent approach, namely the submatrices-based de-
sign approach.

The paper is organized as follows. In Section II, we pro-
vide definitions and notations used throughout the paper. In
Section III, we propose two methods for constructing high-rate,
square CO STBCs of order from sub-matrices of order

. In Section IV, we use the proposed methods to construct
square, maximum rate, order 8 CO STBCs, which are superior
in several aspects to other known codes to date. Some simula-
tion results are given in Section V. The paper is concluded by
Section VI.

II. DEFINITIONS AND NOTATIONS

Our proposed constructions in this paper are based on the
following matrices, which are the variations of the Williamson
and Wallis-Whiteman arrays mentioned in [12, pp. 121 and 99,
respectively], modified to apply to complex matrices

(8)

(9)

where denotes the element-wise conjugation if the argu-
ment is a matrix or a vector, or simply the complex conjugation
if the argument is a complex variable. This means that of a

(7)
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matrix can be expressed as . We denote
to be the Hermitian transposition, while denotes the trans-
position (but not conjugate). and are , square,
orthogonal matrices of complex variables. Hence, and
are matrices of complex variables.

Let be a general notation representing either or .
Define and present as , where and

are integers. Let be the maximum number of variables
in . It is well known that the maximum number of variables in
the square CO STBC of order is . Readers may
refer to [7], [12], or [4, Corollary 2] for more details. Let

and be the number of variables in , and ,
respectively.

Let and be the set of all variables in and the set of all
indices of elements in , respectively. Similarly, let

(10)

be the sets of variables in , and , respectively, and let
, for , be the sets of indices of variables in the

submatrices , and , respectively.
We require that the submatrices , and satisfy

(11)

where is the empty set. With the condition (11), clearly, if
comprises the maximum number of variables, we have

(12)

It is noted that there is no predefined condition on
and in order to achieve the upperbound . Instead, it is
really flexible to select the set of and in order to
achieve the equality , and a good
choice of the set of and will lead to the optimal
code structure. Some of such choices will be mentioned later in
the examples within this paper.

Since is a matrix on variables , we
define the vector , and write

Similarly, we denote the matrices and as

(13)

For simplicity of notation, we sometimes write, for example,
to represent . Recall that the matrix is derived

from by replacing each variable , for , by its
conjugate, i.e.

We can represent , and in a similar manner.
We state that a matrix is of similar form to a

matrix (or just is of similar form to , for
short) if , where is a vector containing
distinct complex variables , and simi-
larly, is a vector containing distinct complex variables

, and is an arbitrary, nonzero, real
coefficient. In this notation, we stipulate that the number of
variables in is at most equal to the number of vari-
ables in . To illustrate an example with

= (which presents the Alamouti code with

two variables) is of similar form to = ,

since . To illustrate the case

where and = (which

presents the Alamouti code with only one variable) is also of
similar form to since .

By this notation, when we state that the matrix in (13) is of
similar form to the matrix , for instance, we imply that can
be represented as where the number of complex
variables in is at most equal to the number of complex
variables in , i.e., .

Finally, we denote to be an identity matrix of order .

III. DESIGN METHODS

In this section, we provide two new methods to construct
square CO STBCs. In each case, we use sub-matrices of order
to build CO STBCs of order . Our methods generalize
the Williamson and Wallis-Whiteman arrays, which were origi-
nally used to build real orthogonal designs [12, pp. 121 and 99,
respectively].

Theorem 1: If the sub-matrices and of order
satisfy the following necessary conditions:

1) , and are orthogonal themselves and

(14)

where are definitely positive, real coefficients, and the
complex variables may be in or which
are defined in (10).

2) The matrices and

are square COD of order .
3) and are symmetric for any possible pair of

vectors and of complex variables, where and
are shorthand for and , respectively.

4) and are of similar form to and , respectively,
and , respectively, and respectively, or and ,
respectively, i.e., and can be presented as one of the
following forms:

(15)

Authorized licensed use limited to: Alfred Mertins. Downloaded on October 19, 2009 at 10:28 from IEEE Xplore.  Restrictions apply. 



