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ABSTRACT
This paper introduces a multi resolution image seg-
mentation algorithm for scalable object based wavelet
coding. This algorithm is based on discrete wavelet
transform and multiresolution Markov random field
(MMRF) modelling. The major contribution is to
match the spatial scalability features of arbitrary
shape wavelet transforms with the segmentation algo-
rithm. To optimize the segmentation/extraction of ob-
jects/regions of interest in different resolutions of the
wavelet pyramid, with scalability constraint, a multi
scale analysis is incorporated into the objective func-
tion of MMRF segmentation algorithm. The proposed
algorithm improves the segmentation result, especially
in lower resolutions of the decomposition, over regu-
lar multi resolution segmentation in both objective and
subjective tests, in yielding an effective segmentation
that supports scalable wavelet coding.

1. INTRODUCTION

With increasing popularity of multimedia in more and
more applications on networks and the internet, new
multimedia services such as interactivity, manipula-
tion and scalability are necessary. To meet these re-
quirements digital image/video coding has changed
from block based to object based [1]. The idea of ob-
jects has provided a lot of functionality beside coding
efficiency, such as manipulation and scalability. Mean-
while, object based wavelet coding schemes have be-
come increasingly important and gained widespread
acceptance.

One major pre-processing objective for any object
based coding is image/video segmentation and shape
extraction. Therefore, with spatial scalability in mind ,
it is necessary to extract the objects in multiple res-
olutions in a way that is useful for scalable object
based wavelet coding. In this paper, we propose an im-
age segmentation algorithm which fits multiresolution
Markov random field segmentation to object based
scalable wavelet coding. The objects/regions of inter-
est are extracted in different resolutions while keeping

wavelet scalability as a constraint. A multi scale anal-
ysis is incorporated into the objective function of the
MMRF segmentation algorithm, in order to align the
segmentation with the wavelet scalability constraints.
For optimization, the Iterated Condition Mode (ICM)
algorithm according to [3], matched to the scalable
multi scale analysis, has been used.

This paper is organized as follows. Section 2 refers
to the scalability in wavelet coding. In Section 3 we
present a scalable multiresolution segmentation al-
gorithm that includes a statistical image modelling
and optimization processes. Some experimental re-
sults and discussion are presented in Section 4, and
finally, conclusions are drawn in Section 5.

2. OBJECT BASED WAVELET CODING
SCALABILITY

Scalability means the capability of decoding a com-
pressed sequence at different data rates. It is useful for
image/video communication over heterogenous net-
works which require high degree of flexibility from
the coding system. Scalable image/video coding has
also different applications such as web browsing, im-
age/video database systems, video telephony, etc.

In wavelet based spatial scalability applications,
due to the self similarity feature of the wavelet trans-
form, the shape in lower scale is the shape in the low-
pass (LL) subband. The exact relationship between the
full-resolution shape and its low-resolution versions
depends on the kind of wavelet transform used for the
decomposition. In this paper we use an odd length fil-
ter (e.g. 9/7), where all shape points with even indices1

are downsampled for the lowpass band [4]. Figure 1
further illustrates the wavelet decomposition of arbi-
trarily shaped objects when using an odd-length filter.
The final four-band decomposition is depicted in Fig-
ure 1(c). As a result, every shape point with even index
has a corresponding point on the lower resolution and
every shape point on the lower level has a correspond-

1Suppose indices start from zero or an even number
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Figure 1: Decomposition of a non rectangular object with odd-length filters; (a) the object, shown in dark gray; (b)
the decomposed object after horizontal filtering; (c) decomposed object after vertical filtering. The letters ”E” and
”O” indicate the position(even or odd) of a pixel in the horizontal and vertical dimensions.

ing point on the next higher level. By considering the
self similarity of the wavelet transform, it is straight-
forward to suppose that the points of a shape with even
indices have the same segmentation classifications as
the corresponding points on the lower level.

The wavelet self similarity extends to all low pass
subband shapes of different levels. Therefore the dis-
cussed relationship between corresponding pixels is
extended to shapes on different scales. Corresponding
pixels on different levels have the same segmentation
class.

