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ABSTRACT
This paper presents a novel multiresolution image seg-

mentation method based on the discrete wavelet transform
and Markov Random Field (MRF) modelling. A major con-
tribution of this work is to add spatial scalability to the seg-
mentation algorithm producing the same segmentation pat-
tern at different resolutions. This property makes it applica-
ble for scalable object-based wavelet coding. The correla-
tion between different resolutions of pyramid is considered
by a multiresolution analysis which is incorporated into the
objective function of the MRF segmentation algorithm. Ex-
amining the corresponding pixels at different resolutions si-
multaneously enables the algorithm to directly segment the
images in the YUV or similar color spaces where luminance
is in full resolution and chrominance components are at half
resolution. Allowing for smoothness terms in the objective
function at different resolutions improves border smooth-
ness and creates visually more pleasing objects/regions,
particularly at lower resolutions where downsampling dis-
tortions are more visible. In addition to spatial scalability,
the proposed algorithm outperforms the standard single and
multiresolution segmentation algorithms, in both objective
and subjective tests.

1. INTRODUCTION

Effective segmentation is crucial for the emerging object-
based image/video standards such as object-based coding
standards defined by MPEG-4. In scalable object-based
coding, a single codestream can be sent to different users
with different processing capabilities and network band-
widths by selectively transmitting and decoding the related
parts of the codestream. A scalable bitstream includes em-
bedded parts that offer increasingly better SNR, greater
spatial resolution or higher frame rates. Therefore consid-
ering the spatial scalability, it is necessary to extract and
present objects’ shape at different resolutions for the scal-
able object-based encoder/decoder systems. For an effective
scalable object based coding algorithm, it is required that

the shapes of the extracted objects at different resolutions
be similar or equivalently, the pattern of segmented regions
should be similar at different resolutions. We call the multi
resolution segmentation algorithm with the similar patterns
at different resolutions scalable segmentation.

In the most straight case, multi resolution segmentation
algorithms consider the inter scale correlation by projec-
tion of the lower resolution segmentation result to the next
higher resolution as an initial segmentation estimation. The
segmentation is further refined at the current higher reso-
lution by a single resolution segmentation. This procedure
continues progressively until the highest resolution is seg-
mented [1], [2]. These algorithms don’t consider the in-
ter scale correlation effectively and cannot detect small ob-
jects/regions if they are not detected in the lowest resolu-
tions. In the second group of algorithms, the inter scale cor-
relations are considered in the statistical models and deci-
sion at each pixel/block is based on the information of the
different resolutions [3], [4], [5]. However, often only the
causal inter scale correlation with the last lower resolution
[3], [5], or the next higher resolution is considered [4]. None
of the known works in the literature have considered inter-
scale correlation between all pyramid resolutions. Consid-
ering the other resolutions results in a very complex model
and increases the time complexity. In addition their exten-
sion to scalable segmentation, producing the same segmen-
tation patterns at different resolution, is nearly impossible or
results in an algorithm with large computational complexity.

In this paper we present a novel MRF based multireso-
lution grey/color image segmentation algorithm which ex-
tends the statistical model in order to consider the correla-
tion between all the resolutions without overly increasing
the computational complexity. It produces the same seg-
mentation patterns at different resolutions and is applicable
to object-based wavelet coding algorithms.

The multiscale analysis, incorporated in the objective
function of the MRF-based segmentation algorithm, com-
bines good features of both single and multiresolution
segmentations. While it is noise resistant, it detects ob-



jects/regions better than regular multiresolution segmenta-
tion and also results in a lower number of regions than
single-level segmentation.

Natural objects exhibit smooth borders/edges. Hence, to
some extent there is correlation between visually pleasing
objects and object’s border smoothness. Since distortions
such as downsampling often result in rough borders/edges,
therefore in this work, a multi resolution smoothness crite-
rion is incorporated in the objective function of the segmen-
tation algorithm which results in more normal or visually
pleasing objects/regions. By considering bigger smoothness
coefficients for the smoothness terms of different resolu-
tions, the distortion effect of downsampling is reduced.

Color images segmentation in YUV or LUV spaces pro-
duces more favorable results than the RGB space [6], [7].
Many of the images and image sequences in the databases
are in YUV format where Y is in full resolution while U
and V components are in half resolution. The proposed al-
gorithm has enough flexibility to directly segment this kind
of color and also grey level images.

