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Abstract— This paper proposes a new algorithm for
solving the Blind Signal Separation (BSS) problem for
convolutive mixing completely in the time domain. The
closed form expressions used for first and second order
optimization techniques derived in [1] are extended
to accommodate the more practical convolutive mixing
scenario. Traditionally convolutive BSS problems are
solved in the frequency domain [2], [3], [4] but this
requires additional solving of the inherent frequency
permutation problem. We demonstrate the performance
of the algorithm using two optimization methods with a
convolutive synthetic mixing system and real speech data.

I. I NTRODUCTION

Blind Signal Separation (BSS) [5], [6] has been
a topic which attracted many researchers in recent
years. With the advent of more powerful processors
and the ability to realize more complex algorithms
BSS has found useful applications in the areas of
audio processing such as speech recognition, audio
interfaces, and hands free telephony in reverberant
environments. In view of the exponential growth of
mobile users in the wireless-communications world
together with the limited capacity of resources avail-
able for data transmission, modern communication
systems increasingly require training-less adaptation,
to save on bandwidth capacity or to accommodate
unpredictable channel changes. Future systems must
utilize spatial diversity multiple access techniques that
obtain their channel information exclusively from the
received signal. These systems fit the instantaneous and
convolutive BSS models. Blind algorithms are useful
here as they can be self-recovering and do not require
a priori knowledge of any training sequence [7]. For
example communication systems such as GSM can
devote up to 22% of their transmission time to pilot
tones which could be otherwise used for data transmis-
sion [8]. BSS has also found a fruitful application in
multimedia modelling and recent work on modelling
combined text/image data for the purpose of cross-
media retrieval has been made using ICA [9].

There is an abundance of various methods used
to solve BSS problems and these are often applica-
tion dependent, however; this paper investigates an
algorithm which demonstrates the convolutive mixing
model which is relevant to the applications mentioned

above and provides a method that avoids the frequency
permutation problem in the time domain. The most
prevalent of the aforementioned applications suitable
for this particular BSS criterion is in the area of
speech processing as it exploits the non-stationarity
assumption of the algorithm.

This paper extends approaches in [1] to the convolu-
tive mixing cases. Section II gives a brief description of
modelling BSS in a convolutive mixing environment.
In Section III the approaches in [1] are briefly re-
viewed. The extended approach in convolutive mixing
cases is given in Section IV. Section V presents the
simulation results giving the performance of two opti-
mization methods: Gradient, and Newton optimization
with speech data. Finally, a conclusion is provided in
Section VI.

The following notations are used in this paper. Vec-
tors and matrices are printed in boldface with matrices
being in capitals. Matrix and vector transpose, com-
plex conjugation, and Hermitian transpose are denoted
by (·)T , (·)∗, and (·)H , ((·)∗)T , respectively.† is
the pseudo-inverse whileE(·) means the expectation
operation.‖ · ‖F is the Frobenius norm of a matrix.
With a = diag(A) we obtain a vector whose elements
are the diagonal elements ofA and diag(a) is a
square diagonal matrix which contains the elements of
a. ddiag(A) is a diagonal matrix where its diagonal
elements are the same as the diagonal elements ofA
and

off(A) , A− ddiag(A). (1)

II. BSS MODEL

The main issue of BSS is that neither the sig-
nal sources nor the mixing system are knowna
priori . The only assumption made is that the un-
known signal sources are statistically independent.
Assume there areN statistically independent sources,
s(t) = [s1(t), ..., sN (t)]T . These sources are mixed in
a medium providingM sensor or observed signals,
x(t) = [x1(t), ..., xM (t)]T , given by:

x(t) = H(t) ∗ s(t) (2)

whereH(t) is aM×N mixing matrix with its element
hij(t) being the impulse response fromjth source
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signal to ith measurement.∗ defines the convolution
of corresponding elements ofH(t) ands(t) following
the same rules for matrix multiplication.

