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Abstract

This paper studies the problem of blind separation of convolutively mixed source signals on the basis of the joint

diagonalization (JD) of power spectral density matrices (PSDMs) observed at the output of the separation system. Firstly,

a general framework of JD-based blind source separation (BSS) is reviewed and summarized. Special emphasis is put on

the separability conditions of sources and mixing system. Secondly, the JD-based BSS is generalized to the separation of

convolutive mixtures. The definition of a time and frequency dependent characteristic matrix of sources allows us to state

the conditions under which the separation of convolutive mixtures is possible. Lastly, a frequency-domain approach is

proposed for convolutive mixture separation. The proposed approach exploits objective functions based on a set of

PSDMs. These objective functions are defined in the frequency domain, but are jointly optimized with respect to the time-

domain coefficients of the unmixing system. The local permutation ambiguity problems, which are inherent to most

frequency-domain approaches, are effectively avoided with the proposed algorithm. Simulation results show that the

proposed algorithm is valid for the separation of both simulated and real-word recorded convolutive mixtures.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Blind source separation (BSS) is to recover a set
of unknown source signals from observations that
e front matter r 2008 Elsevier B.V. All rights reserved
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signals. The problem has attracted extensive re-
search work in the research communities due to its
many potential applications, such as audio proces-
sing, image processing, communication systems and
biomedical signal processing [1,2].

People have been trying to solve the convolutive
BSS problem by two different types of approaches.
One is to achieve BSS directly in the time domain,
and the other is to work in the frequency domain. In
time-domain BSS, a separation network is directly
applied to the observed signals to yield separated
source signals, and all variables and objective
functions are held in the time domain [3–6].
However, these approaches are not very effective
for the cases of long mixing channels, such as those
in well-known cocktail party problems, where the
mixing channels may have 500–2000 taps or more if
modelled by FIR filters.

Frequency-domain-based approaches have been
considered as the most promising technique for
convolutive BSS, especially for cases of long mixing
channels. The frequency-domain-based approaches
usually consist of three steps. Firstly, the observed
signals are decomposed into narrowband compo-
nents by means of Fourier transforms. Secondly,
BSS approaches developed for instantaneous mix-
ture separation are exploited for each of the
frequency bins, and finally, separated signals of all
the frequency bins are combined together to form
the separated outputs. It has been shown that
satisfactory separation can be achieved within all
the frequency bins, but combining them together to
recover the original sources is a challenging issue
due to the unknown permutations associated with
BSS of individual frequency bins [2,7–13].

Researchers have done extensive work to remedy
the permutation problem, and different ways to
overcome the problem have emerged by taking
advantage of the following information:
�
 In the frequency domain, the separation filters
should satisfy some smoothness constraint, so that
two separation matrices at adjacent frequency bins
should be similar to each other [7,8,14,15].

�
 Smoothness of the separation filters in the

frequency domain can be implied by limiting the
lengths of their time-domain impulse responses [2].

�
 Smoothness can also be assumed for the mixing-

filter frequency responses [16].

�
 The separated sub-signals at adjacent frequency

bins are more related to each other if they stem
from the same source [17,18].
�
 Contributions from the same source are likely to
come from the same spatial direction, so that the
position information of sources can be exploited
[10,19,20].

�
 Available time–frequency models of sources can

be used [9].

�
 The separation network is defined in time

domain, but the parameters are optimized based
on a frequency-domain objective function. Such
approaches have been exploited by [21–23].

In [21], the mixing system is identified first, and
then, knowing the mixing system, the unmixing
system is either determined through matrix inver-
sion, or simpler, as the adjoint of the mixing system.
The same authors of [21] proposed a two-stage
approach based on the same objective, that is, the
frequency-domain optimization of mixing matrices
and permutation correction by cross-frequency
correlations. This undoubtedly makes the algorithm
computationally inefficient [18].

The approach in [22] looks at the multiple-input
multiple-output (MIMO) deconvolution problem in
a setting where colored, stationary processes are
assumed. It is stated that the diagonalization of the
power spectral density matrix (PSDM) is a sufficient
condition for the MIMO deconvolution of colored
and stationary processes if the transfer function
matrix is of full column rank for all nonzero values
of z in the complex plane and it can be factorized
into the multiplication of an irreducible matrix, a
unitary matrix, and a diagonal matrix with diagonal
entries of monic monomials. This is a very strong
constraint on the mixing system. Because the
deconvolution of MIMO systems is a much more
difficult problem than BSS, these conditions may
be necessary, but they are not for BSS.

In [23], integration is applied to the frequency-
domain defined Kullback–Leibler divergence and
leads to BSS of convolutive mixtures where no local
permutations take place.

The approach proposed in this paper is based on
frequency-domain second-order statistics (SOS) and
the nonstationarity of sources, namely, the joint
diagonalization (JD) of a set of PSDMs with respect
to the time-domain parameters of the separating
system. It is different from the one in [21] in that it
directly finds the unmixing system based on a group
of entirely different objective functions, and it
differs from the one in [22] in that it looks at
general nonstationary processes instead of looking
at colored stationary ones. It is also different from
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[23] as it exploits nonstationarity instead of non-
Gaussianity. As the separation is performed by a
MIMO system in the time domain whose coeffi-
cients are the optimizing variables, the proposed
approach does not have the local permutation
ambiguity disadvantage.

Throughout the paper we use ð�ÞT, ð�ÞH, ð�Þ�T,
ð�Þ
�H and ð�Þ� to denote transpose, Hermitian

transpose, transpose and inversion, Hermitian
transpose and inversion, and conjugate operation,
respectively. The operator diag½�� takes a square
matrix as argument and yields a square matrix with
diagonal elements equal to the diagonal elements
of its argument, and off-diagonal elements equal to
zero. E½�� is the expectation operator. The operator
det½�� yields the determinant of its argument. Bold-
face letters are used for vectors and matrices, plain
letters are used for scalar variables in both time and
frequency domains. Especially, italic boldface
uppercase letters are used for time-domain matrices.
It is easy to identify them by the context in which
they are used.

The paper is organized as follows. Firstly, Section
2 summarizes the basic principle of decorrelation-
based JD. Then the frequency-domain JD principle
for convolutive mixtures is described in Section 3.
In Section 4 we propose a new algorithm on the
basis of Section 3. Simulation results are presented
in Section 5. Finally, Section 6 concludes the paper.
2. The basic principle of JD

In this section we review the JD principle of cross-
correlation matrices for the separation of instanta-
neously mixed sources. These SOS-based BSS ideas,
which have been presented by different researchers
[6,24–30], are the basis for our new BSS approach
for convolutive mixtures.