2. OBJECT-BASED WAVELET CODING
SCALABILITY

Scalability means the capability of decoding a compressed
sequence at different data rates. It is useful for image/video
communication over heterogenous networks which require
a high degree of flexibility from the coding system. Some of
the desirable scalable functionalities are signal-to-noise ra-
tio (SNR) scalability, spatial scalability and temporal scala-
bility. In particular spatial scalability means that, depending
on the end user’s capabilities (bandwidth, display resolution
etc.), a resolution is selected and all the shape and texture in-
formation is sent and decoded at the appropriate resolution.

In wavelet-based spatial scalability applications, due to
the self similarity feature of the wavelet transform, the shape
in lower scale is the shape in the lowpass (LL) subband.
In this paper we use an odd length wavelet filter (e.g. 9/7),
where all shape pixels with even indices1 are downsampled
for the lowpass band [8]. Figure 1 further illustrates the
wavelet decomposition of arbitrarily shaped objects when
using an odd-length filter. The final four-band decomposi-
tion is depicted in Figure 1(b). As a result, every shape pixel
with even indices has a corresponding pixel on the lower
resolution. By considering the self similarity of the wavelet
transform, it is straightforward to suppose that the pixels of
a shape with even indices have the same segmentation clas-
sifications as the corresponding pixels on the lower level.

The wavelet self similarity extends to all low pass sub-
band shapes of different levels. Therefore the discussed rela-
tionship between corresponding pixels is extended to shapes
at different scales. Each pixels has a corresponding pixels at
the any higher resolutions and pixels with indices that are
multiples of 2n in both dimensions are down sampled to the

1Suppose indices start from zero or an even number.
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Fig. 1. Decomposition of a non rectangular object with odd-
length filters; (a) the object, shown in dark gray; (b) decom-
posed object after filtering. The letters ”E” and ”O” indicate
the position(even or odd) of a pixel.

next n lower scales. A pixel and it’s corresponding pixels
at the lower and higher resolutions form a set called cor-
responding pixels. Corresponding pixels at different resolu-
tions have the same segmentation class.

3. SPATIAL SEGMENTATION ALGORITHM

3.1. Statistical color image model

The main challenge in multiresolution image segmentation
for scalable object-based wavelet coding is to keep the same
relation between extracted objects/regions at different reso-
lutions as it exists between the decomposed objects/regions
at different resolutions in a shape adaptive wavelet trans-
form. The other constraint is border smoothness particularly
in lower resolutions. Different smoothness coefficients de-
fined at different resolutions give some degree of freedom
to put more emphasis on the low-resolution smoothness. To
meet these challenges, Markov random field modelling is
selected as it includes low level processing at pixel level
and has enough flexibility in defining objective functions
matched with the problem at hand. In a regular MRF-based
image segmentation the problem is formulated using a cri-
terion such as the maximum a posteriori (MAP) probability.
We first explain the objective function of single resolution
grey/color image segmentation [1], [6] and then extend it
to the scalable multiresolution segmentation mode. The de-
sired segmentation is denoted by X , and Y is the observed
color image with three channels shown by a three dimen-
sional vector Y = [Y1, Y2, Y3]. This results in the following
cost or objective function which has to be minimized with
respect to X(s) [6]:

E(X) =
∑

s

(
3∑

i=1

(Yi(s) − µi
X(s)(s))

2 +
1
T

∑
r∈∂s

Vc(s, r)

)

(1)



Where the clique function in single resolution modes is de-
fined by the following equation:

Vc(s, r) =
{ −β if X(s) = X(r)

+β if X(s) �= X(r) , (s, r) ∈ C (2)

Herein β is a positive number and s and r are a pair of
neighboring pixels. Note that a low potential or energy cor-
responds to a higher probability for pixel pairs with iden-
tical labels and lower probability for pairs with different
labels, which automatically encourages spatially connected
regions.

To tailor this objective function to scalable multiresolu-
tion color image segmentation, initially, the wavelet trans-
form is applied to the original image and a pyramid of
decomposed images at various resolutions is created. Let
Y = [Y1, Y2, Y3] where Yi, i = 1, 2, 3 is the intensity of
channel i of the pyramid’s pixels. The segmentation of the
image into regions at different resolutions will be denoted
by X .