TRAN et al.: NOVEL CONSTRUCTIONS OF IMPROVED SQUARE CODS 4443

where and are arbitrary (positive or negative), real
coefficients, and

then

(16)

is a CO STBC of order . If all coefficients ,
for , then is called square CO STBC without Linear
Processing (LP) (or just square CO STBC for short). Otherwise,

is considered as a square CO STBC with LP. If
, then is a square, maximum rate CO

STBC of order .
Proof: We prove Theorem 1 for the case that and

are of similar form to and , respectively. Similar arguments
can be applied to three other cases. From (16), we have (17),
shown at the bottom of the page, where in the matrix de-
notes the lower triangular part under the main diagonal whose
elements are the Hermitian transposes of the corresponding el-
ements in the upper triangular part. For instance, we have the
element .

First, we prove the following equalities:

(18)

(19)

(20)

Since is orthogonal, we have

which implies that is a real, diagonal matrix and, therefore

(21)

Using (21), it follows that

Therefore, (18) has been proved. The same arguments can be
applied to prove (19) and (20). Hence, if and are
orthogonal themselves and satisfy (14), then all elements (i.e.,

submatrices) on the main diagonal of the matrix
are equal to

Second, we prove the following equalities:

(22)

(23)

(24)

where is a zero matrix of order . Equation (22) holds as
is a COD. Additionally, because and are of similar form to

[see (15)], the equalities (23) and (24) are straightforwardly
proved (multiplication with real coefficients and does not
change the property (22)).

Third, we prove the following equalities:

(25)

(26)

(27)

Since is symmetric for any pair of vectors and of
complex variables, it follows that is
also symmetric. Using this symmetry, it follows that

In other words, we have

(28)

for any pair of vectors and . Due to the fact that and are
of similar form to , by replacing and in (28) by
or , the equalities (25), (26), and (27) are proved.

From (22)–(27), we see that the elements
and of the matrix are zero matrices.

Fourth, we prove the following equalities:

(29)

(30)

(31)

� � �

�

� ��� � �� � �� � � � �� ��� �� �� �� � � �� ��� �� �� �� � � �� ��� �� � � ��

� ��� � � �� �� � �� �� � � � �� �� �� �� � �� � � � � �� �� �� �� � �� �

� �� �� �� � � � � �� �� � � � �� �� �� �� � �� �

� � �� �� �� � �� �� �� �

�

(17)
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Due to being symmetric, the following equalities hold:

(32)

for any pair of vectors and . Due to and being of similar
form to , by replacing and in (32) by or , the
equalities (29)–(31) are proved.

Finally, we prove that

(33)

(34)

(35)

Equation (33) holds since is a COD. Because and are
of similar form to , by replacing in (33) by or , the
equalities (34) and (35) are proved.

From (29)–(31) and (33)–(35), it follows that the elements
. Since the lower trian-

gular part is the Hermitian transpose of the upper part, all el-
ements in are also zero matrices. Hence, can be presented
as

where diag denotes a diagonal matrix. In other words, the matrix
in (16) is a square COD (also CO STBC) of order = with

variables. Note that, if comprises the
maximum number of variables, i.e., (12) is satisfied, then is
a square, maximum rate CO STBC of order . Theorem 1 has
been proved.

Similarly, we derived the following theorem, which is a varia-
tion of the Wallis-Whiteman array [12, p. 99], modified to apply
to complex matrices.

Theorem 2: If the submatrices and of order
satisfy the following necessary conditions:

1) and are orthogonal themselves and

where are definitely positive, real coefficients, and the
complex variables may be in or , which
are defined in (10).

2) The matrices and

are square complex orthogonal designs (COD) of order .
3) and are symmetric for any possible pair of

vectors and of complex variables, where and
are shorthand for and , respectively.