Assuming that the mixing channels can be modelled
as FIR filters with lengthP , Equation (2) can be
rewritten as:

x(t) =
P−1∑
τ=0

H(τ)s(t− τ). (3)

The M observed signalsx(t) are coupled to theN
reconstructed signalŝs(t) via the de-mixing system.
The de-mixing system has a similar structure to the
mixing system. It containsN×M FIR filters of length
Q,where Q ≥ P. The de-mixing system can also
be expressed as anN × M matrix W(t), with its
elementwij(t) being the impulse response fromjth
measurement toith output. The reconstructed signal
can be obtained as:

ŝ(t) =
Q−1∑
τ=0

W(τ)x(t− τ) (4)

where ŝ(t) = [ŝ1(t), ..., ŝN (t)]T . A straight forward
approach for BSS is to identify the unknown system
first and then to apply the inverse of the identified
system to the measurement signals in order to restore
the signal sources. This approach can lead to problems
of instability. Therefore it is desired that the de-mixing
system be estimated based on the observations of
mixed signals.

The simplest case is the instantaneous mixing in
which matrix H(t) is a constant matrix with all el-
ements being scalar values. In practical applications
such as hands free telephony or mobile communica-
tions where multi-path propagation is evident mixing
is convolutive, in which situation BSS is much more
difficult due to the added complexity of the mixing
system. The frequency domain approaches are consid-
ered to be effective to separate signal sources in con-
volutive cases, but another difficult issue, the inherent
permutation and scaling ambiguity in each individual
frequency bin, arises which makes the reconstruction
of signal sources almost impossible [10]. Therefore it
is worthwhile to develop an effective approach in the
time domain. Joho and Rahbar [1] proposed a BSS
approach based on joint diagonalization of the output
signal correlation matrix using gradient and Newton
optimization methods. However the approaches in [1]
are limited to the instantaneous mixing cases whilst in
the time domain.

III. O PTIMIZATION OF INSTANTANEOUSBSS

This section gives a brief review of the algorithms
proposed in [1]. Assuming that the sources are statis-
tically independent and non-stationary, observing the
signals overK different time slots, we define the
following noise free instantaneous BSS problem. In
the instantaneous mixing cases both the mixing and
de-mixing matrices are constant, that is,H(t) = H

andW(t) = W. In this case the reconstructed signal
vector can be expressed as:

ŝ(t) = Wx(t). (5)

The instantaneous correlation matrix ofŝ(t) at time
framek can be obtained as:

Rŝŝ,k = WRxx,kWH (6)

Rxx,k = E{x(k)xH(k)}. (7)

For a given set ofK observed correlation matrices,
{Rxx,k}K

k=1, the aim is to find a matrixW that
minimizes the following cost function:

J1 ,
K∑

k=1

βk‖off(WRxx,kWH)‖2F (8)

where{βk} are positive weightingnormalizationfac-
tors such that the cost function is independent of the
absolute norms and are given as:

βk = (
K∑

k=1

‖Rxx,k‖2F )−1. (9)

Perfect joint diagonalization is possible under the con-
dition that {Rxx,k} = {HΛss,kHH} where{Λss,k}
are diagonal matrices due to the assumption of the
mutually independent unknown sources. This means
that full diagonalization is possible, and when this
is achieved, the cost function is zero at its global
minimum. This constrained non-linear multivariate op-
timization problem can be solved using various tech-
niques including gradient-based steepest descent and
Newton optimization routines. However, the perfor-
mance of these two techniques depends on the initial
guess of the global minimum, which in turn relies
heavily on an initialization of the unknown system that
is near the global trough. If this is not the case then
the solution may be sub-optimal as the algorithm gets
trapped in one of the local multi-minima points.

To prevent a trivial solution whereW = 0 would
minimize Equation (8), some constraints need to be
placed on the unknown systemW to prevent this. One
possible constraint is thatW is unitary. This can be
implemented as a penalty term such as given below:

J2 , ‖WWH − I‖2F (10)

or as a hard constraint that is incorporated into the
adaptation step in the optimization routine. For prob-
lems where the unknown system is constrained to be
unitary, Manton presented a routine for computing
the Newton step on the manifold of unitary matrices
referred to as thecomplex Stiefel manifold. For further
information on derivation and implementation of this
hard constraint refer to [1] and references therein.

