Scalable Multiresolution Image Segmentation and
Its Application in Video Object Extraction
Algorithm

Fardin Akhlaghian Tab, Golshah Naghdy

School of Electrical, Computer and Telecommunications Engineering

University of Wollongong
Wollongong, NSW 2522, Australia
Email: {fat98, golshah }@uow.edu.au

Abstract— This paper presents a novel multiresolution image
segmentation method based on the discrete wavelet transform and
Markov Random Field (MRF) modelling. A major contribution
of this work is to add spatial scalability to the segmentation
algorithm producing the same segmentation pattern at different
resolutions. This property makes it suitable for the scalable
object-based wavelet coding. The correlation between different
resolutions of pyramid is considered by a multiresolution analy-
sis which is incorporated into the objective function of the
MRF segmentation algorithm. Allowing for smoothness terms
in the objective function at different resolutions improves border
smoothness and creates visually more pleasing objects/regions,
particularly at lower resolutions where downsampling distortions
are more visible. Application of the spatial segmentation in
video segmentation, compared to traditional image/video object
extraction algorithms, produces more visually pleasing shape
masks at different resolutions which is applicable for object-based
video wavelet coding. Moreover it allows for larger motion, better
noise tolerance and less computational complexity. In addition
to spatial scalability, the proposed algorithm outperforms the
standard image/video segmentation algorithms, in both objective
and subjective tests.

I. INTRODUCTION

Effective segmentation is crucial for the emerging object-
based image/video standards such as object-based coding stan-
dards defined by MPEG-4. In scalable object-based coding, a
single codestream can be sent to different users with different
processing capabilities and network bandwidths by selectively
transmitting and decoding the related parts of the codestream.
A scalable bitstream includes embedded parts that offer in-
creasingly better SNR, greater spatial resolution or higher
frame rates. Therefore considering the spatial scalability, it
is necessary to extract and present objects’ shape at different
resolutions for the scalable object-based encoder/decoder sys-
tems. For an effective scalable object-based coding algorithm,
it is required that the shapes of the extracted objects at different
resolutions be similar. However the traditional multiresolution
image segmentation algorithms extract objects’/regions’ shape
hierarchically from lower to higher resolutions, and the final
objects’/regions’ shape are obtained at highest resolution. It
means that the lower resolutions segmentation maps to some
extent are different with the higher resolutions segmentation
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map. In other words, the highest resolution segmentation map
is more precise than the other resolutions.

In this paper we present a MRF-based multiresolution im-
age segmentation algorithm. It produces similar segmentation
maps at different resolutions which are applicable to object-
based wavelet coding algorithms. We call the multiresolution
segmentation algorithm with similar patterns at different res-
olutions as scalable segmentation.

The multi scale analysis, incorporated in the objective
function of the MRF-based segmentation algorithm, combines
good features of both single and multiresolution segmenta-
tions. While it is noise resistant, it detects objects/regions bet-
ter than regular multiresolution segmentation and also results
in a lower number of regions than single-level segmentation.

Natural objects exhibit smooth borders/edges. Hence, to
some extent there is correlation between visually pleasing
objects and object’s border smoothness. Since distortions such
as down sampling often result in rough borders/edges, in this
work, a multiresolution smoothness criterion is incorporated
in the objective function of the segmentation algorithm which
results in more natural or visually pleasing objects/regions. By
considering bigger smoothness coefficients for the smoothness
terms of lower resolutions, the distortion effect of down
sampling is reduced and the extracted objects/regions are more
visually pleasing.

Extending the scalable image coding to video, in the
scalable object-based video coding, it is necessary to ex-
tract object’s shape at different resolutions. One regularly
informally used option is the single level video segmenta-
tion where objects in fine resolution are extracted and then
down sampled according to the existing relationship between
shapes at different resolutions determined by the wavelet
filter used [1]. However down sampling distort shapes and
cannot preserve topology at lower resolutions for all possible
shapes [2]. In other words, a visually pleasing object at higher
resolution does not necessarily ensure similar quality at lower
resolutions. For example in Figure 1, down sampling of two
digital circles are compared where pixels with even indexes are
down sampled to lower resolution. It can be seen that better
approximation of a digital circle at high resolution results in
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worse down sampled circle shape.

As an application of the proposed scalable image segmen-
tation algorithm we present a multiresolution video segmenta-
tion algorithm which extracts visually pleasing video object
at different scales. The proposed method is noise tolerant,
computational simple and allows of larger motion.

II. OBJECT-BASED WAVELET CODING SCALABILITY

Scalability means the capability of decoding a compressed
sequence at different data rates. It is useful for image/video
communication over heterogenous networks which require a
high degree of flexibility from the coding system. Some of
the desirable scalable functionalities are signal-to-noise ratio
(SNR), spatial and temporal scalabilitics. In particular spatial
scalability means that, depending on the end user’s capabilitics
(bandwidth, display resolution etc.), a resolution is selected
and all the shape and texture information is sent and decoded
at the appropriate resolution.