3. IMAGE SEGMENTATION ALGORITHM

To solve an image processing problem by MRF tech-
nique, a statistical image model has to be fitted to
the application which captures the intrinsic charac-
ter of the image in a few parameters. Then the im-
age/video processing problem, including all uncertain-
ties and constraints, can be converted to a mathemati-
cal parameter optimization problem [5].

3.1. Statistical image model

The main challenge in multiresolution segmentation
for scalable wavelet based object coding is to keep
the same relation between extracted object as it ex-
ists between the decomposed object in different res-
olution in the arbitrary shaped wavelet transform. To
meet this challenge, Markov Random Field modelling
is selected because it includes low level processing on
pixels and has enough flexibility in defining objective
functions for the problem at hand [5]. By applying
the wavelet transform to the original image, a pyra-
mid of decomposed images at various scales is cre-
ated. Let Y be the gray levels of this pyramid’s pixels
and Yp(s) be the intensity of point s in level p. Sim-
ilarly, segmentation of image into regions at different

resolutions will be denoted by X , where Xp(s) = i

means that the pixel s at level p is set to class i. In the
MMRF segmentation algorithm, an estimation of X

is obtained by maximizing an a posteriori probability
function P (X|Y ). From Bayes’ theorem [6]

P (X|Y ) ∝ P (Y |X)P (X)

where P (X) is the a priori probability of the region
process and P (Y |X) is the conditional probability of
the observed image given the segmentation in differ-
ent scales. The label field X is modelled as a Markov
Random Field (MRF). Spatial continuity is incorpo-
rated into the segmentation algorithm because they are
inherent to MRFs. It is well known that an MRF is
Gibbs distributed and is completely defined by its en-
ergy function U(X). This energy function can be writ-
ten as a sum of potential functions Vc(X) so that

P (X) =
1

Z
exp{

∑

U(X)}, U(X) =
∑

c

Vc(X)

where Z is a normalization factor. A clique is a
set of points that are neighbors of each other. A clique
function depends only on the pixels that belong to a
clique Vc. In single level segmentation, usually one
and two pixels cliques are used as in Figure 2(a), and
one assumes that the one pixel clique potentials are
zero, which means that all region types are equally
likely [3].

As mentioned earlier, with regard to scalability, a
pixel and its corresponding pixels on the other levels
have the same segmentation class. Therefore they can
change only together during segmentation. To change
the class of a point, the pixel and all its corresponding
pixels on the other levels have to be analyzed together.
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Figure 2: (a) Normal one and two point clique. (b) a clique of two array clique with the arrays’ length equal to two
pixels.

As a result, multi-pixel or a vectors2 analysis instead
of pixel analysis needs to be used. The cliques are ex-
tended to act on the vectors space. A vector is a com-
bination of a pixel and its corresponding pixels on the
other levels. The dimension of a vector depends on the
index of it’s pixels and it can be 1, 2 or more. In this
work, we use cliques of two arrays instead of two pix-
els. Figure 2(a) shows regular one-pixel and two-pixel
cliques. In Figure 2(b), the extension of one of these
cliques to the array mode with the arrays’ dimension
equal to two can be seen. The extension of clique func-
tions is achieved through the following steps: equation
(1) is used for cliques of two pixels on the level P

where pixels sp and rp are two neighboring pixels on
the resolution P . Equation (2) is defined for multiple
levels, where {sp} and {rp} vectors correspond to two
neighboring pixels sp and rp on level P . The lowest
scale of the clique vector’s points is M and its dimen-
sion denoted as N . The other parameter, β, has a pos-
itive value, so that two neighboring pixels on the same
scale are more likely to have the same class than two
different classes. Increasing the value of β has the ef-
fect of decreasing sensitivity to grey level changes [3].