We consider the N-by-N case, that is, there are N

source signals and N observed signals. We assume
that the sources are complex valued and are of zero
mean. All the other required properties of sources
will be given in Theorem 1. The instantaneous
mixing system can be described as follows:

xðnÞ ¼ AsðnÞ, (1)

where sðnÞ ¼ ½s1ðnÞ; s2ðnÞ; . . . ; sN ðnÞ�
T are the source

signals, xðnÞ ¼ ½x1ðnÞ;x2ðnÞ; . . . ; xN ðnÞ�
T are the ob-

served signals and A is the mixing matrix which is
assumed to be nonsingular and time invariant. The
task of BSS is to recover the sources from the
observations in the form

yðnÞ ¼WxðnÞ, (2)

where yðnÞ ¼ ½y1ðnÞ; y2ðnÞ; . . . ; yNðnÞ�
T is the output

of the separation system, and W is the matrix
describing the separation network. Combining (1)
and (2) gives

yðnÞ ¼ GsðnÞ, (3)

where G ¼ ½gij � ¼WA, which is the transform
matrix from sðnÞ to yðnÞ. Separation is considered
to be successful if we can find a matrix W such that
G is the product of a diagonal matrix D and a
permutation matrix P.

Now let us show that the JD of N output cross-
correlation matrices leads to the separation of
source signals. For this, we follow [30], but consider
complex instead of real-valued signals. Firstly
we define the characteristic matrix of sources as
follows:

Rc ¼

rs1s1ðn1; n01Þ rs2s2 ðn1; n01Þ � � � rsN sN
ðn1; n01Þ

rs1s1ðn2; n02Þ rs2s2 ðn2; n02Þ � � � rsN sN
ðn2; n02Þ

..

. ..
. . .

. ..
.

rs1s1 ðnN ; n0NÞ rs2s2 ðnN ; n0NÞ rsN sN
ðnN ; n0NÞ

2
6666664

3
7777775
;

(4)

where rsjsj
ðni; n0iÞ ¼ E½sjðniÞs

�
j ðn
0
iÞ�. Note that this

matrix potentially includes correlation terms for
different time lags (e.g., n0i � nian0k � nk for ni ¼ nk)
as well as for different epochs of a nonstationary
process (i.e., n0i ¼ ni but niank for different i; k). We
have the following theorem.

Theorem 1 (Yin et al. [30]). For N zero mean and

complex-valued nonstationary stochastic processes

fs1ðnÞ; . . . ; sNðnÞg, if there exist N different points

ðnk; n0kÞ ðk ¼ 1; 2; . . . ;NÞ in 2-D space ðn; n0Þ, such

that the following cross-correlation matrices of source

signals are diagonal, that is

Rssðnk; n
0
kÞ ¼ diag½Rssðnk; n

0
kÞ�; k ¼ 1; 2; . . . ;N,

(5)

where Rssðnk; n0kÞ ¼ E½sðnkÞs
Hðn0kÞ� ¼ ½rsisj

ðnk; n0kÞ�,
and, in addition, the characteristic matrix of sources

Rc is of full rank, namely

det½Rc�a0 (6)

then the nonsingularly mixed sources can be sepa-

rated by Eq. (2) when the following cross-correlation

matrices are simultaneously diagonalized through the
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proper choice of an unmixing matrix W :

Ryyðnk; n
0
kÞ ¼ diag½Ryyðnk; n

0
kÞ�; k ¼ 1; 2; . . . ;N,

(7)

where Ryyðnk; n0kÞ ¼ E½yðnkÞy
Hðn0kÞ� ¼ ½ryiyj

ðnk; n0kÞ�.

The conditions in Theorem 1 are typically
satisfied when the sources are statistically indepen-
dent and the times n1; n01; . . . ; nN ; n0N have not been
very unluckily chosen. However, interestingly, the
conditions in Theorem 1 may also be satisfied by
partly dependent sources, which indicates that
independence of sources is usually a sufficient, but
not a necessary condition for BSS through JD
of observed PSDMs. Regarding BSS, (5) and (6) are
the separability conditions of sources, and (7) is the
separation criterion.
3. The JD principle for convolutive mixtures

In this section, we extend the SOS-based JD
principle presented in Section 2 to the case of
convolutive mixtures.

For stochastic vector processes (in our case, the
outputs of the separation system), the power
spectral density matrix can be explained as the
sub-band correlation matrix of the stochastic vector
process, this is why the JD principle can be applied
to convolutive mixture separation.
3.1. Convolutive BSS models and assumptions

We still consider the N-by-N case, that is, there
are N source signals, N observation signals and N

separated signals as well. The mixing channels are
assumed to be FIR of length L, and the separation
channels are also FIR and their length (MÞ is
chosen so that MXðN � 1ÞðL� 1Þ þ 1 in order to
achieve satisfying performance [21]. Also we have
the following assumptions regarding the sources
and the mixing processes:
(A1)
 Source signals sðnÞ ¼ ½s1ðnÞ; s2ðnÞ; . . . ; sNðnÞ�
T

are real-valued, zero mean and uncorrelated
to each other.
(A2)
 The source signals skðnÞ are nonstationary,
which means that auto-power spectral densi-
ties determined within local time intervals as

psksk
ðn;oÞ ¼ E½skðn; e

joÞs�kðn; e
joÞ�,
where

skðn; e
joÞ ¼

X
m

skðmÞwðm� nÞe�jom

with wðnÞ being a window function are time-
varying in nature. The term skðn; ejoÞ is known
as the short-time Fourier transform (STFT) of
skðnÞ [31]. In this context, the window wðnÞ is
only assumed to be real-valued, of finite
energy, and of finite length. The choice of a
particular window wðnÞ will be further dis-
cussed in Section 3.2 and experimentally
investigated in Section 5.6.
(A3)
 The mixing system AðnÞ ¼ ½aijðnÞ�N�N is linear
and time invariant (LTI), where aijðnÞ is the
impulse response of the channel from source
sjðnÞ to observation xiðnÞ.
(A4)
 The transfer matrix of the mixing system

AðzÞ ¼
XL�1
n¼0

AðnÞz�n

is nonsingular on the unit circle in the complex
plane, i.e., det½AðejoÞ�a0.
Assumption (A1) is necessary for decorrelation-
based BSS; Assumption (A3) is a basic condition;
Assumptions (A2) and (A4) are necessary for the
separation of sub-signals at a given frequency.

In practice, noises are always there in observa-
tions, but for reasons of conciseness, they are not
taken into account in this paper. Noises can be dealt
with by using special denoising methods or by
adjusting the power spectra of the observations by
the estimated amount of noise. The noise-free
convolutive mixing model is given as follows:

xðnÞ ¼ AðnÞ � sðnÞ ¼
XL�1
l¼0

AðlÞsðn� lÞ, (8)

where � denotes the convolution operation, sðnÞ is
the source signal vector, xðnÞ is the mixture vector,
AðnÞ ¼ ½aijðnÞ�N�N is the mixing matrix, and aijðnÞ

denotes the impulse response of the FIR channel
from sjðnÞ to mixture xiðnÞ.