In wavelet-based spatial scalability applications, due to the
self similarity feature of the wavelet transform, the shape in
lower scale is the shape in the low pass (LL) sub band. In this
paper we use an odd length wavelet filter (e.g. 9/7), where
all shape pixels with even indices' are down sampled for the
low pass band [1]. As a result, every shape pixel with even
indices has a corresponding pixel on the lower resolution.
By considering the self similarity of the wavelet transform,
it is straightforward to suppose that the pixels of a shape with
even indices have the same segmentation classifications as the
corresponding pixels on the next lower level.

The wavelet self similarity extends to all low pass subband
shapes of different levels. Therefore the discussed relationship
between corresponding pixels is extended to shapes at different
scales. Each pixels has a corresponding pixels at all the higher
resolutions and pixels with indices that are multiples of 2"
in both dimensions are down sampled to the next n lower
scales. A pixel and it’s corresponding pixels at the lower
and higher resolutions form a set called corresponding pixels.
Corresponding pixels at different resolutions have the same
segmentation class. In Fig 2 an example of down sampling is
shown.

III. SPATIAL SEGMENTATION ALGORITHM

The main challenge in multiresolution image segmentation
for scalable object-based wavelet coding is to keep the same
relation between extracted objects/regions at different resolu-
tions as it exists between the decomposed objects/regions at
different resolutions in a shape adaptive wavelet transform.
The other constraint is border smoothness particularly in
lower resolutions. Different smoothness coefficients defined
at different resolutions give some degree of freedom to put
more emphasis on the low-resolution smoothness. To meet
these challenges, Markov random field modeling is selected
as it includes low level processing at pixel level and has
enough flexibility in defining objective functions according
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Fig. 1. (a) closer approximation of a digital circle at high resolution; (b)

down sampling to lower resolution; (¢) worse approximation of a digital circle
at high resolution; (d) down sampling to lower resolution.
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Fig. 2.  Decomposition of a non rectangular object with odd-length filters;
(a) the object, shown in dark gray; (b) decomposed object after filtering. The
letters ”E” and ”O” indicate the position(even or odd) of a pixel.

to the problem at hand. In a regular MRF-based image
segmentation the problem is formulated using a criterion such
as the maximum a posteriori (MAP) probability. We first
explain the objective function of single-resolution grey/color
image segmentation [3], [4] and then extend it to the scalable
multiresolution segmentation mode. The desired segmentation
is denoted by X, and Y is the observed intensity image. This
results in the following cost or objective function which has
to be minimized with respect to X (s) [4]:

1
E(X)=)" ((Y(s) ~ b () 5 D %(sm)) 6))
s rEds
Where the clique function in single-resolution modes is de-
fined by the following equation:
_ -8 it X(s)=X(r)
‘/6(877”){ +8 if X(s)# X(r) (s,7)€C (2)
Herein 3 is a positive number and s and r are a pair of neigh-
boring pixels. Note that a low potential or energy corresponds
to a higher probability for pixel pairs with identical labels and
automatically encourages spatially connected regions.
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To tailor this objective function to scalable multiresolution
color image segmentation, initially, the wavelet transform is
applied to the original image and a pyramid of decomposed
images at various resolutions is created. Let Y be the intensity
of the pyramid’s pixels. The segmentation of the image into
regions at different resolutions will be denoted by X.

As mentioned earlier, considering scalability, a pixel and its
corresponding pixels at all other pyramid levels have the same
segmentation label. Therefore they change together during the
segmentation process. To change the segmentation label of a
pixel, the pixel and all its corresponding pixels at all other
levels have to be analyzed together. As a result, an analysis of
a set of pixels in a multidimensional space instead of a single-
resolution analysis is used. The term “vector” is used to refer
to multidimensional space. A vector includes corresponding
pixels at different resolutions of the pyramid. A symbol {s}
shows a vector which includes pixel s. The dimension of a
vector is equal to the number of its pixels which are located
at different resolutions. Using these primary definitions, the
clique concept is extended to vector space. The extended
cliques act on two vectors instead of two pixels. Figure 3(a)
shows regular one and two pixels clique sets. In Figure 3(b),
the extension of one of these cliques to the array mode in two
dimensional space can be seen.