The closed form analytical expressions for first
and second order information used for gradient and
Hessian expressions in optimization routines are taken
from Joho and Rahbar [1] and will be referred to
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when generating results for convergence. Both the
Steepest gradient descent (SGD) and Newton methods
are implemented following the same frameworks used
by Joho and Rahbar. The primary weakness of these
optimization methods is that although they do converge
relatively quickly there is no guarantee for convergence
to a global minimum which provides the only true solu-
tion. This is exceptionally noticeable when judging the
audible separation of speech signals. To demonstrate
the algorithm we assume a good initial starting point
for the unknown separation system to be identified by
setting the initial starting point of the unknown system
in the region of the global trough of the multivariate
objective function.

IV. OPTIMIZATION OF CONVOLUTIVE BSS IN THE

TIME DOMAIN

As mentioned previously and as with most BSS
algorithms that assume convolutive mixing, solving
many BSS problems in the frequency domain for indi-
vidual frequency bins can exploit the same algorithm
derivation as the instantaneous BSS algorithms in the
time domain. However the inherentfrequency permu-
tation problem remains a major challenge and will
always need to be addressed. The tradeoff is that by
formulating algorithms in the frequency domain we can
perform less computations and processing time falls,
but we still must fix the permutations for individual
frequency bins so that they are all aligned correctly.
The main contribution in this paper is to provide a
way to utilize the existing algorithm developed for
instantaneous BSS but avoid the permutation problem.

Now we extend the above approach to the convolu-
tive cases. We still assume that the de-mixing systems
are defined by Equation (4), which consists ofN ×M
FIR filters with length Q. We want to get a similar
expression to those in the instantaneous cases. It can be
shown that Equation (4) can be written as the following
matrix form:

ŝ(n) = WX (n) (11)

whereW is a (N ×QM) matrix given by:

W = [W(0),W(1), ...,W(Q− 1)] (12)

andX (n) is a (QM × 1)vector defined as:

X (n) =




x(n)
x(n− 1)

...
x(n− (Q− 1))


 . (13)

Then the output correlation matrix at timek can be
derived as:

Rŝŝ,k(0) = WRXX ,k(0)WH (14)

where,

RXX ,k(0) = E{X (k)XH(k)}. (15)

Correlation matrices for the recovered sources for all
necessary time lags can also be obtained as:

Rŝŝ,k(τ) = WE{X (k)XH(k + τ)}WH

= WRXX ,k(τ)WH (16)

Using the joint-diagonalization criterion in [1] for
the instantaneous modelling of the BSS problem we
can formulate a similar expression for convolutive
mixing in the time domain. Consider the correlation
matrices with all different time lags we should have
the following cost function:

J3 ,
τmax∑

τ=−τmin

K∑

k=1

βk‖off(WRXX ,k(τ)WH)‖2F .

(17)
The only difference betweenJ1 andJ3 is that we now
take into account all the different time lagsτ for the
correlation matrices for each respective time epochk
where the SOS are changing. Alsoβk is now defined
as,

βk = (
τmax∑

τ=−τmin

K∑

k=1

‖RXX ,k(τ)‖2F )−1, (18)

and we note the new structure ofW. In the ideal
case where we know the exact systemWideal, all off-
diagonal elements would equal zero and the value of
the objective function would reach its global minimum
whereJ3 = 0. Each value ofk represents a different
time window frame where the Second Order Statistics
(SOS) are considered stationary over that particular
time frame. In adjacent non-overlapping time frames
k, the SOS are changing due to the non-stationarity
assumption. As this is a non-linear constrained opti-
mization problem withNQM unknown parameters we
can rewrite it as,

Wopt = arg min J3(W)
W

s/t ‖ddiag(WWH − I)‖2F = 0
(19)

Due to the structure of the matrices and with the
technique of matrix multiplication to perform con-
volution in the time domain, optimization algorithms
similar to those performed in the instantaneous climate
can be utilized. Notice also that in the instantaneous
version the constraint used to prevent the trivial solu-
tion W = 0 was a unitary one. In the convolutive
case a different constraint is used where the row
vectors ofW are normalized to have length one. Again
referring to the SGD and Newton algorithms closed
form analytical expressions of the gradient and Hessian
deduced by Joho and Rahbar [1] are extended slightly
to accommodate the time domain convolutive climate
of the new algorithm. These expressions are shown in
Table 1.RXX ,k(τ) will be denoted asRτ