The separation-system output yðnÞ ¼ ½y1ðnÞ; y2ðnÞ;
. . . ; yN ðnÞ�

T is given as follows:

yðnÞ ¼ HðnÞ � xðnÞ ¼
XM�1
l¼0

HðlÞxðn� lÞ, (9)

where HðnÞ ¼ ½hijðnÞ�N�N is the separation matrix
and hijðnÞ denotes the impulse response of the FIR
channel from xjðnÞ to output yiðnÞ. From (8) and (9),



ARTICLE IN PRESS
T. Mei et al. / Signal Processing 88 (2008) 1990–20071994
we have

yðnÞ ¼ HðnÞ � AðnÞ � sðnÞ ¼ GðnÞ � sðnÞ, (10)

where GðnÞ ¼ HðnÞ � AðnÞ. Equivalently in the
z-domain we have

YðzÞ ¼ GðzÞSðzÞ. (11)

BSS is considered to be successful if the output yðnÞ
is at most a permuted and filtered version of the
source signals sðnÞ, in which case GðzÞ is a product
of a permutation matrix P and a diagonal matrix
DðzÞ:

GðzÞ ¼ PDðzÞ. (12)

3.2. JD principle for convolutive mixtures

As source signals are nonstationary and the
mixing system is LTI, we use the STFT to describe
the mixing process (8) and the separating process (9)
in the time–frequency domain. For this, a vector of
source STFTs is defined as

Sðn; ejoÞ ¼ ½s1ðn; e
joÞ; s2ðn; e

joÞ; . . . ; sNðn; e
joÞ�T,

where n is the time index which describes the short-
time signal spectra in different time windows. For
the window wðnÞ used to generate the STFTs
skðn; ejoÞ, we first choose a simple rectangular
window. If the original source signals sðnÞ are
nonstationary, then the source sub-signals Sðn; ejoÞ
are also nonstationary.

The multiplication of Sðn; ejoÞ with

AðejoÞ ¼
XL�1
n¼0

AðnÞe�jon

yields

~Xðn; ejoÞ ¼ AðejoÞSðn; ejoÞ. (13)

When taking the inverse Fourier transforms of
~Xðn; ejoÞ and adding them up with the correspond-
ing overlaps, one obtains the exact result of the
linear convolution in (8). For the case where the
Fourier transform is computed for a discrete set
of frequencies via the FFT, this is known as the
overlap-and-add method of fast convolution [32].

On the other hand, when we compute the STFTs
of the mixed signals as

Xðn; ejoÞ ¼ ½x1ðn; e
joÞ;x2ðn; e

joÞ; . . . ; xN ðn; e
joÞ�T

with

xkðn; e
joÞ ¼

X
m

xkðmÞwðm� nÞe�jom,
where wðnÞ is the same rectangular window as
before, we observe a small difference between
~Xðn; ejoÞ and Xðn; ejoÞ due to boundary effects. Like
in the overlap-and-add method of fast convolution,
the inverse Fourier transforms of ~Xðn; ejoÞ and
Xðn; ejoÞ will differ at both ends while being exactly
equal in the center part. The longer the window the
longer the part containing an exact match will be.
The number of the samples affected by boundary
effects equals the filter length. Thus, when assuming
a sufficiently long window wðnÞ and fast decaying
room responses, we have the relationship

Xðn; ejoÞ � ~Xðn; ejoÞ (14)

with very good approximation. The unmixing
process can be written as

Yðn; ejoÞ ¼ HðejoÞXðn; ejoÞ, (15)

where relationship (15) is exact, and the filtered
outputs yðnÞ can be computed from Yðn; ejoÞ with-
out error.

Other choices for the window wðnÞ than the
rectangular one, such as Hamming, Hann or
Gaussian windows, may yield better time–frequency
resolution of the STFTs of the mixtures, however,
they typically result in greater approximation errors
between Xðn; ejoÞ and ~Xðn; ejoÞ. The Tukey window,
which contains a constant part in the center and a
soft roll off at the ends, is a compromise between
approximation properties and time–frequency reso-
lution. In the experimental part, we will present
results for different window choices.

For a given time instant n, the instant PSDM
of the separation-system output Yðn; ejoÞ in (15) can
be defined as

PYYðn;oÞ ¼ E½Yðn; ejoÞYHðn; ejoÞ�. (16)

For a given frequency o, this is nothing but the
instant correlation matrix of the nonstationary sub-
signals ykðn; e

joÞ contained in Yðn; ejoÞ.
In practice, the STFT will be evaluated for a

discrete set of frequencies ok ¼ 2pk=K , and the
implementation will be based on the FFT. If
the mixing and unmixing systems are FIR and the
conditions known for fast convolution algorithms
[32] are met, the operations still yield the exact result
of linear convolution. If, however, the FFT length
is too short in relation to the mixing-filter and
analysis-window lengths, the originally linear con-
volution is replaced by circular convolution (cf. [7]).
In the following, we will write o as a continuous
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variable, although discrete implementations will be
based on the FFT and a discrete set of frequencies.

For a given frequency o, the vector ~Xðn; ejoÞ in
(13) can be considered as a mixture of complex
sources Sðn; ejoÞ which have been mixed through an
instantaneous complex mixing matrix AðejoÞ. Simi-
larly, Yðn; ejoÞ in (15) can be considered as the
output of a separation system modelled by an
instantaneous separating matrix HðejoÞ whose input
is Xðn; ejoÞ. According to assumptions (A1)–(A4)
and Theorem 1, and if the approximation (14) is
sufficiently close, we can separate the mixtures at
frequency o based on the JD principle for nonsta-
tionary sources.

Now we extend the JD principle to the STFT of
the outputs of the separation system in the time–
frequency domain. Firstly, we define the time–
frequency domain characteristic matrix of sources
as follows:

Pcðn1; n2; . . . ; nN ;oÞ ¼ ½psl sl
ðni;oÞ�N�N , (17)

where psl sl
ðni;oÞ ¼ E½slðni; ejoÞs�l ðni; ejoÞ� is the ith

row and lth column entry of Pcðn1; n2; . . . ; nN ;oÞ.
The characteristic matrix Pcðn1; n2; . . . ; nN ;oÞ is

composed of the instant power spectral density
functions of sources in different epochs, so it shows
the time dependance of the power spectra.

According to assumption (A1), the cross-correlation
matrices of sources, Rssðl;mÞ ¼ E½sðlÞsTðl �mÞ�, are
diagonal, and equivalently, the PSDMs are diag-
onal, that is,

PSSðn;oÞ ¼ ½psisj
ðn;oÞ� ¼ diag½PSSðn;oÞ�, (18)

where psisj
ðn;oÞ ¼ E½siðn; ejoÞs�j ðn; e

joÞ� is the instant
cross-power spectral density of sources siðnÞ and
sjðnÞ. The term psisj

ðn;oÞ can also be seen as the
cross correlation of source sub-signals siðn;oÞ and
sjðn;oÞ for a given o.

