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ABSTRACT

This paper deals with the problem of estimating multiple transparent motions that can occur in computer
vision applications, e.g. in the case of semi-transparencies and occlusions, and also in medical imaging when
different layers of tissue move independently. Methods based on the known optical-flow equation for two
motions are extended in three ways. Firstly, we include a regularization term to cope with sparse flow
fields. We obtain an Euler-Lagrange system of differential equations that becomes linear due to the use
of the mixed motion parameters. The system of equations is solved for the mixed-motion parameters in
analogy to the case of only one motion. To extract the motion parameters, the velocity vectors are treated
as complex numbers and are obtained as the roots of a complex polynomial of a degree that is equal to the
number of overlaid motions. Secondly, we extend a Fourier-Transform based method proposed by Vernon
such as to obtain analytic solutions for more than two motions. Thirdly, we not only solve for the overlaid
motions but also separate the moving layers. Performance is demonstrated by using synthetic and real
sequences.

1. INTRODUCTION

This paper addresses the problem of estimating multiple transparent motions that can occur in computer-
vision applications, e.g. in case of semi-transparencies and occlusions, and also in medical x-ray projections
imaging, when different layers of tissue move independently. An overview of the problem of multiple motions
has been given in [1]. To our knowledge, the problem of two motions has been first solved in [2] by the use of
spatio-temporal Gabor filters and fourth-order moments derived from these filters. An alternative solution
that is also based on the frequency domain is given in [3], where a nonlinear system of four equations is solved
to estimate the phase change and from there two transparent motions. In general, frequency-based methods
suffer from requiring large local windows. Others have introduced the useful and intuitive notion of ’layers’.4

As an important extension of the methods mentioned above, we have provided analytic solutions for up to
four transparent motions.5 Our approach also delivers numerical solutions for more than four motions.
Here we first extend the approach to include regularization. Vernon3 proposed a different framework for
multiple transparent motions based on the phase of the Fourier components. This solution, however, is
limited to only two motions. We solve the equations introduced by Vernon for the more general case of an
arbitrary number of motions. We also identify some basic problems of Vernon’s approach to the separation
of transparent motion layers.
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2. THE THEORY OF MULTIPLE TRANSPARENT MOTIONS

2.1. Spatial model for two transparent motions

Suppose that an image sequence f(x, y, t) is the overlaid superposition of two other sequences g1, g2 moving
with constant velocities u = (ux, uy)

T and v = (vx, vy)T . The resulting f is then described as

f(x, y, t) = g1(x − uxt, y − uyt) + g2(x − vxt, y − vyt). (1)

The task is to determine v and u given f . To do so, we use the optical-flow equation introduced by Shizawa
and Mase2:

α(u)α(v)f = 0. (2)

Note that the equation involves the concatenated directional derivatives along u and v. After expanding
the above equation we obtain the following expression:

α(u)α(v)f = fxxuxvx + fyyuyvy + fxy(uxvy + uyvx) + fxt(ux + vx) + fyt(uy + vy) + ftt = 0. (3)

As in [5] we use the following notation:

cxx = uxvx cyy = uyvy

cxy = uxvy + uyvx cxt = ux + vx (4)

cyt = uy + vy ctt = 1.

With the c’s denoting the mixed-motion parameters. Eq. (2) then becomes:

α(u)α(v)f = fxxcxx + fyycyy + fxycxy + fxtcxt + fytcyt + fttctt = 0. (5)

As we shall see, this notation leads to a linear formulation of the problem.

The mixed-motion parameters can be separated by using the novel method described by Mota et.al.5

The velocity vectors are thereby treated as complex numbers:

u = ux + juy, v = vx + jvy. (6)

These complex numbers are related to the mixed motion parameters c by the following equations:

uv = A0 = cxx − cyy + jcxy

u + v = A1 = cxt + jcyt.
(7)

Note that A0 and A1 are homogeneous symmetric functions in u and v and, by Vieta’s theorem, the
coefficients of the complex polynomial

Q(z) = (z − u)(z − v) = z2 − A1z + A0 (8)

that has the complex roots u and v. These roots can be obtained analytically (even for the case of up to
four motions5). Thus the main steps in solving for multiple transparent motions are to (i) solve the linear
system for the c’s (ii) find the roots of the complex polynomial Q(z), and (iii) take the real parts of the z’s
as x- and the imaginary parts as y-components of the motion vectors.
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2.2. Spatial model for multiple transparent motions

In this section we analyze the case of more than two transparent motions. A number N of transparent
motions are described by the following equation:

f(x, t) = g1(x − tv1) + g2(x − tv2) + · · · + gN (x − tvN ). (9)