XX ,k. With
these expressions the SGD and Newton methods are
summarized in the Tables 2 and 3 respectively and are
mainly similar to the method proposed in [1], however,
they work for convolutive mixing. Table 2 is relatively
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Cost function -JW
JW , ∑τmax

τ=−τmin

∑K
k=1 ‖off(WRτ

XX ,kWH)‖2
F

Gradient -GW
GW = 2

∑τmax
τ=−τmin

∑K
k=1{off(WRτ

XX ,kWH)WRτ
XX ,k

H

+off(WRτ
XX ,k

HWH)WRτ
XX ,k}

Hessian -HW
HW = 2

∑τmax
τ=−τmin

∑K
k=1{(Rτ

XX ,k
∗ ⊗ off(WRτ

XX ,kWH))

+(Rτ
XX ,k

T ⊗ off(WRτ
XX ,k

HWH))

+(Rτ
XX ,k

TWT ⊗ I)Poff (W∗Rτ
XX ,k

∗ ⊗ I)

+(Rτ
XX ,k

∗WT ⊗ I)Poff (W∗Rτ
XX ,k

T ⊗ I)

+(Rτ
XX ,kWH ⊗ I)PvecPoff (W∗Rτ

XX ,k
∗ ⊗ I)

+(Rτ
XX ,k

HWH ⊗ I)PoffPvec(W∗Rτ
XX ,k

T ⊗ I)}
Row-normalized Constraint

J4 = ‖ddiag(WWH − I)‖2F
Constraint Gradient

G4 = 4ddiag(WWH − I)W
TABLE I

CLOSED FORM ANALYTICAL EXPRESSIONS FOR THE GRADIENT

AND HESSIAN OF THE COST FUNCTION AND CONSTRAINTS

Initialization (k = 0) : W0

For k = 1, 2, ...

4Wk = −µ(GW + αG4)
Wk+1 = Wk +4Wk

TABLE II

STEEPEST-DESCENT ALGORITHM FOR THE

JOINT-DIAGONALIZATION TASK WITH A WEIGHTED CONSTRAINT

easy to interpret as it is a simple iterative update or
learning rule with a fixed step size. As an alternative
to a constant step-sizeµ the natural gradient method
proposed by Amari [11] could be used instead of the
absolute gradient. Table 3 gives the general Newton
update with penalty terms incorporated to ensure that
the Hessian of the constraintH4 and the gradient of
the constraintG4 are accounted for in the optimization
process.

V. SIMULATION RESULTS

To investigate the performance of the extended in-
stantaneous BSS algorithm to the convolutive case
in the time domain the SGD and Newton algorithm
implementations in [1] were slightly altered to the
learning rules given in Tables 2 and 3 respectively. As
the constraint no longer requires the unknown system

Initialization (k = 0) : W0

For k = 1, 2, ...

4Wk = (HW + αH4)−1(GW + αG4)
Wk+1 = Wk −4Wk

TABLE III

NEWTON ALGORITHM FOR THE JOINT-DIAGONALIZATION TASK

WITH A WEIGHTED CONSTRAINT

W to be unitary the constraint was changed to that
given in Equation (19). The technique of weighted
penalty functions was used to ensure the constraints
preventing the trivial solution were met. No longer
performing the optimization on the Stiefel manifold as
in [1] the SGD and Newton algorithms were changed
to better reflect the row normalization constraint for
the convolutive case. A two-input-two-output (TITO)
two tap FIR known mixing system was chosen and is
given below in thez domain.

H(z) =
[

1 + z−1 −1 + z−1

−1 + z−1 1 + z−1

]
. (20)

A first order system was chosen to demonstrate the
convergence properties of the SGD compared to the
Newton algorithm. The corresponding known un-
mixing system which would separate mixed signals
which are produced by convolving the source signals
with the TITO mixing systemH(z) given above is

Wideal(z) =
[

1 + z−1 1− z−1

1− z−1 1 + z−1

]
. (21)

This is the exact known inverse multiple-input-
multiple-output (MIMO) FIR system of the same order.
The convolution of these two systems in cascade would
ensure the global systemG(z) = Wideal(z)H(z)
would be a delayed version of the identity, i.e.z−1I.
Using matrix multiplication to perform convolution
in the time domain, Equation (12) can be used to
represent the equivalent structure of Equation (21),

Wideal =
[

1 1 1 −1
1 1 −1 1

]
. (22)