4) and are of similar form to and , respectively,
and , respectively, and respectively, or and ,

respectively, i.e., and can be presented as one of the
following forms:

where and are arbitrary (positive or negative), real
coefficients, and

then

(36)

is a CO STBC of order . If all coefficients
for , then is called square CO STBC without linear
processing (LP) (or just square CO STBC for short). Otherwise,

is considered as a square CO STBC with LP. If
, then is a square, maximum rate CO

STBC of order .
Proof: The Proof of Theorem 2 is similar to the Proof of

Theorem 1.

IV. EXAMPLES OF MAXIMUM RATE, SQUARE, ORDER-8 CO
STBCS WITH NO ZERO ENTRIES

In order to construct CO STBCs of maximum rates
using the proposed methods in Theorems 1 and 2, the main task
is to find two submatrices which satisfy certain proper-
ties. This is easier than finding eight weighting matrices
simultaneously as in the AOD approach [14].

Using Theorem 1 and Theorem 2, we construct here some
square CO STBCs of order (with or without LP) with
the maximum number of variables . The sub-matrices

are of order and each submatrix comprises
one variable. From Theorem 1 (correspondingly, Theorem 2),
it is clear that the most crucial task for constructing square CO
STBCs of order in our proposed methods is to find two ma-
trices and ( and ) satisfying the properties (2) and (3)
in Theorem 1 (Theorem 2). We realize that various matrices

, and can satisfy those conditions, and derive here some
of those cases for illustration.

Example 1: The following submatrices satisfy Theorem 1

for any real coefficients .
In this example, is a variation of the Alamouti code with

only one variable, while and are each of similar form to .
Then, in (16) satisfies and, conse-
quently, is a maximum rate, square, order-8 CO STBC (with
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or without LP depending on ). If , for ,
from (16), we have the following code

(37)

Examples with various other structures are given here.

Example 2: This example illustrates the case in Theorem 1
where and are each of similar form to

If and , for instance, then we have

(38)

Example 3: This example using Theorem 1 shows that the
CO STBC in (7) can be (indirectly) derived from our pro-
posed methods. Let

If for , from (16), we have the following
code

(39)

We note that the CO STBC in (7) can be derived from our
CO STBC in (39) by multiplying every even row in (39) with .
However, in (7) itself does not follow our proposed structure
as the submatrices and in do not satisfy the second
condition in Theorem 1.

Example 4: This example illustrates the case in Theorem 2
where and are each of similar form to

If for , from (36), we have the following
code:

(40)

All of the above codes are square, maximum rate CO STBCs of
order with a full design, i.e., without any zeros for any
complex signal constellations. The power is equally transmitted
via each Tx antenna during every STS. For these reasons, the
proposed CO STBCs are referred to as the improved, square CO
STBCs.

V. SIMULATION RESULTS

To examine the error performance of the proposed codes, we
ran Monte-Carlo simulations for the code in (37) in a system
with eight Tx antennas and one receive (Rx) antenna for illus-
tration. The bit error performance of the proposed code was an-
alyzed in both QPSK and 8 PSK modulation schemes and was
considered in a flat Rayleigh fading channel. The channel coef-
ficients and noise are assumed to be independent and identically
distributed (i.i.d.), zero-mean, complex Gaussian random vari-
ables. The SNR examined here is the channel SNR, i.e., the ratio
between the sum of the average power of all received signals
during a STS at the Rx antenna and the average noise power.
The error performance of the conventional code in (1), the
codes in (4), in (5), where several zero entries are con-
tained in the code matrix, the code without zero entries men-
tioned in (6), and Yuen et al.’s code in (7) were also shown
in both QPSK and 8 PSK modulation schemes as the references.
The Monte Carlo simulations were run for 1 000 000 trials.