Vc1
(sp, rp) =

{

−β if X(sp) = X(rp) sp, rp ∈ c1

+β if X(sp) 6= X(rp) sp, rp ∈ c1

(1)

VcN
({sp}, {rp}) =

M+N−1
∑

k=M

(−1)Lk .β ,

Lk =

{

1 if X(sk) = X(qk) sk, qk ∈ cN

0 if X(sk) 6= X(qk) sk, qk ∈ cN

(2)
Instead of an image in one resolution, we have decom-
posed the image into different levels and the summa-
tion on pixels is over different pixels on different lev-
els. Therefore the objective function can be written as
the following
1

2σ2

∑

{S}

{||Y ({s}) − µ
X({s})
{s} ({s})||2+

∑

rp∈∂sp

Vc{sp}({sp}, {rp})} (3)

where the first summation is over vectors while the
second summation is over all possible vector cliques

2Direction is not important and the word ”vector” is used for
convenience instead of set of points.

of vector {s}. The gray level of points {s} form a
vector Y ({s}), and similarly, µ({s}) and X({s}) are
mean and classification vectors. The probability den-
sity function has two terms. One constrains the region
intensity to be close to the data; the other imposes spa-
tial continuity. Increasing σ2 is equivalent to increas-
ing β. Thus, for simplifying the expression, the param-
eter σ2 is set to 1, and the segmentation result is con-
trolled by the value of β.

In normal multiresolution segmentation, low level
segmentation affects high level segmentation. But the
proposed model considers the use of both high and low
levels together, and therefore, there is also some effect
of high level information on low level segmentation
and vice versa. As the results will show, this two-way
effect gives better segmentation results especially in
low level.

3.2. Algorithm to find the MAP estimation

A method to minimize the probability function for-
mula (3) has to be used. After initial segmentation with
the k-means clustering algorithm, the optimization
method, iteration condition mode (ICM), improves the
accuracy of the segmentation estimation. Details of the
used ICM is similar to the single level segmentation
algorithm of Pappas [3], but matched to our problem
which is a scalable multiresolution segmentation algo-
rithm.

First, The estimation of µi
p(s) is considered. It is

estimated by averaging the gray levels of all pixels that
belong to the region i and inside a window with width
w centered at pixels s in the level p. The window size
w for each resolution is twice the window size of lower
level and half of the next higher level’s window size.

Second, the estimation of the distribution of re-
gions is considered. Given the intensity function
µi

p(s), we must maximize the a posteriory probabil-
ity density (3) to obtain the MAP estimation of X .
To obtain the local minima, the ICM approach has
been used. Originally, that is maximizing the condi-
tional density at each point XP (S) given the data Y

and the current segmentation of all other points in the
image [7]. But in this work, extended to a scalable
multiresolution segmentation, a vector is analyzed and
the conditional density of the vector’s points, given the
data Y and the current segmentation of all other points
in the pyramid, is maximized. If the syntax {sp} de-
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termines a set of vector’s pixels include s on level p

and all it’s corresponding pixels in lower and higher
levels of the decomposition, we have to maximize the
following conditional density related to vector {sP }.

P (X{sp}|Y,X) = P (X{sp}|Y,X({r}), r ∈ N{sp} )

∝ exp {−
1

2σ2

∑

s∈{sp}

[y(s) − µx(s)(s)]2

−
∑

s∈{sp},r∈∂s

Vc(s, r)} (4)

Now we consider the overall algorithm. The ini-
tial segmentation of the pyramid is obtained by the k-
means clustering algorithm. The average of any point
S and its correspondence on the other levels {S} is
used to classify the points of {S} to one label. Now
given the regions label X we process the pyramid’s
vectors’ points, progressively from low to high reso-
lutions. At each resolution we estimate the intensity
µi