As mentioned earlier, considering scalability, a pixel
and its corresponding pixels at all other pyramid levels have
the same segmentation label. Therefore they change to-
gether during the segmentation process. To change the seg-
mentation label of a pixel, the pixel and all its correspond-
ing pixels at all other levels have to be analyzed together.
As a result, an analysis of a set of pixels in a multidimen-
sional space instead of a single resolution analysis needs
to be used. The term “vector” is used to refer to multidi-
mensional space. A vector includes corresponding pixels at
different resolutions of the pyramid. A symbol {s} shows a
vector which includes pixel s. The dimension of a vector is
equal to the number of it’s pixels which are located at differ-
ent resolutions. Using these primary definitions, the clique
concept is extended to vector space. The extended cliques
act on two vectors instead of two pixels. Figure 2(a) shows
regular one and two pixels clique sets. In Figure 2(b), the
extension of one of these cliques to the array mode in two
dimensional space can be seen.

The extension of clique functions is achieved through
the following steps: equation (2) is used for cliques of length
two at a resolution where pixels s and r are two neighbor-
ing pixels at the same resolution level. Equation (3) below
is defined for multiple levels, where {s} and {r} are vec-
tors corresponding to two neighboring pixels s and r. The
neighboring pixels of the two vectors {s} and {r} at level
k are denoted as sk and rk. The lowest resolution which in-
clude a pixel of vector {s} is denoted as M and N is the
dimension of vectors {s} and {r}. A positive value is as-
signed to the parameter β, so that adjacent pixels, of two
neighboring vectors, located at a same resolution are more
likely to belong to a same region than to different regions.

Vc({s}, {r}) = (
1
N

)
M+N−1∑

k=M

(−1)Lk .β ,

Lk =
{

1 if X(sk) = X(rk)
0 if X(sk) �= X(rk) sk ∈ {s}, rk ∈ {r}, rk ∈ ∂sk

(3)
It is notable that the equation (3) extends the clique de-

finition to multiresolution mode. Intensity average and seg-
mentation label functions are also extended to vector space.
The intensity of pixels at different channels in set {s} form
a vector Y ({s}) = [Y1({S}), Y2({S}), Y3({S})], and sim-
ilarly, µ({s}) = [µ1({S}), µ2({S}), µ3({S})] is the mean
vector. Therefore the objective function is extended to vec-
tor space as follows

E(X) =
∑
{S}

{
3∑

i=1

||Yi({s}) − µi
X({s})

({s})||2+

∑
{r}∈∂{s}

Vc({s}, {r})} (4)

The outer summation is over vectors, while the first in-
ner summation is related to the distances of the pixel’s inten-
sities from the estimated average for each channel of color
images. The second inner summation is over all neighbor-
hood vectors of vector {s}. The pixels of {s} are corre-
sponding according to the wavelet dawnsampeling and {r}
is a vector neighbors of {s} which means that pixels of {s}
and {r} located at the same resolution are also neighbors.

3.2. Smoothness criterion

Traditionally, in region-based image/video segmentation al-
gorithms, emphasis is put on the accuracy of segmenta-
tion. However objects/regions shape delineation, and pro-
ducing a well-pleasing objects’/regions’ shape has not at-
tracted enough attention due to the ill-posed problem na-
ture of segmentation and non existing an ideal segmentation
algorithm for the segmentation task [9]. In contour/edge-
based segmentation algorithms, another important criterion,
related to the appearance of the extracted objects/regions,
has been considered. In these algorithms, the extracted ob-
jects/regions borders are smoothed [10]. Ideally, borders are
edges in the image, which are one of the most important
properties for visual perception. Because most natural ob-
jects exhibit smooth edges and distortions such as down-
sampling often creates rough edges, there is a correlation
between border smoothness and visually pleasing objects.
Therefore border smoothness terms corresponding to dif-
ferent resolutions have been added to the objective function
to contribute in our MRF-based segmentation approach.

The proposed smoothness definition is based on the bor-
der’s curvature. In a digital environment an estimation of
curvature is used [11]. Minimizing the proposed estimation
of smoothness prevents unwanted fluctuations in the border
pixels.