In this case, the optical-flow equation is given by

α(v1) · · ·α(vN )f =
∑

I

cIfI = 0, (10)

with the notation I = I1, . . . , IM , M = (N + 1)(N + 2)/2. Ii are ordered sequences with elements (x, y, t).
For example in Eq. (4) I1 = xx, I4 = xt, and I6 = tt. As for the case of two motions, multiple motions can
be separated by solving for the roots of an N -degree polynomial.5

3. REGULARIZATION FOR MULTIPLE MOTIONS

3.1. Regularization for two transparent motions

The regularization procedure is defined in analogy to the case of only one motion.6 As with one motion we
have only one equation for the motion parameters, but now the number of unknowns is five. We therefore
need four more equations. We employ the calculus of variation and define, in analogy to the method used
in by Horn and Schunck,6 the following regularization term:

N = (∂xcxx)2 + (∂ycxx)2

+ (∂xcyy)2 + (∂ycyy)
2 + (∂xcxy)

2 + (∂ycxy)2 + (∂xcxt)
2 + (∂ycxt)

2 + (∂xcyt)
2 + (∂ycyt)

2. (11)

We thus obtain the parameters c as the values that minimize the above term together with the squared
optical-flow term (2), i.e.:

∫∫

(

α(u)α(v)f
)2

+ λ2N dΩ, (12)

λ is the regularization parameter and Ω the whole image plane over which we integrate. Note that, at this
stage, we work on finding the c’s and not the motion-vector components. This has the great advantage that
we obtain an Euler-Lagrange system of differential equations that is linear. As we shall see, this would not
be the case, when working directly on the motion vectors themselves. Note that if the velocities u and v
are smooth, the parameters c will also be smooth. The five Euler-Lagrange equations that we obtain are
the following:

λ24cxx = f2
xxcxx + fxxfyycyy + fxxfxycxy + fxxfxtcxt + fxxfytcyt + fxxftt

λ24cyy = fyyfxxcxx + f2
yycyy + fyyfxycxy + fyyfxtcxt + fyyfytcyt + fyyftt

λ24cxy = fxyfxxcxx + fxyfyycyy + f2
xycxy + fxyfxtcxt + fxyfytcyt + fxyftt

λ24cxt = fxtfxxcxx + fxtfyycyy + fxtfxycxy + f2
xtcxt + fxtfytcyt + fxtftt

λ24cyt = fytfxxcxx + fytfyycyy + fytfxycxy + fytfxtcxt + f2
ytcyt + fytftt.

(13)

3.1.1. Linear and nonlinear formulations of the problem

As noted above, the system (13) is linear in the c’s. Let us consider the following example to illustrate
that this would not be the case with the motion parameters themselves. To obtain the Euler-Lagrange
differential equations, one must differentiate the functional to be minimized with respect to the unknown
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variables. If we differentiate only the expression of the squared optical-flow equation with respect to vx, we
obtain

∂

∂vx

(

α(u)α(v)f
)2

= 2
(

fxxuxvx + fyyuyvy + fxy(uxvy + uyvx)

+ fxt(ux + vx) + fyt(uy + vy) + ftt

)(

fxxux + fxyuy + fxt

)

, (14)

i.e., we obtain an equation that is nonlinear in vx, vy, ux and uy. Therefore we note that it is indeed the
introduction of the mixed motion parameters c that leads to a linear formulation of the problem.

3.1.2. Update rule

In analogy to the case of one motion we obtain the following update rules for the system (13):

cl+1
xx = ĉl

xx − fxx

P

D

cl+1
yy = ĉl

yy − fyy

P

D

cl+1
xy = ĉl

xy − fxy

P

D

cl+1
xt = ĉl

xt − fxt

P

D

cl+1
yt = ĉl

yt − fyt

P

D
,

(15)

where

P = fxxĉl
xx + fyyĉ

l
yy + fxy ĉl

xy + fxtĉ
l
xt + fytĉ

l
yt + ftt

D = λ2 + f2
xx + f2

yy + f2
xy + f2

xt + f2
yt.

(16)

The iteration will deliver the values of the mixed motion parameters c. From these parameters we still need
to extract the velocity vectors u and v as described in Section 2.1.

3.1.3. Boundary treatment

We have chosen to extend the image by copying the boundary pixels into an extended margin of size one.
Such, the first-order derivatives will be zero outside the boundary of the original image thus minimizing
boundary effects.

