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ABSTRACT

We extend a novel framework for the estimation of multi-
ple transparent motions to include regularization. We use
mixed-motion parameters to obtain linear Euler-Lagrange
equations with a regularization term. The equations are
solved iteratively for the mixed-motion parameters based on
an update rule that is similar to the case of only one motion.
The motion parameters are then obtained as the roots of a
complex polynomial of a degree that is equal to the num-
ber of overlaid motions. An experimental error analysis is
performed and reported.

1. INTRODUCTION

This paper addresses the problem of estimating multiple
transparent motions that can occur in computer-vision appli-
cations, e.g. in case of semi-transparencies and occlusions,
and also in medical x-ray projections imaging, when differ-
ent layers of tissue move independently. An overview of the
problem of multiple motions has been given in [2]. To our
knowledge, the problem of two motions has been first solved
in [5] by the use of spatio-temporal Gabor filters and fourth-
order moments derived from these filters. An alternative so-
lution that is also based on the frequency domain is given
in [6], where a nonlinear system of four equations is solved
to estimate the phase change and from there two transparent
motions. A recent analysis of the spectral properties of two
motions can be found in [8]. In general, frequency-based
methods suffer from requiring large local windows. Oth-
ers have introduced the useful and intuitive notion of ’lay-
ers’ [7]. As an important extension of the methods men-
tioned above, we have provided analytic solutions for up to
four transparent motions [4]. Our approach also delivers nu-
merical solutions for more than four motions. Here we ex-
tend the solution to include regularization.
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2. THE CASE OF ONLY ONE MOTION

We start by recalling a classical optical-flow method. We
consider image sequences defined by intensityf(x, y, t).
The classical constant-brightness constraint for the motion
vectorv = (vx, vy) is

α(v)f = 0 (1)

whereα(v) = vx
∂
∂x + vy

∂
∂y + ∂

∂t is the derivative operator
alongV = (vx, vy, 1). The usefulness of this notation will
become clear later on.

We thus have only one equation for two unknown com-
ponents of the motion vector. To solve this problem, in [3] a
regularization term was used that should minimize changes
over space in the motion vector. This leads to the following
functional, which needs to be minimized:∫∫ (

α(v)f
)2 + λ2

(
(∂xvx)2 + (∂yvx)2

+ (∂xvy)2 + (∂yvy)2
)
dΩ (2)

Ω is the support region, here the whole image plane, and
λ the regularization parameter. Based on the calculus of
variations the following two Euler-Lagrange equations are
obtained:

f2
xvx + fxfyvy + fxft = λ24vx

fxfyvx + f2
y vy + fyft = λ24vy,

(3)

where∆ is the Laplace operator.
Note that the above system is linear in the motion com-

ponentsvx and vy. Using ∆v = v̂ − v, where v̂ is the
weighted average over the eight direct neighbours ofv, and
solving the system (3) forvx andvy we obtain

vl+1
x = v̂l

x − fx
P

D

vl+1
y = v̂l

y − fy
P

D

(4)
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with

P = fxv̂l
x + fy v̂l

y + ft

D = λ2 + f2
x + f2

y

(5)

wherel denotes the iteration step.
Due to the large size and the sparseness of the matrix in-

volved, the system needs to be solved iteratively for example
by using the Gauss-Seidel method.

3. THE CASE OF TWO MOTIONS

Here we extend the above method to the case of two trans-
parent motions. We shall see that the resulting update rule is
very similar to the case of one motion, the difference being
that we have to deal with a higher number of equations.

3.1. Basic equations

An image sequencef(x, y, t) with two transparent motions
v andu is described as:

f(x, y, t) = f1(x− vxt, y − vyt)
+ f2(x− uxt, y − uyt). (6)

The task is to determinev = (vx, vy)T andu = (ux, uy)T

given f . To do so, we use the optical-flow equation intro-
duced by Shizawa and Mase [5]:

α(u)α(v)f = 0 (7)

Note that the equation involves the concatenated directional
derivatives alongu andv. After expanding the above equa-
tion we obtain the following expression:

α(u)α(v)f = fxxuxvx + fyyuyvy

+ fxy(uxvy + uyvx) + fxt(ux + vx)
+ fyt(uy + vy) + ftt = 0 (8)

As in [4] we use the following notation:

cxx = uxvx cyy = uyvy

cxy = uxvy + uyvx cxt = ux + vx (9)

cyt = uy + vy ctt = 1

Eq. (7) then becomes:

α(u)α(v)f = fxxcxx + fyycyy + fxycxy

+ fxtcxt + fytcyt + fttctt = 0. (10)

As we shall see, this notation leads to a linear formulation of
the problem.