A large number of pixels ensures border smoothness at
high resolutions, however, at lower resolutions the visual
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Fig. 2. (a) Normal one and two pixels cliques sets. (b) A clique of two vectors with the vectors’ dimension equal to two.

quality can suffer due to downsampling distortion and lack
of sufficient information. To reduce this effect, the smooth-
ness could be enhanced at lower resolutions more rigor-
ously than higher resolutions. The priority is realized by
bigger coefficients for lower resolution smoothness. There-
fore the objective function is updated according to the fol-
lowing equation:

E(X) =
∑
{S}

{
3∑

i=1

||Yi({s}) − µi
X({s})

({s})||2+

∑
{r}∈∂{s}

Vc({s}, {r}) +
∑

q∈{s}
l
res(q) .ν(q)} (5)

where ν(q) shows the curvature estimation of pixel q (which
is a pixel of vector {s}), and l

res(q) is a coefficient which is
resolution dependent.

The proposed smooth object extraction is different from
a simple objects’ border smoothness as has been done in
[12] which is a filtering of the extracted video object shape
to remove the small elongation introduced during the seg-
mentation process, in the following areas. (1) Our smooth-
ing process takes part in the segmentation algorithm and
changes the segmentation outcome. (2) With sufficient con-
trast, the proposed algorithm produces borders that are more
faithful to the regions shape. (3) On some occasions, some
background pixels are added to the foreground regions to
produce better looking shapes especially at different res-
olution. (4) The smoothness factor could be adjusted for
different resolutions to produce visually pleasing shapes at
different resolutions with scalability as a constraint.

3.3. MAP estimation

The segmentation is initialized with the k-means cluster-
ing algorithm for each channel separately. Then neighboring
pixels with equal labels at all three channels form a region.
The segmentation estimation is improved using ICM opti-
mization [13]. The objective function term corresponding
to the current vector is optimized given the segmentation
at all other vectors of the pyramid. The resulting objective
function terms related to the current vector is:

E(X{s}) =
3∑

i=1

||Yi({s})−µi
X({s})({s})||2+

∑
{r}∈∂{s}

Vc({s}, {r})+
∑

q∈{s}
lres(q).ν(q) (6)

For YUV color images where U and V are in half resolution,
we delete the terms corresponding to U and V only at full
resolution, and keep the other terms in the above equation.
For grey-level images only the intensity channel or Y1 in the
above formula is kept.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, experimental results obtained using the algo-
rithm introduced in Section 3 are presented. The results are
compared with regular single-level and multiresolution seg-
mentation algorithms [1], [6]. Due to limited space, more
examples and discussion will be presented in the confer-
ence.

As a first example, the proposed algorithm is tested us-
ing frame 5 of the SIF sequence Table Tennis. Figure 3 rep-
resent the results achieved by the proposed multiresolution
scalable, regular single and multiresolution segmentation al-
gorithms. The result of the proposed scalable multiresolu-
tion segmentation algorithm is presented only at the finest
resolution, because the lower resolutions results have the
same patterns and figures.

In the proposed algorithm the effects of high resolu-
tions on low-resolution decreases under segmentation of
multi resolution segmentation algorithms and results in de-
tection of objects/regions, which are not detected using reg-
ular multiresolution segmentation. In other words, the sensi-
tivity to grey-level changes is increased, resulting in a better
detection of small or low-contrast objects especially in low
resolutions. The number of detected regions at three resolu-
tions 60×120, 120×176 and 240×352 are 19, 55 and 164
in regular multiresolution while it is increased to 42, 83 and
184 by the proposed algorithm 19, 68 and 314 by single res-
olution segmentation algorithm [1]. The proposed scalable
segmentation detects more relevant regions than the regular
multiresolution algorithm. For example, consider the seg-
mentation of the textured wall and detection of the ball in
the Table Tennis image as presented in Figure 3. The single-
level segmentation detects the ball, but it also detects a num-
ber of spurious regions due to the textured background as
the number of regions shows. This drawback is called over-
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Fig. 3. Table tennis image segmentation with k = 6 clusters and β = 100; (a) the main image; (b) segmentation by the
proposed scalable algorithm at 240 × 352; (c) regular single level segmentation; (d) regular multiresolution segmentation
240 × 352; (e) 120 × 176 segmentation; (f) 60 × 88 segmentation;

segmentation. The regular multiresolution algorithm misses
the ball at different resolutions altogether. The proposed al-
gorithm, however, detects the ball as well as avoiding un-
sightly segmentation of the textured background.