3.2. Regularization of multiple motions

In case of more than two motions, the functional to be minimized becomes:
∫∫

(

∑

I

cIf
)2

+ λ2
∑

I\IM

(

(∂xcI)
2 + (∂ycI)

2
)

dΩ (17)

and the Euler-Lagrange differential equations are

(

∑

I

cIfI

)

fIi
= λ24cIi

, i = 1, · · · , M − 1. (18)

Discretization with 4cIi
= ĉIi

− cIi
leads to

(

∑

I\IM

cIfI

)

fIi
+ λ2cIi

= λ2ĉIi
− fIi

fIM
, i = 1, · · · , M − 1. (19)
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It is now straightforward to show that Equation (19) leads to the following update rule:

cl+1
Ii

= ĉl
Ii
− fIi

P

D
, i = 1, · · · , M − 1, (20)

where
P =

∑

I

ĉl
IfI and D = λ2 +

∑

I\IM

f2
I (21)

Since the system is positive definite, we know that even for more than two motions equation (20) is the only
possible solution of the system (19). For up to four motions, the motion parameters can be obtained from
the mixed-motion parameters analytically as described above since the increased number of motions will
just increase the order of the polynomial. For more than four motions, the roots of the polynomial Q(z)
can be found by numerical methods.

4. SEPARATION OF MOTION LAYERS

In Section 3 we have shown how to estimate the motion fields in case of transparent motions. We will now
show how to use them to separate the spectra of the overlaid images.

Firstly, we discretize time to tk = k∆t, k = 0, . . . and transform the discretized motion model in (9),
i.e.,

ftk
(x) = f(x, tk) = g1(x − tkv1) + g2(x − tkv2) + · · · + gN(x − tkvN ) (22)

to the frequency domain by use of the Fourier transform. Such, we obtain the following system of equations

Ftk
(ω) = φk

1G1(ω) + φk
2G2(ω) + · · · + φk

NGN (ω), k = 0, . . . , (23)

where φn = ejω·vn∆t, n = 1, . . . , N , ω = (ωx, ωy) is the frequency variable and uppercase letters are the
Fourier transform of the respective lower case letters, e.g., Ftk

is the Fourier transform of ftk
.

Secondly, we note that the first N equations in the system (23) can be written in matrix form as











Ft0

Ft1

...
FtN−1











=











1 1 · · · 1
φ1 φ2 · · · φN

...
...

φN−1
1 φN−1

2 · · · φN−1
N





















G1

G2

...
GN











(24)

or in short notation Ft0 = BNG, where Ft0 = (Ft0 , . . . , FtN−1
), G = (G1, . . . , GN ) and BN is the above

matrix containing the phase terms. BN is a Vandermonde matrix that is invertible if its entries φ1, . . . , φN

are all distinct. The separation is, therefore, possible by using N successive frames of the image sequence
by inversion of BN , i.e.,

G = B−1
N Ft0 . (25)

Note, however, that the separation is not possible at all frequencies. The problematic frequencies are
those where two or more phase values are identical because the rank of the matrix BN is then reduced. This
is an important observation because it defines the support where multiple phases can occur by the following
equation:

φm = φn ⇐⇒ ej(vm−vn)·ω∆t = 1 ⇐⇒ (vm − vn) · ω = 2kπ, k = 0, . . . (26)

On the above defined lines, the Fourier transforms of at least two transparent layers cannot be separated.

If the difference vectors vm − vn, m, n = 1, . . . , N are not aligned, we have a number of

(

N
2

)

lines with

inseparable frequency components going through the origin of frequency space. A possible solution would
be to interpolate the values on these lines from the neighboring frequency values of the separated layers.
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5. PHASE-BASED MODEL FOR MULTIPLE TRANSPARENT MOTIONS

Frequency-domain based approaches to transparent motions are based on the observation that motion
induces a phase shift. This relationship has been used for the estimation of only one motion by Jepson and
Fleet.7 For transparent motions, this translates to Equation (23) that we repeat here as an aid:

Ftk
(ω) = φk

1G1(ω) + φk
2G2(ω) + · · · + φk

NGN (ω), k = 0, . . . (27)

Equation (27) has been analytically solved by Vernon3 to obtain the phase components and to separate the
layers for the simplest case of only two motions. In the following we will solve (27) for the general case of N
motions. Note that we already have the solution for the Fourier transform of the layers in terms of the phase
shifts, see Equation (25). To obtain the phase shifts, we first simplify notation by setting Φk = (φk

1 , . . . , φk
N )

and G = (G1, . . . , GN ). We then obtain the following expressions for the above system :

Ftk
= Φk · G, k = 0, . . . (28)