3.2. Regularization

As with one motion we still have only one equation but now
the number of unknowns is five. We therefore need four
more equations. We employ again the calculus of variation
and define, in analogy to the method used in [3], the follow-
ing regularization term:

N = (∂xcxx)2 + (∂ycxx)2

+ (∂xcyy)2 + (∂ycyy)2 + (∂xcxy)2

+ (∂ycxy)2 + (∂xcxt)2 + (∂ycxt)2

+ (∂xcyt)2 + (∂ycyt)2. (11)

We thus obtain the parametersc as the values that minimize
the above term together with the squared optical-flow term
(7), i.e.: ∫∫

(α(u)α(v)f)2 + λ2N dΩ.

λ is the regularization parameter andΩ the whole image
plane over which we integrate. Note that, at this stage, we
work on finding thec’s and not the motion vector compo-
nents. This has the great advantage that we obtain an Euler-
Lagrange system of differential equations that is linear! As
we shall see, this would not be the case, when working di-
rectly on the motion vectors themselves. Note that if the
velocitiesu andv are smooth, the parametersc will also be
smooth. The five Euler-Lagrange equations that we obtain
are the following:

f2
xxcxx + fxxfyycyy + fxxfxycxy

+fxxfxtcxt + fxxfytcyt + fxxftt = λ24cxx

fyyfxxcxx + f2
yycyy + fyyfxycxy

+fyyfxtcxt + fyyfytcyt + fyyftt = λ24cyy

fxyfxxcxx + fxyfyycyy + f2
xycxy

+fxyfxtcxt + fxyfytcyt + fxyftt = λ24cxy

fxtfxxcxx + fxtfyycyy + fxtfxycxy

+f2
xtcxt + fxtfytcyt + fxtftt = λ24cxt

fytfxxcxx + fytfyycyy + fytfxycxy

+fytfxtcxt + f2
ytcyt + fytftt = λ24cyt.

(12)

3.3. Linear and nonlinear formulations of the problem

As noted above, the system (12) is linear in thec’s. Let us
consider the following example to illustrate that this would
not be the case with the motion parameters themselves. To
obtain the Euler-Lagrange differential equations, one must
differentiate the functional to be minimized with respect to
the unknown variables. If we differentiate only the expres-
sion of the squared optical-flow equation with respect tovx,
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we obtain

∂

∂vx
(α(u)α(v)f)2 = 2

(
fxxuxvx + fxy(uxvy + uyvx)

+ fxt(ux + vx) + fyyuyvy + fyt(uy + vy)

+ ftt

)
(fxxux + fxyuy + fxt) (13)

i.e., we obtain an equation that is nonlinear invx, vy, ux and
uy. Therefore we note that it is indeed the introduction of the
mixed motion parametersc that leads to a linear formulation
of the problem.

3.4. Update rule

In analogy to the case of one motion we obtain the following
update rules for the system (12):

cl+1
xx = ĉl

xx − fxx
P

D

cl+1
yy = ĉl

yy − fyy
P

D

cl+1
xy = ĉl

xy − fxy
P

D

cl+1
xt = ĉl

xt − fxt
P

D

cl+1
yt = ĉl

yt − fyt
P

D

(14)

with

P = fxxĉl
xx + fyy ĉl

yy + fxy ĉl
xy

+ fxtĉ
l
xt + fytĉ

l
yt + ftt,

D = λ2 + f2
xx + f2

yy + f2
xy + f2

xt + f2
yt.

(15)

The iteration will deliver the values of the mixed motion
parametersc. From these parameters we still need to extract
the velocity vectorsu andv. We accomplish this by using
the novel method described in [4]. The velocity vectors are
thereby treated as complex numbers:

u = ux + iuy, v = vx + ivy.

These complex numbers are related to the mixed motion pa-
rametersc by the following equations:

uv = A0 = cxx − cyy + icxy

u + v = A1 = cxt + icyt

(16)

Note thatA0 andA1 are homogeneous symmetric functions
in u andv and, by Vieta’s theorem, the coefficients of the
complex polynomial

Q(z) = (z − u)(z − v) = z2 −A1z + A0 (17)

that has the complex rootsu and v. These roots can be
obtained analytically (even for the case of up to four motions

[4]). Thus the main steps are (i) solve the linear system for
the c’s (ii) find the roots of the complex polynomialQ(z),
and (iii) take the real parts of thez’s asx and the imaginary
parts asy components of the motion vectors.