It is noted that the power of symbols transmitted through each
Tx antenna in each STS was normalized to one in both QPSK
and 8 PSK modulation cases for all considered codes. In par-
ticular, for the CO STBC in (37), the conventional code , the
codes and , all the transmitted symbols were derived from
a unitary signal constellation. In , the transmitted symbols
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Fig. 1. The performance of the proposed code in (37), compared to the conventional code � , the codes � � � � � , and Yuen et al.’s code� .

and were derived from a unitary signal constellation, while
the power of or was twice the power of or . Similarly,
for , the transmitted symbols and were derived from
a unitary signal constellation, while the power of was four
times as much as that of or .

By doing this, we stuck to the aim of transmitting the power
of information-bearing symbols equally through each Tx an-
tenna per STS, which is, in turn, one of the main purposes of
this paper. In other words, we conditioned that the peak power
per channel use was unitary and was the same for all considered
codes in the simulations. Thus the average transmission power
of the code (37), , and was , while that was for ,

for and for , respectively. Equivalently, the PAPR
of the proposed code and of and was one, while that of

and was , , and , respectively. We can see
that having zeros in the code matrix results in a higher PAPR
in comparison with the code with no zeros. Clearly, the average
transmission power in the whole block of the code in (37) was
twice as much as that in and equal to that in and in .
Therefore, the simulation results are expected to show that the
performance of the proposed code is 3 dB better than that of

and the same as that of and of . These observations
have been confirmed in Fig. 1, where the proposed code pro-
vides approximately 3 dB better bit error performance than
at in both QPSK and 8 PSK modulation schemes,
while it provides the same bit error performance as and .

It is interesting to note that the overall error performance of
the CO STBCs does not only depend on the average transmis-
sion power per symbol, but also depends on the structure of
the codes. In particular, from the transmission power point of
view, the gains of 1.25 dB (i.e., ) and of 0.58 dB (i.e.,

) are theoretically expected to achieve by the code
in (37) (also by or by ) in comparison with and ,

respectively. However, from Fig. 1, it can be realized that the
code in (37) provides approximate 2.5 and 2.75 dB better error
performances than and , respectively, in both QPSK and
8 PSK modulation schemes. It can also be realized that ac-
tually provides better error performance than , although the
average transmission power per symbol in the whole block of
the former is slightly smaller than the latter.

This observation can be explained as follows. provides
more diversity in both spatial and temporal directions for the
4 bits embedded in the two symbols and in the case of
QPSK modulation (6 bits in the case of 8 PSK modulation),
while only provides more diversity for the 2 bits embedded
in the symbol (3 bits in the 8 PSK modulation). Therefore,

may provide a better resistance to burst errors than . Simi-
larly, the code in (37) provides more diversity in both spatial and
temporal directions for the 8 bits embedded in the four symbols

and in the case of QPSK modulation (12 bits in the
case of 8 PSK modulation). In other words, the dispersion of
symbols within the CO STBCs can be an important factor to re-
sult in a good bit error performance and it should be considered
in designing a good CO STBC, besides the rank and determinant
(or coding advantage) criteria [6], [17], [18]. From the mathe-
matical viewpoint, the good dispersion means that there are as
fewer zeros in the whole matrix as possible and that the nonzero
entries are as much scattered in the whole matrix as possible.

VI. CONCLUSION

By modifying the Williamson and Wallis-Whiteman arrays
to apply to complex matrices, we have proposed two new
methods of constructing square, order- CO STBCs from
square, order- CO STBCs which satisfy certain properties as
described in Theorems 1 and 2. Applying Theorems 1 and 2,
we have constructed various square, maximum rate, order-
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CO STBCs with no zeros. In our CO STBCs, the transmitted
symbols equally disperse through Tx antennas with the con-
sequence that the power can be equally transmitted via each
Tx antenna during every STS. Additionally, it is our conjecture
that the proposed methods can be applied to design square CO
STBCs of order or from square CO STBCs of order- or

, respectively, provided that there exist submatrices satisfying
the conditions of our theorems. The construction of square
CO STBCs of higher orders, such as or , requires further
study, and this is our future work.
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