According to assumption (A2), for a given
frequency o, we should be able to find N different
time instants n1; n2; . . . ; nN such that the character-
istic matrix Pcðn1; n2; . . . ; nN ;oÞ is of full rank.
According to Theorem 1 in Section 2, it is certain
that the JD of PYYðl;oÞ ðl ¼ n1; n2; . . . ; nN Þ through
the choice of HðejoÞ will lead to the separation of
mixtures at the frequency o. This can be extended
to all frequencies, and thus we have the following
conclusion: For convolutive BSS models defined
above, if there exist N different time instants
n1; n2; . . . ; nN such that Pcðn1; n2; . . . ; nN ;oÞ is of full
rank for all o, the convolutive mixtures can be
separated if the PSDMs PYYðl;oÞ ðl ¼ n1; n2;
. . . ; nN Þ are jointly diagonalized for all o, that is

PYYðl;oÞ ¼ ½pyiyj
ðl;oÞ� ¼ diag½PYYðl;oÞ� (19)

for all l ¼ n1; n2; . . . ; nN and o.
BSS approaches can be developed based on the

JD principle (19). A straightforward way is to
jointly diagonalize PYYðl;oÞ (l ¼ n1; n2; . . . ; nN , for
all o) with respect to HðejoÞ in the frequency
domain [2,7]. However, this will inevitably result
in the permutation ambiguity problems.

In order to avoid the permutation ambiguity
problem, we aim to find an alternative approach
that also jointly diagonalizes PYYðl;oÞ (l ¼ n1; n2;
. . . ; nN , for all o) but with respect to other
parameters, namely the time-domain filter taps of
the unmixing system. First of all, we will introduce a
nonnegative function f oðPYYðl;oÞÞ, called the diag-
onalization index function (DIF), to measure how
different PYYðl;oÞ is from a diagonal matrix.
f oðPYYðl;oÞÞ is constructed in such a way that (a)
f oðPYYðl;oÞÞ (X0) reaches its minimum when
PYYðl;oÞ is a diagonal matrix, (b) f oðPYYðl;oÞÞ is
greater than its minimum if PYYðl;oÞ is not a
diagonal matrix, and (c) f oðPYYðl;oÞÞ increases
as PYYðl;oÞ deviates from a diagonal matrix, and
it decreases as PYYðl;oÞ approaches a diagonal
matrix.

The above DIF of PYYðl;oÞ is defined with
respect to a single frequency o only. In order to
achieve BSS, we would make PYYðl;oÞ diagonal for
all frequencies. Given that f oðPYYðl;oÞÞ is non-
negative in nature, we can use the integrated
diagonalization index function (IDIF) defined as
follows:

IDIF ¼ f ðl;HðnÞjn¼0;1;2;...;M�1Þ

¼

Z p

�p
f oðPYYðl;oÞÞdo. (20)

To see how the IDIF results in a function of the
time-domain coefficients of the separation system
and the time index l, one has to consider the
relationship

PYYðl;oÞ ¼ HðejoÞPXXðl;oÞHHðejoÞ

¼
XM�1
k¼0

HðkÞe�jok

 !
PXXðl;oÞ

�
XM�1
k¼0

HTðkÞejok

 !
. (21)
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After integration over o, the remaining variables
are HðkÞ, k ¼ 0; 1; . . . ;M � 1 and l. The IDIFs for
l ¼ n1; n2; . . . ; nN are then optimized jointly.

The above IDIF measures the difference of the
PSDMs for all frequencies to diagonal ones, which
also has the properties including (a) IDIF ðX0Þ
reaches its minimum if PYYðl;oÞ for all o are
diagonal matrices, (b) IDIF is greater than its
minimum if PYYðl;oÞ for all o are not diagonal
matrices, and (c) the IDIF increases as PYYðl;oÞ, for
all o as a whole, deviate from diagonal matrices,
and it decreases as PYYðl;oÞ, for all o as a whole,
approaches diagonal matrices. It is obvious that the
IDIF defined in (20) can be used as an objective
function for optimizing the BSS system.

Based on the above work, the following conclu-
sion regarding the BSS of convolutive mixtures is
achieved:

Theorem 2. For N source signals and a mixing

system which satisfies assumptions (A1)–(A4), if

there exist at least N time instants n1; n2; . . . ; nN that

make the time– frequency domain characteristic

matrix (17) be full rank for all o, then the joint

minimization of the N IDIFs defined in (20)
(l ¼ n1; n2; . . . ; nN ), in the sense that they reach their

minima, will result in the separation of the N sources

from N convolutively mixed observations.
Similar to the instantaneous case, assumptions

(A1)–(A4) and the time–frequency domain charac-
teristic matrix (17) are the separability conditions of
sources and mixing system, the joint minimization
of the IDIFs in (20) is the separation criterion for
convolutive mixtures.

Note that there are a few points that should be
emphasized from Theorem 2. Firstly, source signals
must be nonstationary, whether the sources are
colored or not does not matter. Secondly, the joint
optimization of IDIFs is with respect to the time-
domain parameters of the separation system rather
than the frequency-domain parameters, this implies
that the length of HðnÞ is predetermined and it sets a
smoothness constraint on the corresponding fre-
quency-domain parameters HðejoÞ, just like that in
[21–23], so the permutation issue can be avoided
effectively. Thirdly, the number of the IDIFs
involved in the joint optimization is equal to or
greater than the number of sources. In the next
section, we will develop our BSS algorithm.

Proof of Theorem 2. Firstly, as the instantaneous
mixing model of sub-signals described in (13)
concerned, from assumption (A1), the instant
PSDMs (they are also the correlation matrices
of sub-signals) of sources are diagonal, this means
that (18) holds, in other words, sub-signals
siðn; ejoÞ ði ¼ 1; 2; . . . ;NÞ at frequency o are uncor-
related to each other. In addition, assumption (A4)
points out that matrix AðejoÞ in (9) is nonsingular,
therefore, according to Theorem 1, if there are N

time instants (this holds because of the nonstatio-
narity assumption (A2)) which make the character-
istic matrix (17) be full column rank for a given
frequency o, then the sub-signals at frequency o can
be separated through the JD of the N PSDMs
defined in (16). Secondly, in fact, separating all
the sub-signals at different frequencies separately
does not automatically lead to the separation of
convolutively mixed sources because of the local
permutations at different frequencies. This problem
is overcome by the definition and the time-domain
joint optimization of IDIFs, because the time-
domain optimization is essentially that a length
constraint has been set to the unmixing filters, or
equally, a smoothness constraint, which forbids
random local permutation, is set to the unmixing
filters in frequency domain. It is proved in Appendix
A that if the unmixing filter length M satisfies
MoððN � 1Þ=N2ÞK , where K is the block size of the
FFT and N is the number of sources, then there will
be no permutation.