The extension of clique functions is achieved through the
following steps: equation (2) is used for cliques of length two
at a resolution where pixels s and 7 are two neighboring pixels
at the same resolution level. Equation (3) below is defined for
multiple levels:

VAlsh D = () D) (D5,
Ly = { (1) g?gi:g 4 §E::§ sp € {s},ry €{r},ri € Isi
3)

Where {s} and {r} are vectors corresponding to two
neighboring pixels s and ». The neighboring pixels of the
two vectors {s} and {r} at level k are denoted as s; and
7. The lowest resolution which include a pixel of vector {s}
is denoted as M and N is the dimension of vectors {s} and
{r}. A positive value is assigned to the parameter 3, so that
adjacent pixels, of two neighboring vectors, located at the same
resolution are more likely to belong to the same region than
to different regions.

It is notable that the equation (3) extends the clique de-
finition to multiresolution mode. Intensity average and seg-
mentation label functions are also extended to vector space.
Therefore the objective function is extended to vector space
as follows:

B(X) =) IV{s}) = prgepy ({sPIP+
(s}

> Ve{sh{rp
{r}ed{s}

4)

(b)

Fig. 3. (a) Normal one and two pixels cliques sets. (b) A clique of two
vectors with the vectors” dimension equal to two.

The intensity of vector of pixels is shown by the Y ({s})
and p({s}) is the mean vector. The outer summation is over
vectors, while the first inner summation is related to the
distances of the pixel’s intensities from the estimated average
for each channel of color images. The second inner summation
is over all neighborhood vectors of vector {s}. The pixels of
{s} are corresponding according to the wavelet dawn sampling
and {r} is a vector neighbors of {s}.

A. Smoothness criterion

Traditionally, in region-based image/video segmentation al-
gorithms, emphasis is put on the accuracy of segmentation.
However objects/regions shape delineation, and producing a
well-pleasing objects’/regions’ shape has not attracted enough
attention due to the ill-posed nature of segmentation problem.
In contour/edge-based segmentation algorithms, another im-
portant criterion, related to the appearance of the extracted
objects/regions, has been considered. In these algorithms, the
extracted objects/regions borders are smoothed [5]. Ideally,
borders are edges in the image, which are one of the most
important properties for visual perception. Because most nat-
ural objects exhibit smooth edges and distortions such as down
sampling often creates rough edges, there is a correlation be-
tween border smoothness and visual quality. Therefore border
smoothness terms corresponding to different resolutions have
been added to the objective function to enhance our MRF-
based segmentation approach.

The proposed smoothness definition is based on the border’s
curvature. In a digital environment an estimation of curvature
is used [6]. Minimizing the proposed estimation of smoothness
prevents unwanted fluctuations in the border pixels.

To enhance border smoothness in lower resolutions, bigger
cocfficients are allocated to lower resolutions smoothness.
Therefore the objective function is updated according to the
following equation:

E(X) =Y YY) = sy, {sDIP+
{5}
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where v(q) shows the curvature estimation of pixel ¢ (which
is a pixel of vector {s}), and { __ , is a coefficient which is
resolution dependent. The proposed smooth object extraction
takes part in the segmentation algorithm and changes the
segmentation outcome.

Finally the Iterated Condition Mode (ICM) optimization
method [3] is used to minimize the objective function at
equation 5 which classifies each pixel of the pyramid to obtain
the segmentation of the image pyramid.

IV. VIDEO OBJECT EXTRACTION

At the core of most video segmentation algorithm routines
is a tracking algorithm. In the backward tracking algorithm
the spatial segmentation gives the precise borders of object(s).
This also overcomes the problems of non rigid moving objects
and uncovered background. Therefore we have proposed a
multiresolution backward tracking algorithm.

In the first frame through user’s intervention and spatial
segmentation, meaningful objects are determined. In the sub-
sequent frames, the object is tracked by an automatic proce-
dure. The scalable multiresolution intra frame segmentation is
performed as mentioned in section III. Scalable segmentation
ensures similar segmentation patterns at different resolutions
[7]. We have used this feature in our proposed tracking
algorithm to track some regions in the proper resolution
and extend the results to corresponding regions at other
resolutions. Regions classification starts from lowest level of
decomposition. Regions bigger than a threshold, are processed
in this resolution and small size regions are processed in
higher resolutions. Each processed region is divided into
morphological catchment basins and each watershed basin
is classified into object or background. This overcomes the
probable short comings of spatial segmentation to separate the
entire object from the background. Motion estimation provides
information for the backward projection of each basin.