p(s) at each pixel s in the frame for all possible
classes i with a pre-determined window size w used
for estimation. Then we update the estimate of Xp us-
ing the ICM approach with a multi level analysis by
formula (4). By updating the class pixels of level p the
corresponding pixels in the other scales are also up-
dated. The algorithm then moves to the next scale and
updates the estimates of µ and X and so on, until all
scales are processed. The process is repeated until con-
vergence. The stopping criterion is that the update of
X in each resolution changes a number of class indices
that is below a pre-defined threshold. To reduce the
number of iterations, other convergence criteria can
also be used. The whole procedure may be repeated
with smaller window size. The algorithm then stops
when the minimum window size for the lowest level is
reached. We have considered the minimum of 5 as the
minimum window size of lowest level.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, the results of processing frame 15 of
the CIF sequence Claire and the Lena image with the
proposed segmentation algorithm are presented. The
results are compared to a regular single and multires-
olution segmentation algorithm [3]. In the first step,
the image is decomposed into three resolutions, using
the (9/7) wavelet filter. Then in each level of the de-
composition, the image is segmented and the objects
of interest (such as Claire’s head and shoulder) are
extracted according to the presented algorithm in dif-
ferent resolutions. Scalability between objects/regions
in different resolutions, as required for the arbitrary
shape wavelet transform, is achieved with the pro-
posed algorithm. The image and its segmentation by
scalable segmentation and regular multiresolution seg-
mentation are shown in Figure 3.

Table 1: SPIHT PSNR results for Claire object.

Resolution Rate (BPP)
0.05 0.1 0.25 0.5 1.0

72 × 88 23.7 27.3 32.2 34.7 42.3
144 × 176 24.4 28.5 34.2 36.7 46.8
288 × 352 26.1 31.4 37.3 44.5 57.8

Table 2: Regions number of Claire image seg.
Seg. algorithm 88 × 72 176 × 144 352 × 288

Multi Resolution 46 71 93
Scalable 72 98 116

Single level – – 138

As an application of this algorithm, a user, by a
graphic user interface, roughly determines the object
of interest by a closed contour. Then all the regions
with a predetermined percentage of their area inside
this closed contour are selected as the region of the ex-
tracted object. Joining of all selected regions creates
the final object. As an example, a user has roughly de-
termined the objects of interest in Fig. 4(a). The algo-
rithm then determines the exact borders of the object
in different resolutions as shown in Figure 4. This al-
gorithm can detect all regions including regions with
concave borders, overcoming a shortcoming in some
object detection algorithms. And finally we imple-
ment an object-based modification of the highly scal-
able SPIHT (HS-SPIHT)[8] algorithm which allows
us to code only the pixels that belong to an arbitrar-
ily shaped object. The extracted object, Claire head
and shoulder, is then coded by the object-based HS-
SPIHT [8]. Table 1 shows peak signal-to-noise ratio
(PSNR) results obtained for three spatial resolutions at
different bit rates, all decoded from a single bit-stream.

In lower scales of regular multi-resolution segmen-
tation, brief and compact versions of the image are
processed. But in the proposed scalable segmentation
algorithm, due to the multi scale analysis in the opti-
mization process, there is also some effect of higher
resolution information on lower level segmentation.
This improves the results of the proposed algorithm.
In the following, we explain some of these improve-
ment on the results of Claire image segmentation.

Table 2 shows the number of detected regions of
the Claire image in three spatial resolutions for dif-
ferent segmentation algorithms. The proposed scalable
segmentation detects more relevant regions than mul-
tiresolution, and nearly the same as single level seg-
mentation. In lower scales of regular multiresolution
segmentation, brief and compact versions of images
are processed, and therefore some small size or low
contrast regions are not detected even in the higher res-
olutions. But in the introduced algorithm the effects of
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(a) (b) (c)

Figure 3: Claire image segmentation with k = 5 cluster and β = 50; (a) the main image; (b) segmentation by the
proposed algorithm; (c) regular multiresolution segmentation.

(a) (b) (c) (d)

Figure 4: Claire object extraction; (a) First selection; (b) object at 288× 352; (c) object at 144× 176; (d) object at
72 × 86;

Table 3: Misclassified pixels in noisy images.
Resolution Multiresolution Scalable Single Level

Object. %11.98 %9.8 %15.48
Image %17.34 %17.8 %33

Table 4: Number of Misclassified pixels.
Resolution 72 × 88 144 × 176 288 × 352

Down sample. %7.59 %4.85 0
Scalable %4.95 %2.45 %0.92

Table 5: Means of curvature estimation.
Resolution 72 × 88 144 × 176 288 × 352

Downsample. 0.5614 0.5408 0.4802
Scalable 0.5214 0.529 0.4936

Difference %4.3 %2.2 −%2.8

high resolutions on low resolutions results in the detec-
tion of more significant regions than regular multires-
olution segmentation. In other words, the algorithm
leads to a better detection of small or low contrast ob-
jects especially in low resolutions. This feature can be
useful in applications which require sharp separation
of objects/regions from background.