3.5. Boundary treatment

We have chosen to extend the image by copying the bound-
ary pixels into an extended margin of size one. Such, the
first-order derivatives will be zero outside the boundary of
the original image thus minimizing boundary effects.

4. GENERALIZATION TO MORE THAN TWO
MOTIONS

In this section we will show that similar update rules can be
obtained for the case of more than two motions. In case ofn
transparent motions, the optical-flow equation is given by

α(v1) · · ·α(vn)f =
∑

I

cIfI = 0 (18)

with the notationI = I1, · · · , Im, m = (n+1)(n+2)/2. Ii

are ordered sequences with elements(x, y, t). For example
in Eq. (9)I1 = xx, I4 = xt, andI6 = tt. The functional to
be minimized is∫∫ ( ∑

I

cIf
)2

+ λ2
∑
I\Im

(
(∂xcI)2 + (∂ycI)2

)
dΩ (19)

and the Euler-Lagrange differential equations are( ∑
I

cIfI

)
fIi = λ24cIi , i = 1, · · · ,m− 1. (20)

Discretization with4cIi
= ĉIi

− cIi
leads to( ∑

I\Im

cIfI

)
fIi + λ2cIi = λ2ĉIi − fIifIm (21)

i = 1, · · · ,m− 1

It is now straightforward to show that equation (21) leads to
the following update rule:

cl+1
Ii

= ĉl
Ii
− fIi

P

D
i = 1, · · · ,m− 1 (22)

with

P =
∑

I

ĉl
IfI

D = λ2 +
∑
I\Im

f2
I

(23)

Since the system is positive definite, we know that even for
more than two motions equation (22) is the only possible
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solution of the system (21). For up to four motions, the mo-
tion parameters can be obtained from the mixed-motion pa-
rameters analytically as described above since the increased
number of motions will just increase the order of the polino-
mial. For more than four motions, the roots of the polyno-
mial Q(z) can be found by numerical methods.

5. RESULTS

5.1. Derivatives and filters

The derivatives were computed by multiplication in the fre-
quency domain with a filter function that corresponds to
blurred second order derivatives, e.g.−ω2

x exp(−(ω2
x+ω2

y+
ω2

t )/(2 × 0.32)) for estimating the derivativefxx, with ω
beeing the transform variables, such that, e.g.,ωx corre-
sponds tox. The value of0.3 for the scale parameterσ has
been found to be optimal for minimizing the errors reported
below. Obviously, this parameter can and should be used to
approach the problem on multiple scales.

5.2. Error performance

We have performed an error analysis on synthetic and natu-
ral image sequences. Results on natural images show that we
obtain a good segmentation of overlaid transparent objects.
Results on natural images with known ground truth have not
been computed yet. The results on synthetic images are sum-
marized below. We used spatial noise patterns that were fil-
tered to obtain a1/ω frequency spectrum that is considered
to be typical for natural images. Two such patterns that move
with different velocities in different directions were then su-
perimposed. Depending on the directions and velocities the
mean squared errors in estimating the velocity components
are in the range of4×10−6 to 1.34×10−3 and the standard
deviations in the range of 0.002 to 0.03. With a dynamical
noise that is added to the overlaid image sequences and is
uniformly distributed in the range 0 to 1 percent of the max-
imum image-intensity value, the mean squared errors are in
the range4×10−4 to 3.4×10−3 and the standard deviations
in the range 0.02 to 0.05. When the noise is in the range of 0
to 5 percent the mean squared errors range from5.3× 10−3

to 5.8× 10−2 and the standard deviations from 0.07 to 0.19.
The velocity vectors had the components (0,1) and (1,0), (-
1,1) and (1,1), (1,0) and (1,1), (2,0) and (0,2). For all results,
iterations have been stopped after 400 steps but similar re-
sults are obtained after about 100 iterations. The value of the
parameterλ was0.1.

6. DISCUSSION

We have presented a novel method for the estimation of mul-
tiple transparent motions that is based on an iterative so-
lution of a linear system of equations. The system is ob-

tained by introducing a regularization term for the mixed-
motion parameters. The motion-vector components are then
obtained from the mixed-motion parameters by solving for
the roots of a complex polynomial. Alternative regulariza-
tion procedures could be used, since we have succeeded to
linearize the problem of determining multiple overlaid mo-
tions. By doing so we can easily incorporate regularization
and deal with more that two motions. We have obtained
good simulation results on synthetic sequences. However,
the way we have computed the partial derivatives still needs
to be optimized and filters other than derivatives could be
used, as outlined in [4], to increase robustness. Possible ex-
tensions to cope with occluded motions have been proposed
in [1].
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