In any projected region, the percentage of pixels projected
to the object area is shown by OPR. If OPR be more than
a threshold, such as 65% of the region’s size, it is classified
as object. Similarly, for OPR less than a threshold such as
%35 it is classified as background. For OPR in the range
between 35% to 65% we also consider the smoothness of the
shape ASMT. If addition of this basin significantly increase
the smoothness of the shape, the regions is classified as object
region. Therefore we define the following equation

S = OPR+ ay. A SMT,
ASMT = (SMT2 — SMT1)/MAX (SMT1, SMT2)

Where SMT?2 is the smoothness of the object arca after
adding the basin to the areca and SMT'1 is the shape smooth-
ness when the basin is classified as background®. Therefore
SMT is the relative increase of the smoothness of the shape

2The object area smoothness is the mean smoothness of it’s border pixels

after addition of the processed region to the object arca
compare to when that it is classified as background. The SMT
value is between (—1, 1) and final classification of the regions
is based on the percent of the pixels projected to object region
and smoothness increase/decraese. a5 is a coefficient selected
to values such as 0.3. In Figure 4 the object smoothness could
be seen.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed algorithm, a
still image and two different image sequences Clair with CIF
format and Table Tennis with SIF format are segmented.

In the first example the tracking algorithm is run over the 75
frames of the Clair sequence. The extracted objects at frames
number 20, 40 and 60 for different resolutions are shown in
the Figures 5(a), (b) and (c).

To compare the proposed algorithm with other region based
object tracking and extraction, we have used similar tracking
algorithm but in single resolution mode which includes regular
single level spatial segmentation [3] and tracking only at the
finest resolution. To ensure similarity to the existing region
based tracking algorithms, which are often morphological
based [8], the object arcas are extended to fill the mor-
phological catchment basins regions which overlap with the
extracted object. The qualitative criterion for comparison is
border smoothness of the extracted objects. Object smoothness
is averaged over the curvature of border pixels. Although it is
not an ideal criterion, but in our experiments it has confirmed
performance of our subjective tests. The smoothness compari-
son for the 75 frames of the Clair sequence for the 3 resolution
levels are shown in Table I. The smoothness term affects the
segmentation in areas of the image that have lower grey level
contrast. In the Clair sequences the regions around the head
have lower contrast compare to shoulder and body areas. If
we only consider the head parts the smoothness improves
by 13.17%, 11.5% and 10.5% at different resolutions. As
a qualitative test, look at the extracted objects of the 23th
frame of Clair sequence by scalable and regular algorithm in
Figure 6. In this Figure, images of different resolutions are
shown at the same size to highlight the details . Analyzing
both images, shows that our algorithm has extracted the Clair
object smoother and more visually pleasing. It looks as if our
algorithm has done a nice hair cut to Clair.

As the second example we have processed the standard
MPEG-4 Table Tennis sequence, which has textured back-
ground with fast moving objects. Frame numbers 10, 20 and
32 with the extracted objects are shown in Figure 7. As
an example, the extracted objects in frame number 10 of
table tennis sequence by the single level tracking algorithm

TABLE I
CLAIR SEQUENCE SMOOTHNESS.
88 x 72[ 144 x 176|288 x 352
Scalable Tracking | 54.67 54.7 53.15
Regular Tracking | 58.95 58 56.87
improvement %7.54 | %6.03 %6.77
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Clair sequence tracking; (a) Object extracted in frame number 20; (b) Object extracted in frame number 45; (¢) Object extracted in frame number
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Fig. 4. The processed region is shaded. (a) Adding this region to object area

increases the smoothness; (b) Adding this region to object area decreases the
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presented by [9] at 3 different resolutions are shown in
Figure 8. For a quantitative comparison we have measured
the objects smoothness and the improvements are about 7%

(b1)

(b2)

Fig. 6. Clair object of 23th frame; (a1) scalable 288 X 352; (b1) scalable 144 X 176; (c1) scalable 72 x 88; (a2) regular 288 x 352; (bz) regular 144 x 176;

(c1)

(c2)

in different resolutions. Again if we only consider the hand
and fingers with the racket the smoothness improvements
are nearly doubled. Also the computational complexity of
multiresolution tracking algorithm is reduced to less than 30%
of single resolution object tracking.
VI. CONCLUSION

We have presented a multiresolution scalable image segmen-
tation algorithm which extracts regions with similar segmen-
tation pattern at different resolutions. The proposed segmen-
tation is useful for object-based wavelet coding applications.
As well as scalability, a new quantitative criterion is added
to the segmentation algorithm. This criterion, a smoothness
function based on the segmentation labels, represents the
visual quality of the objects/regions at different resolutions.
To reduce the down sampling distortion, different smoothness
coefficients are considered for different resolutions. The multi
scale analysis improves the sensitivity to intensity variations
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Fig. 7.
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Table Tennis object extraction; (a) frame 10; (b) frame 23; (¢) frame 32;

©

(c1)

(a2) (b (c2)

120 X 176; (c2) regular 60 X 88;

while maintaining high performance in noisy environments.
The image segmentation algorithm is useful for multiresolu-
tion video object extraction algorithms. The extracted objects
are visually pleasing and quantitatively smoother than objects
detected through regular region based object extraction algo-
rithms. The multiresolution algorithm has less computational
complexity and performs well with noisy environments.
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