Multi-resolution segmentation algorithm over-
comes noisy images better than single level seg-

mentation. To test the scalable segmentation algo-
rithm on noisy images, a uniform noise in the range
(−30 , +30) is added to the Claire image, and the
number of misclassified pixels for Claire object in-
clude head and shoulder (70553 pixels in high reso-
lution of scalable segmentation) as well as the entire
image pixels are counted. The results in Table 3 show
that the proposed algorithm can deal with the noisy im-
ages the same as multiresolution image segmentation
and much better than single level segmentation. This
result confirms that the introduced multilevel segmen-
tation algorithm keeps most advantages of multireso-
lution segmentations over single level segmentations
such as better segmentation of noisy images.

To compare the segmentations obtained with dif-
ferent algorithms, the result of a standard multi-level
segmentation is accepted as a ground truth. Note that
this ground truth does not satisfy the shape constraints
inflicted by the arbitrary shape wavelet transform, but
at each level, it gives an appealing segmentation. For
the proposed algorithm and the standard single-level
technique, the segmentations for the different reso-
lution levels are determined by downsampling the
highest-level segmentations. The misclassified pixel
numbers that occur when comparing the two scalable
segmentation algorithms with the ground truth and are
given in Table 4. The results confirm that the proposed
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(a) (b) (c)

Figure 5: Lena Image segmentation with k = 6 clusters and β = 50; (a) The Lena image (256×256); (b) highest
level segmentation of multiresolution segmentation; (c) highest level of scalable segmentation.

algorithm has lower number of pixel misclassifications
in lower resolutions.

One criterion to have a good looking shape is
objects/regions’ border smoothness [9]. Especially in
low resolution, the lower number of points intensifies
the importance of smoothness on the subjective and
objective test of shape quality. In high resolution lev-
els, however, large number of pixels ensure the visual
quality of the shapes. The smoothness of segmented
regions are measured with an estimation of curvature
[10], which is related to the change of tangent’s slope
in the borders pixels. At each region’s border pixels, a
low value of curvature is indicative of a smooth edge.
Table 5 shows the smoothness of scalable segmen-
tation and single level segmentation downsampled to
lower levels. The results show that the proposed algo-
rithm ensures smoother edges than the downsampled
single level segmentation.

In the next example with the segmentation of Lena
image the effects of scalable segmentation on the op-
timality of segmentation come to view. The image and
it’s regular multiresolution segmentation [3] and scal-
able segmentation both optimized by ICM technique
are shown in Figure 5(a),(b) and (c). The comparison
of regions above the hat, as a subjective test, shows that
the scalable segmentation result is better than multi
resolution segmentation. Tying the low level pixels to
high level pixels or the multilevel analysis feature of
the proposed algorithm leads the optimization process
to produce better results than regular multiresolution
segmentation especially when the used optimization
methods gives local maxima such as the ICM tech-
nique [7]. This is more important in complicated im-
ages that have a higher number of possible locally op-
timum segmentation results.

5. CONCLUSIONS

We have presented a scalable image segmentation al-
gorithm that is optimized to extract objects/regions,

useful for object-based wavelet coding applications
such as interactive multimedia transmission over the
internet. In addition to scalability, the presented algo-
rithm gives better shape quality or smoothness and a
lower number of misclassified pixels in low resolu-
tions compared to down sampling of regular segmen-
tations. The proposed multi scale analysis improves
the sensitivity to grey level variations but still per-
forms well in noisy environment. In the future, we
are going to work on the improvement of extracted
regions/objects’ smoothness especially on low resolu-
tion and extend the work to the video domain.
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