4. The BSS algorithm

Theorem 2 given in Section 3 provides a guideline
for achieving BSS. However, the explicit form of
the DIF and hence IDIF is not given although
its properties are defined. In this section we will
propose a DIF based on which a BSS algorithm can
be developed.

4.1. Selection of the IDIF function

As mentioned above, we should choose a non-
negative DIF function that measures the deviation
of the PSDMs from diagonal ones. Such a measure
is the well-known Hadamard inequality [33], which
says that, for a Hermitian and positive definite
matrix, the absolute value of the product of its
diagonal elements is equal or greater than the
absolute value of its determinant, and that the
equality holds if and only if the matrix is diagonal.
As PYYðl;oÞ is Hermitian and positive definite,
based on Hadamard’s inequality we have
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det½DYYðl;oÞ�X det½PYYðl;oÞ� where DYYðl;oÞ ¼
diag½PYYðl;oÞ� and l ¼ n1; n2; . . . ; nN . Hence we
can define the IDIF as follows:

f ðl;HðnÞjn¼0;1;...;M�1Þ

¼

1

2

Z p

�p

1

a
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a

do ðaa0Þ

1

2

Z p

�p
log

det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �
do ða ¼ 0Þ

8>>>><
>>>>:

(22)

for l ¼ n1; n2; . . . ; nN . No matter what value of a is
set, the IDIFs always have a minimum at the
separation point. For a given a, the joint minimiza-
tion of IDIFs defined in (22) will lead to the
separation of convolutive mixtures. Different values
for parameter a will lead to different properties of
the algorithm, as the relative contribution of large
and small ratios det½DYYðl;oÞ�= det½PYYðl;oÞ� to the
integral changes in accordance with a.
4.2. The BSS algorithm

Now let us derive the BSS algorithm based on the
IDIF in (22). The idea is to use the IDIFs as
objective functions for a joint optimization with
respect to the separating filters’ coefficients. For
aa0, starting with (22) and using the derivation:

q
1

a
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a� �
qHðnÞ

¼
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a�1q
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �
qHðnÞ

¼
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a

�

q det½DYYðl;oÞ�
qHðnÞ

det½DYYðl;oÞ�
�

q det½PYYðl;oÞ�
qHðnÞ

det½PYYðl;oÞ�

0
BB@

1
CCA

¼
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �aq log
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �� �
qHðnÞ

we obtain

qf ðl;HðnÞjn¼0;1;...;M�1Þ

qHðnÞ

¼
1

2

Z p

�p

det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a
�

q log
det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �� �
qHðnÞ

do. (23)

First of all, using relationship (21) between
PYYðl;oÞ and PXXðl;oÞ, we have

logðdet½DYYðl;oÞ�Þ

¼
XN

i¼1

log pyiyi
ðl;oÞ

¼
XN

i¼1

log
XN

m¼1

XN

k¼1

Himðe
joÞHikðe

�joÞpxmxk
ðl;oÞ

 !

(24)

and

logðdet½PYYðl;oÞ�Þ ¼ logðdet½HðejoÞ�Þ

þ logðdet½HHðejoÞ�Þ

þ logðdet½PXXðl;oÞ�Þ, (25)

where

Himðe
joÞ ¼

XM�1
n¼0

himðnÞe
�jon. (26)

Now we calculate the gradient of the IDIF with
respect to separating filters’ coefficients. Firstly,

qðlogðdet½DYYðl;oÞ�ÞÞ
qHðnÞ

¼ D�1YYðl;oÞ½P
�
YYðl;oÞH

�TðejoÞe�jon

þ PYYðl;oÞH�HðejoÞejon�. (27)

Secondly,

qðlogðdet½PYYðl;oÞ�ÞÞ
qHðnÞ

¼ H�TðejoÞe�jon þH�HðejoÞejon. (28)

Hence the gradient of the IDIF is calculated as
follows:

qf ðl;HðnÞjn¼0;1;...;M�1Þ

qHðnÞ

¼

Z p

�p

det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a�

�½D�1YYðl;oÞPYYðl;oÞ � I�H�HðejoÞejon

�
do,

(29)

where I is the identity matrix.
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Table 1

Off-line implementation

Step 1: The observed signal samples are segmented into KmðXNÞ

blocks which can be either overlapping or nonoverlapping;

Step 2: For each block, PXXðl;oÞ is obtained based on the

observed data;

Step 3: Calculate PYYðl;oÞ using (21);

Step 4: Update HðnÞ and HðejoÞ using (33);

Step 5: For the next block, go to Step 3. If all data blocks have

been used before convergence could be achieved, reuse the data

by going back to Step 3 and continue the process until

convergence is reached.

Table 2

On-line implementation

Step 0: Initializations: HðnÞ ¼ 0N�N ðn ¼ 1; 2; . . . ;M � 1Þ;

Hð0Þ ¼ IN�N ; PXX ¼ 0N�N�K (K is the block size of FFT).

Step 1: The observed signal samples are arriving with time. A

sliding window is used to pick up a block of the most recent

observation signal samples;

Step 2: Based on the data within the sliding window, estimate

PXXðl;oÞ using (34);

Step 3: Calculate PYYðl;oÞ using (21);

Step 4: Update HðnÞ and HðejoÞ using (33);

Step 5: The sliding window is shifted to get new observation

signal samples. Go back to Step 2.
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A gradient-based algorithm can be obtained using
the gradient in (29). We obtain

H tþ1ðnÞ ¼ H tðnÞ � m
Z p

�p

det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a�

�½D�1YYðl;oÞPYYðl;oÞ � I�ðHtÞ
�H
ðejoÞejon

�
do,

(30)

where t is the iteration index for updating the
separating filter’s coefficients, and m40 is the
updating step size.

It is shown that, for the case of instantaneous
mixture separation, the natural gradient [34] im-
proves the separation performance in terms of
convergence properties and enhances the computa-
tional efficiency when compared to the normal
gradient algorithm. We use the generalized version
of the natural gradient from the instantaneous to
the convolutive case given in [35]. The natural
gradient is as follows:

qf ðl;HðnÞjn¼0;1;...;M�1Þ

qHðnÞ

����
Natural

¼

Z p

�p

det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a�

�½D�1YYðl;oÞPYYðl;oÞ � I�HðejoÞejon

�
do, (31)

where we have used

X0
n¼�ðM�1Þ

HTð�nÞe�jon ¼ HHðejoÞ.