Our goal now is to obtain the phase-components vector Φ1 = (φ1, . . . , φN ) by cancellation of the unknown
Fourier-transforms vector G of the image layers in the system above. Given N + 1 images of the sequence,
we define the polynomial

p(z) = (z − φ1) · · · (z − φN ) = zN + a1z
N−1 + · · · + aN (29)

with unknown coefficients a1, . . . , aN . Now the phase terms φ1, . . . , φN are the roots of p(z), i.e., p(φn) =
0, for n = 1, . . . , N and we observe that

Φm+N + a1Φm+N−1 + · · · + aNΦm = (. . . , φm+N
n + a1φ

m+N−1
n + · · · + aNφm

n , . . . ) =

(. . . , φm
n (φN

n + a1φ
N−1
n + · · · + aN), . . . ) = (φm

1 p(φ1), . . . , φ
m
n p(φn), . . . , φm

Np(φN )) = 0. (30)

Therefore by inserting (30) in (28) we obtain

Ftm+N
+ a1Ftm+N−1

+ · · · + aNFtm
= (Φm+N + a1Φm+N−1 + · · · + aNΦm) · G = 0 ·G = 0 (31)

and
Ftm+N

= −aNFtm
− · · · − a1Ftm+N−1

m = 0, . . . (32)

We can use the first N of the above equations to solve for the unknown vector y = (a1, . . . , aN ) of
coefficients of p(z) by solving the linear system











FtN

FtN+1

...
Ft2N−1











= −











Ft0 Ft1 · · · FtN−1

Ft1 Ft2 · · · FtN

...
...

...
FtN−1

FtN
· · · Ft2N−2





















aN

aN−1

...
a1











. (33)

With FN for the left hand side vector and AN for the matrix in the above system, we obtain the short
notation FN = −AN y.

After solving the above system for a1, . . . , aN , we obtain the unknown phase changes φ1, . . . , φN as the
roots of p(z).
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5.1. The case of a singular matrix AN

The Equations (28) for Φ1 = (φ1, . . . , φN ) can be solved as long as the matrix AN in Equation (33) is not
singular. However, as we will show, it is still possible to estimate the phase terms even with the singular
matrix. To understand why, we will discuss all the cases in which AN is singular. First note that the matrix
AN nicely factors as

AN =











Ft0 Ft1 · · · FtN−1

Ft1 Ft2 · · · FtN

...
...

...
FtN−1

FtN
· · · Ft2N−2











= BN











G1 0 · · · 0
0 G2 · · · 0
...

...
...

0 0 · · · GN











BT
N (34)

and since BN is a Vandermonde matrix with entries φ1, . . . , φN , its determinant is

detAN = G1 · · ·GN

∏

m>n

(φm − φn)2. (35)

It follows that there are only two non-exclusive situations where the matrix AN can become singular:

1. The Fourier transform of at least one layer vanishes at the frequency ω for which Gm(ω) = 0;

2. Phase shifts are equal, that is, φm = φn for at least one pair m, n.

If two phase shifts are equal. e.g. φN = φN−1, the number of terms in the sum of Equation (27) reduces
to

Ftk
= φk

1G1 + φk
2G2 + · · · + φk

N−1(GN−1 + GN ) = φk
1G1 + φk

2G2 + · · · + φk
N−1G̃N−1, k = 0, . . . , (36)

where G̃N−1 = GN−1 + GN . Therefore we can suppose without loss of generality that

Ftk
= φk

1G̃1 + φk
2G̃2 + · · · + φk

RG̃R, k = 0, . . . (37)

with the above phase shifts φ1, . . . , φR being all distinct and G̃1, . . . , G̃R being all different from zero. Note
that a phase term could disappear from the equation due to the fact that the coefficients can sum to zero.
Since the left hand side of Equation (37) does not change due to factorization and reordering of the terms,
we can rewrite Equation (34) as

AN =











Ft0 Ft1 · · · FtN−1

Ft1 Ft2 · · · FtN

...
...

...
FtN−1

FtN
· · · Ft2N−2











= BN





















G̃1 0 · · · 0 · · · 0

0 G̃2 · · · 0 · · · 0
...

...
...

...

0 0 · · · G̃R · · · 0
...

...
...

...
0 0 · · · 0 · · · 0





















BT
N . (38)

Therefore rank(AN ) = rank(AR) = R and we can compute the phases shifts φ1, . . . , φR by resolving the
system

FR = −AR y. (39)
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5.1.1. Examples for only two motions

We now illustrate the above results for the special case of only two overlaid motions.