While our algorithm has improved sensitivity to grey-
level variation it still maintains noise tolerance. To test the
scalable segmentation algorithm on noisy images, first a
uniform noise in the range (−30,+30) was added to the
Table Tennis images, and then different segmentation algo-
rithms were performed. The number of misclassified pixels
for the the entire image pixels were counted. It was %7.96,
%6.20 and %18.74 for the regular multiresolution, scalable
and single resolution segmentation algorithms. The results
confirm that the proposed algorithm can deal with noisy
images as effectively as multiresolution segmentation and
much better than single-level segmentation.

One of the applications of the proposed segmentation al-
gorithm is in object extraction for object-based image/video
processing. In many of the semi automatic video object ex-
traction algorithms, in the first frame, the object of interest is
determined by user intervention and is tracked in the subse-
quent frames. To facilitate the first frame selection, the user
can determine the rough boundary of the object of interest
through a graphic user interface (GUI) program. Then all
the regions with a predetermined percentage of their area in-
side this closed contour are selected as the region of the ex-
tracted object. Joining of all the selected regions and delet-
ing the small object’s regions creates the final object. As an
example, in the first frame of the Table tennis sequence, af-
ter user rough determination of interested object, the exact

borders of the object at different resolutions are determined.
The extracted objects by different segmentation algorithms
at finest resolutions are shown in Figure 4. Comparison of
the extracted objects confirms the superiority of the scalable
segmentation algorithm in a subjective test. As a comple-
mentary step, using a quantitative test, the border smooth-
ness is measured at all pyramids scales. The average curva-
ture of object’s border is decreased from about 23.68 to 16.5
which is about %35 improvement in the object smoothness.

In the second example, frame 34 of the Mother and
Daughter sequence was segmented. The image is in qcif for-
mat and is given in the YUV color space. Since U and V
are in half resolution, in the first solution, the image was
segmented in grey-level space by a single-resolution im-
age segmentation algorithm [1]. The result is shown in Fig-
ure 5(b). The left area of the daughter’s face has not been
well separated from the background because there is not
enough grey-level contrast between face and background.
The same shortcoming happens for the other grey-level seg-
mentation algorithms except when there is oversegmenta-
tion with a large number of detected regions, which is not
desired for segmentation applications. To successfully sep-
arate object’s regions from background, color segmenta-
tion was performed as an alternative solution. The proposed
scalable segmentation algorithm can perform color segmen-
tation using half-resolution chrominance components. The
result is shown in Figure 5(d). The number of regions in
grey-level segmentation is 273 while in color segmentation
it is 112, which shows a reasonable color image segmenta-
tion algorithm.



(a) (b) (c)

Fig. 4. Table Tennis object extraction at 240× 352; (a) User object selection; (b) scalable; (c) single resolution segmentation;

(a) (b) (c) (d)

Fig. 5. Frame 34 of qcif size Mother and daughter Image sequence segmentation with β = 40; (a) original grey-level image;
(b) regular grey-level single-resolution segmentation with k = 7 clusters; (c) color image where U and V are in half resolution;
(d) Proposed scalable segmentation with k = 7, 2, 2 clusters.

5. CONCLUSIONS

We have presented a multiresolution scalable image seg-
mentation algorithm which extracts regions with similar
segmentation pattern at different resolutions, The proposed
segmentation is useful for object-based wavelet coding ap-
plications. In addition to scalability, a new quantitative crite-
rion is added to the segmentation algorithm. This criterion, a
smoothness function based on the segmentation labels, rep-
resents the visual quality of the objects/regions at different
resolutions. To reduce the downsampling distortion, differ-
ent smoothness coefficients are considered for different res-
olutions. The multi scale analysis improves the sensitivity to
grey/color variations while maintaining high performance
in noisy environments. The algorithm has flexibility to seg-
ment YUV color images where U and V are in half resolu-
tion.
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