The natural-gradient-based algorithm for updating
the separating channel coefficients can then be
stated as follows:

H tþ1ðnÞ ¼ H tðnÞ � m
Z p

�p

det½DYYðl;oÞ�
det½PYYðl;oÞ�

� �a�

�½D�1YYðl;oÞPYYðl;oÞ � I�ðHtÞðejoÞejon

�
do.

(32)

For the case in which a ¼ 0, it is easy to check
that the gradient of the objective function is just
what we obtain if a is set to zero in (29). So if we set
a ¼ 0, then we get the simplified version of (32) as
follows:

H tþ1ðnÞ ¼ H tðnÞ � m
Z p

�p
½D�1YYðl;oÞPYYðl;oÞ � I�

�HtðejoÞejon do. (33)
The above natural-gradient algorithms can be
implemented in two ways. The first one is an off-
line approach, described in Table 1. After the
convergence of the algorithm (33) as described in
Table 1, there are at least KmXN different PSDMs
PYYðl;oÞ being jointly diagonalized, thus, if the
separability conditions are fully satisfied, the source
signals will be separated. In contrary, if the sources
are not separated by the diagonalization of Km

PSDMs, then we re-segment the mixtures into
more blocks and do the JD again to separate the
sources.

The above off-line mode is suitable for the cases
where the observed data are already available
and may not be of sufficient duration to allow for
on-line adaptation.

The other way is to implement the algorithm in an
on-line way. That is, the filter coefficients are
updated when new observation data are coming
in. The on-line algorithm is described in Table 2.

Obviously the on-line implementation is suitable
for cases where real time separation of mixtures is
required.
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For on-line implementation, the PSDM PXXðl;oÞ
can be estimated adaptively as follows:

PXXðl;okÞ ¼ bPXXðl � 1;okÞ

þ ð1� bÞXðl; ejok ÞXHðl; ejok Þ, (34)

where 0obo1. After convergence, the on-line
algorithm will jointly diagonalize at least KmXN

different PSDMs PYYðl;oÞ of the observed data,
and further, for these PSDMs, the corresponding
separability conditions are fully satisfied, so that the
source signals are separated.

It will be useful to give some consideration on the
computational complexity. Because most parts of
the computational work are done in the complex
Fig. 1. Separation results for known channels: (a) sources; (b) mixtures

Before separation: SIR1 ¼ 3:53 dB; SIR2 ¼ 3:72 dB; after separation: S
domain, only complex multiplication is taken into
account here. For each iteration, there are ð12 N2 þ 1Þ
ðK=2Þlog2K þNðN2 þ 5

2
N þ 1

2
ÞK=2 complex multi-

plications when the conjugate symmetry property
of the FFT and the Hermitian property of PSDMs
are taken into account. Further, considering that
the overlap between two FFT blocks is K=2 (i.e.,
50%), the computational complexity for each
sample will be ð1

2
N2 þ 1Þlog2K þNðN2 þ 5

2
N þ 1

2
Þ.

This means that the computational complexity will
increase with the logarithm of the FFT block size,
but it will increase cubically (N3) with the number
of sources. For instance, if the source number is
N ¼ 2 and the FFT block size is K ¼ 8192, then the
computational complexity for each sample is 58
complex multiplications.
; (c) separated sources. Excellent separation results were achieved.

IR1 ¼ 39:49 dB; SIR2 ¼ 41:11 dB, respectively.
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5. Simulation results

In this section, we present the simulation results
for the proposed approach in a two-channel setting.
The implementation uses the FFT and evaluates the
spectra for frequencies ok ¼ 2pk=K.

To measure the performance, we use the signal-
to-interference ratio (SIR) for the separated out-
puts, which is defined as follows [23]:

SIR1 ¼ 10 log10ps1
=ps2

if the channel is considered to

contain source signal 1, or
SIR2 ¼ 10 log10ps2

=ps1
if the channel is considered to

contain source signal 2,

where ps1
and ps2

are the powers of sources 1 and 2
contained within the output, respectively. We have
tested the algorithm (33) against two types of observed
signals and the results are presented as follows.
5.1. Mixtures with known channels

In the first situation, the observed mixtures were
created by passing two speech signals through four
0
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Fig. 2. The simulated responses of mixing channels: L ¼ 2048; position

and ½10; 5; 5�.
convolutive channels which are given as follows:

h11ðnÞ ¼ ½1:0; 0:8; 0:7; 0:4; 0:3; 0:25; 0:2; 0:15�,

h12ðnÞ ¼ ½0:6; 0:5; 0:5; 0:4; 0:3; 0:2; 0:25; 0:1�,

h21ðnÞ ¼ ½0:5; 0:5; 0:4; 0:35; 0:3; 0:3; 0:2; 0:1�,

h22ðnÞ ¼ ½1:0; 0:9; 0:8; 0:6; 0:4; 0:35; 0:3; 0:15�.

Note that for comparison purpose the mixing
channels are chosen to be the same as those in
[21]. The two source signals all have 30 000 samples
and are sampled at 16 000Hz. The parameters used
are as follows. The length of the separation filters is
set to be M ¼ 8; the FFT block size is chosen to be
K ¼ 4096. As the observed signals are not long
enough for on-line adaptation, we have reused the
data for 25 times. The on-line algorithm of Table 2
is used. The parameters b ¼ 0:6 in (34) and m ¼ 0:01
in (33) are used. The simulation results are shown in
Fig. 1. The SIRs before separation are SIR1 ¼

3:53 dB; SIR2 ¼ 3:72 dB, respectively. After separa-
tion the SIRs are obtained as SIR1 ¼ 39:49 dB;
SIR2 ¼ 41:11 dB. Hence excellent separation is
achieved with the proposed approach. The results
show that the proposed approach is better
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s of microphones: ½4; 6; 5� and ½6; 5; 5�; positions of sources: ½0; 5; 5�
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than those in [21], by which the SIRs after
separation were reported as 24.12 and 19.03 dB,
respectively.

5.2. Separation of simulated mixtures

This experiment is performed with simulated
mixtures in a big hall whose size is 10m�
10m� 10m. We would like to thank the authors
who provided the simulation Matlab code (sim-
roommix.m) at website [36]. With this Matlab code,
we first generated the impulse responses of the
mixing channels according to the positions of the
sources (source 1 at ½0; 5; 5�; source 2 at ½10; 5; 5�)
and microphones (mic. 1 at ½4; 6; 5�; mic. 2 at
½6; 5; 5�). The impulse responses were generated for a
sampling frequency of 44.1 kHz, but the speech
signals were recorded with a sampling frequency of
22.05 kHz. Therefore, we first decimated the impulse
responses to 22.05 kHz. The actual length of the
impulse responses of the hall at sampling frequency
22.05 kHz was set to be L ¼ 2048. The impulse
responses of the mixing channels are shown in
Fig. 2.
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Fig. 3. The responses of separating filt
This experiment is performed with the on-line
algorithm of Table 2 using the update Eq. (33). The
remaining parameters were set as follows: Length
of the separation filters: M ¼ 2048; FFT block size:
K ¼ 8192; overlapping of blocks: 7168 samples;
b ¼ 0:6; m ¼ 0:01� ð0:01� 0:0001Þt=tmax (where t is
the iteration index and tmax is the maximum number
of iterations) in (33).