1. Rank(A2) = 2: the estimation of the phase φ1, φ2 is possible. First we solve for a1, a2 the system
Ft2 = −A2 y, that is

(

Ft2

Ft3

)

= −

(

Ft0 Ft1

Ft1 Ft2

) (

a2

a1

)

(40)

and obtain

a1 =
Ft1Ft2 − Ft0Ft3

Ft0Ft2 − F 2
t1

a2 =
F 2

t1
− Ft0Ft2

Ft0Ft2 − F 2
t1

(41)

The phases φ1, φ2 are then computed as the roots of

p(z) = z2 + a1z + a2 (42)

2. Rank(A2) = 1: the possible cases are G1 = 0, G2 6= 0; G1 6= 0, G2 = 0 or φ1 = φ2, G1 + G2 6= 0 and
we can compute the double phase or one of the two distinct phases from

Ft1 = Ft0φ. (43)

3. Rank(A2) = 0: in this case G1 = G2 = 0 or φ1 = φ2, G1+G2 = 0 and all equations in (27) degenerate
to

Ftk
= 0, k = 0, . . . (44)

6. RESULTS

6.1. Derivatives and filters

We computed the derivatives in the spatial domain. The first-order derivatives are Gaussian derivative filter
with a sigma of one and size of 7 pixels. The filters have been applied twice to obtain the second-order
derivatives.

6.2. Motion estimation

We tested the regularized motion estimation algorithm on real and synthetic images for the case of two
motion.

In Figure 1 we analyze robustness against noise. We simulated natural images by generating 1/f spectral
noise sequences to which we added Gaussian distributed noise at different signal-to-noise ratios (SNR). The
errors of the estimated motion vectors are shown as a function of the SNR and the number of iterations.
In the first row of Figure 1 we show the absolute mean angular errors and the angular standard derivation
(STD) of the estimated motion vectors. The second row displays the errors in relative magnitude and the
corresponding STD. Note that we obtain very good result with a SNR of up to 20dB. In all examples the
regularization parameter λ had a value of one.

I. S, T. A, C. M,  E. B/P. SPIE, 5022:75–86, M 2004.
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Figure 1. Performance as a function of noise level and the number of iterations. For details see text.

6.3. Separation of layers

Figure 2 shows an example were the layer separation works very well. In (a) and (b) the original layers
are shown, which are then overlaid in (c). In the image sequence the layers were moving with velocities
(1,0) and (0,1), respectively. In (d) we show the separation result for the layer (a) and in (e) the result
for layer (b). Note that both layers are well detected and that the interpolation errors are not visible in
the reconstructed images. However, the errors become visible when subtracting the original in (a) from the
separated layer in (d) as shown in (f).

In Figure 3, however, the interpolation errors are evident. In (a) we show the first image of the sequence
that is a clown image moving with velocity (1,0) and a cameraman image moving with velocity (0,1). Note
that both separated images (c) and (d) are overlaid with an oriented pattern. After subtracting the original
image (b) from the separation layer (e) we obtained the difference image (f) that shows the oriented error
patterns. Obviously, the visibility of the errors is due to missing texture. However, the errors could be
reduces with a better interpolation method. We have computed the missing frequency values as the average
of the neighboring values. In Figure 4 we show the results of motion estimation with a realistic sequence
and demonstrate the performance of our layer-separation algorithm for reflection removal. In (a) we show
one frame of the original Mona Lisa sequence. We used the estimated motion vectors for nulling one of
the two motions out of the sequence by computing α(u)f and α(v)f . The results are shown in (c) and (d)
respectively. In (b) we show the Mona Lisa layer only as the result of the separation algorithm. Note that
the reflections are removed.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Separation of layers for high-textured images. For details see text.

7. DISCUSSION

We have presented a novel method for the estimation of multiple transparent motions that is based on an
iterative solution of a linear system of equations. The system is obtained by introducing a regularization
term for the mixed-motion parameters. The motion-vector components are then obtained from the mixed-
motion parameters by solving for the roots of a complex polynomial. Alternative regularization procedures
could be used, since we have succeeded to linearize the problem of determining multiple overlaid motions.
Due to the linearization, it is possible to incorporate regularization and deal with more that two motions.
We have presented good results on synthetic and real images. However, the way we have computed the
partial derivatives still needs to be optimized and filters other than derivatives could be used, as outlined
in [5], to increase robustness. Possible extensions to cope with occluded motions have been proposed in [8].
In addition to an regularized estimation of multiple motions we have generalized a method based on the
phase in the Fourier transform. We have used this method to separate the motion layers and have shown
some inherent limits of the method. Further research will deal with alternative methods for the separation
of the motion layers that avoid these problems.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Separation of layers for low-textured images. For details see text.
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