As the sources and mixing filters are known, the
SIRs can be evaluated precisely before and after
separation. Before separation, the SIRs of the
mixtures are 11.56 and 0.69 dB, respectively; after
separation, the SIRs of the output signals of the
separating system are 22.62 and 22.35 dB, respec-
tively. Obviously, remarkable improvements have
been achieved by the proposed approach. For
further illustration, the responses of the separating
filters and the global channel responses are shown in
Figs. 3 and 4, respectively.

The above mentioned set of data was also used to
investigate the influence of parameter a on the
convergence behavior of algorithm (32). a is set
to be a ¼ 0:0; 0:5; 1:0, the term ðdet½DYYðl;oÞ�=
det½PYYðl;oÞ�Þ in (32) is limited by 10. The dynamic
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convergence behaviors are demonstrated with the
averaged SIRs of separated sources. As shown in
Fig. 5, the convergence speed is slightly increased
when a ¼ 0:5 and 1.0. After convergence, the
separation performance is better when a ¼ 0:5 than
for a ¼ 0:0 and 1.0.
5.3. Mixtures of speech recorded in a room

The second experiment is based on two practical
test recordings of speech in a room, which were
provided to the delegates of ICA’99 conference
(case 1B) [37] with the on-line algorithm. The
convolutive mixtures were recorded with an omni-
directional microphone, and the sampling frequency
is 16 000Hz. We used the first 131 072 samples for
our simulation. The parameters are as follows. The
length of the separation filters is 512; the FFT block
size is chosen to be K ¼ 8192. We also reused the
data for 20 times. The parameters were selected such
that b ¼ 0:3 in (34) and m ¼ 0:01� ð0:01� 0:0001Þ
t=tmax. The mixtures and the separated sources are
shown in Fig. 6, where the mixtures and the
separated sources are normalized to the range
½�0:5; 0:5�. Listening tests showed that very good
separation has been achieved. Hence we consider
that output 1 contains one source (denoted as
source 1) and output 2 contains the other (denoted
as source 2). As the original sources are unknown,
we use the following approach to estimate the SIRs
for each of the two outputs [23].
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Fig. 6. The real-world recorded speech sequences and its separation results: (a) mixed speech sequences; (b) the separated speech

sequences; the two segments of the separated speech sequences T1 and T2 ðT1 ¼ T2Þ, which contain 5000 samples, respectively, are used to

evaluate the separation performance. The estimated SIRs of separated results are 21.81 and 19.97 dB, respectively.

T. Mei et al. / Signal Processing 88 (2008) 1990–2007 2003
Find a time interval T1, during which the
waveform of output 1 has a peak and output 2
exhibits low (silent) level. Denote the segment of
samples in outputs 1 and 2 as s11 and s21,
respectively. It is reasonable to believe that s11 is
the contribution of source 1 only, and that s21 is the
leakage of source 1 to output 2.

Similarly we could find a time interval T2, during
which output 2 exhibits a peak s22 but output 1 is
low (silent) s12. Similarly s22 can be considered as
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the contribution of source 2 only, and s12 the
leakage of source 2 to output 1. The SIRs for
outputs 1 and 2 are calculated as 10 log10ps11

=ps12

and 10 log10ps22
=ps21

, respectively.
Based on the above approach, SIRs for channels

1 and 2 are measured as 21.81 and 19.97 dB,
respectively. Note that the two mixtures have
almost the same amplitude during T1 and T2,
respectively, which means that the SIRs before
separation are about 0 dB. Therefore the two output
SIRs show a significant improvement by the
proposed algorithm.
5.4. On the block size of the FFT

The block size/length of the FFT plays a key role
in frequency-domain BSS algorithms. There are
different conclusions concerning this problem [2,8].
We performed simulations to investigate this issue
and the results are shown in Fig. 7. Similar to that in
[23], it is found that longer FFT blocks provide
better performance for BSS. As depicted in Fig. 7,
the average SIR of the separation results increases
almost linearly with respect to the logarithm of the
block size of the FFT. The first reason for this
phenomenon seems to be the presence of boundary
artifacts due to finite FFT sizes that have less
impact for longer FFTs. The second reason seems to
be that longer FFT block makes BSS with each
frequency bin closer to the instantaneous situation.
Lastly, if the FFT size is not big enough such that
KoðN2=ðN � 1ÞÞM, then local permutation may
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Fig. 7. The averaged signal-to-interference ratio of separation

results in dependence of the FFT length. The SIR increases

almost linearly in terms of the logarithm of the block size of the

FFT.
take place, which will degenerate the separation
performance too.

5.5. Initialization strategies

For the implementation of the learning rule, the
initialization of parameters is another problem we
must face. It does not make sense if we initialize
HðnÞ with completely random values. A reasonable
way is to set the first values of the responses of the
direct channels to be nonzeros and all others to
zero, in order to guarantee that nonzero outputs of
the separation system are obtained during the first
iteration, e.g., hiið0Þ ¼ y ði ¼ 1; 2; . . . ;NÞ with y
being a nonzero constant. Simulations show that
different choices for y do not affect the SIRs of the
outputs of the separation system, but they affect the
amplitudes of the outputs. The smaller the value of
y is, the lower the amplitudes of the outputs will be.
In practice, to overcome this shortage, the matrix
sequence HðnÞ is normalized with the largest
contained value in each iteration. Simulation shows
that it works well. If the geometric setup is known a
priori, good initializations can also be obtained
from beamformer concepts, as used for example
in [38].

5.6. The effect of STFT windows on the separation

performance

To investigate the influence of the STFT windows
on the separation performance, we performed BSS
with different STFT windows which are widely used
in signal processing. These windows are: Rectan-
gular window (Rct); Triangular window (Tri);
Bartlett window (Bart); Blackman window (Blkn);
Blackman-Harris window (Hrrs); Bohman window
(Bhm); Chebyshev window (r ¼ 100:0 dB) (Chb);
Flat top window (flttp); Gaussian window (a ¼ 2:5)
(Gss); Hamming window (Hmm); Hann window
(Hnn); Kaiser window (b ¼ 2:5) (Ksr); Nuttall
window (Ntt); Parzen window (Pzn); Tukey window
(r ¼ 0:5) (Tky). The results are listed in Table 3. We
see that the Tukey window is better than the other
windows for BSS, on the other hand, the flattop
window is the worst one.

5.7. Comparison with other approaches

The proposed algorithm (33) is compared with
the algorithms proposed by Sabala and Cichocki
[35], Smaragdis [7] and Parra and Spence [2], of
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Table 3

The effect of STFT windows on the separation performance (dB)

Rct Tri Bart Blkn Hrrs Bhm Chb flttp Gss Hmm Hnn Ksr Ntt Pzn Tky

SIR1 23.24 22.45 22.35 20.85 16.97 20.37 19.54 14.71 22.10 23.01 22.87 24.29 19.48 19.55 25.64

SIR2 20.53 22.04 21.90 20.76 20.24 20.90 20.62 18.14 21.13 22.05 21.16 22.23 19.62 19.00 22.26

Table 4

Comparison with Sabala, Smaragdis and Parra’s algorithms

Sabala’s

Alg.

Smaragdis’

Alg.

Parra’s

Alg.

Alg.

(33)

SIR1 (dB) 1.14 2.76 9.69 21.81

SIR2 (dB) 8.29 16.67 12.42 19.97
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which the first two exploit non-Gaussianity, and the
last one relies on nonstationarity.

For Sabala’s algorithm, the activation function is
f ðyðnÞÞ ¼ tanhðgyðnÞÞ with g ¼ 15; for Smaragdis’
algorithm, the activation function is f ðzÞ ¼ tanh
ðRefzgÞ þ j tanhðImfzgÞ.

The data used in Section 5.3 were employed for
algorithm comparison. The SIRs of the separated
results are listed in Table 4.

It can be clearly seen in Table 4 that the proposed
algorithm has a better performance.

6. Conclusions

In this paper we studied the BSS of convolutive
mixtures based on the principle of JD of output
PSDMs. By theoretical analysis we provided a
general framework for the use of JD of output
PSDMs for convolutive mixture separation. For the
convolutive mixtures of nonstationary source sig-
nals, we proposed a new approach based on the
introduced JD framework. The proposed approach
employs a group of frequency-domain objective
functions to measure to which degree the output
PSDMs are diagonal, but the optimizing parameters
are the separation-channel coefficients in the time
domain. The proposed approach can effectively
overcome the local permutation ambiguity which is
usually faced in frequency-domain approaches. In
addition, the proposed algorithm involves mostly
the DFT and IDFT, which can be efficiently
implemented by FFT algorithms. Simulation results
showed that the new method is very efficient for the
separation of convolutively mixed speech in both
simulated and real-world environments.
Appendix A. Proof of part of Theorem 2

We take a 2-by-2 unmixing system as an example.
Later, the findings are generalized to an N-by-N
system.

Consider the unmixing system

HðejoÞ ¼
H11ðe

joÞ H12ðe
joÞ

H21ðe
joÞ H22ðe

joÞ

" #
,

where we assume that the impulse responses hikðnÞ

are limited to length M and that

HðejoÞPXXðm;oÞHHðejoÞ ¼ lðm;oÞ

is satisfied for m ¼ 1; 2. That is, we assume that the
length-M unmixing filters exactly diagonalize the
two PSDMs. We will show that a permuted un-
mixing matrix ~HðejoÞ ¼ DðoÞPðoÞHðejoÞ of length-
M filters does not exist if the FFT block size K and
filter length M satisfy MoK=4, where DðoÞ ¼
diagð½D1ðoÞ;D2ðoÞ�HÞ is a diagonal matrix and PðoÞ
is a permutation matrix.

Let

Hikðe
joÞ ¼ Aikðe

joÞ þ Bikðe
joÞ,

where AikðoÞ are the frequency components that are
not permuted and BikðoÞ are the frequency compo-
nents which are to be permuted. Here, for given
indices i; k, either Aikðe

joÞ or Bikðe
joÞ will be zero.

Thus,

~H11ðoÞ ¼ D1ðoÞ½A11ðe
joÞ þ B21ðe

joÞ�,

~H12ðoÞ ¼ D1ðoÞ½A12ðe
joÞ þ B22ðe

joÞ�,

~H21ðoÞ ¼ D2ðoÞ½A21ðe
joÞ þ B11ðe

joÞ�,

~H22ðoÞ ¼ D2ðoÞ½A22ðe
joÞ þ B12ðe

joÞ�.

Because of the conjugate symmetry of the FFT of a
real-valued impulse response, we can gather all
independent frequency variables (i.e., the potentially
nonzero real and imaginary parts of Hikðe

j2pl=K Þ for
l ¼ 0; 1; . . . ; dK=2e) in a length-K real-valued vector
hik. The IFFT can then be written as a matrix
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multiplication with a real-valued K � K matrix W:

hik ¼Whik.

The first M elements of hik will be potentially
nonzero, whereas the last K �M entries will be
zero. With C containing the last K �M rows of W,
we thus have

0 ¼ Chik.

Similarly, for ~Hikðe
j2pl=K Þ we define vectors ~hik that

need to satisfy

0 ¼ C~hik.

Each vector hik can be split into two vectors aik and
bik, where aik has length Ma and bik has length
Mb ¼ K �Ma, they are collections of the compo-
nents of hik which will not and will be permuted,
respectively. Without loss of generality, we can
assume that MbpMa. With matrices Ga and Gb

containing K � 1 zeros and a single one in each
column, we can write

hik ¼ Gaaik þGbbik.

Similarly we have

~hik ¼ DiGaaik þDiGbbi0k,

where Di are diagonal matrices containing the
frequency scaling introduced with DiðoÞ and i0ai.
Alternatively can write

~hik ¼ GadiagðaikÞdi;a þGbcik,

where di;a is of length Ma and cik is of length Mb.
Instead of trying all possible permutations, we

investigate the degrees of freedom for choosing
D1ðoÞ, D2ðoÞ, and Bikðe

joÞ for arbitrarily selected
Aikðe

joÞ.
We obtain two independent sets of homogeneous

equations for i ¼ 1; 2:

0 ¼ CGadiagðai1Þdi;a þ CGbci1,

0 ¼ CGadiagðai2Þdi;a þ CGbci2.

Each set contains 2ðK �MÞ equations. The number
of unknowns is Ma þ 2Mb ¼ K þMb. Taking into
account that, in order to avoid the trivial solution,
one of the unknowns can be chosen arbitrarily, this
gives K þMb � 1 unknowns in total. Assuming
that all 2ðK �MÞ equations are linearly indepen-
dent, we can find filters ~hikahik if

K þMb � 1X2K � 2M.

Taking into account that MbpK=2 this yields

K þ K=2� 1X2K � 2M.
Hence,

2M � 1XK=2

and finally

M4K=4.

In other words, if MpK=4, the solution Hikðe
joÞ is

unique and ~Hikðe
joÞ ¼ Hikðe

joÞ.
By deducing in the same way, we will obtain the

following inequality that ensures unique solutions
for the N-by-N case:

Mp
N � 1

N2
K .
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