Through empirical analysis we set the parametersµ =
0.6 andα = 0.2 and solve the constrained optimization
problem given in Equation (19) using the SGD and
Newton methods. With the Newton method it should be
noted that in Table 3 a closed form expression for the
Hessian of the constraint has not been given. For this
part numerical differentiation using finite differences
was used to obtainH4. A set of K = 15 real
diagonal square uncorrelated matrices for the unknown
source input signals were randomly generated. Using
convolution in the time domain a corresponding set of
correlation matricesRτ

XX ,k for each respective time
instant k = 1, ..., 15 at multiple time lagsτ were
generated for the observed signals. Each optimization
algorithm was run ten independent times and conver-
gence graphs were observed and are shown in Figure 1.
The various slopes of the different convergence curves
of the gradient method depends entirely on the ten
different sets of randomly generated diagonal input
matrices. Poor initial values for the unknown system
lead to convergence to local minima as opposed to
the desired global minimum. The initialization of the
SGD and Newton algorithms plays an important role in
the convergence to either a local or global minimum.
Initial values for the estimated un-mixing systemW
were randomly generated by adding Gaussian random
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variables with standard deviationσ = 0.1 to the
coefficients of the true system. As a possible alternative
strategy, a global optimization routineglcClusterfrom
TOMLAB [12], a robust global optimization software
package, can be used where no initial value for the
unknown system is needed. This particular solver uses
a global search to approximately obtain the set of all
global solutions and then uses a local search method
which utilizes the derivative expressions to obtain more
accuracy on each global solution. This method will be
further analyzed as a future alternative to obtaining
additional information on the initial system value.

After convergence of the objective function to an
order of magnitude approximately equal to10−34 the
unknown de-mixing FIR filter systemW in cascade
with the known mixing systemH(z) resulted in a
global system which was equivalent to a scaled and
permuted version of the true global systemz−1I as
can be seen by the following example,

G(0) =
[ −0.17 0.17

0.19 −0.19

]
× 10−14,

G(1) =
[

2 0
0 2

]
,

G(2) =
[ −0.23 −0.23
−0.14 −0.14

]
× 10−14.

(23)

A first order system has been identified up to an
arbitrary global permutation and scaling factor. The
TITO system identified above using the optimization
algorithms has only 8 unknown variables to identify.
We now examine a MIMO FIR mixing system with a
higher dimension. Again we have chosen an analytical
MIMO multivariate system whose exact FIR inverse is
known. The 3rd order mixing system is given below
in the z domain

H11(z) = −4− 4z−1 + z−2 + z−3, (24)

H12(z) = −7− 7z−1 + z−3, (25)

H21(z) = 7− 7z−1 + z−3, (26)

H22(z) = 9− 9z−1 − z−2 + z−3. (27)

The corresponding known inverse FIR system of the
same order is given below also in thez domain as

Wideal
11 (z) =

1
13

H22(z), (28)

Wideal
12 (z) = − 1

13
H12(z), (29)

Wideal
21 (z) = − 1

13
H21(z), (30)

Wideal
22 (z) =

1
13

H11(z). (31)

The convolution of the mixing and un-mixing
MIMO FIR systems given in Equations (24-31) gives
the identity matrixI exactly. Again a comparison of

the convergence behavior for both SGD and Newton
methods was made using the same methods described
for the first order mixing system. Due to the lack of
information about the error surface of the multivariate
objective function and how it varies with a higher
number of dimensions, convergence of the SGD and
Newton methods is not as good. In Figure 2 we can
see that the SGD method only converges to a local
minima of about10−5 when ideally it should be close
to 10−34. The Newton method also shows instability.
The limiting factor here is that even with relatively
good initial values we cannot predict how the error
surface of the objective function behaves without more
complex analysis on the error surface of the multivari-
ate function. This does not mean that the algorithm
does not work for higher order systems but rather more
information such as error surface characteristics should
be known for a better initialization of the SGD and
Newton algorithms and their step-size values given in
Tables 2 and 3.

To test the performance of the algorithm on real
speech data two independent segments of speech were
used as input signals to the MIMO FIR mixing sys-
tem given in Equation (20). These signals were both
4 seconds long and sampled at 8kHz. The signals
were convolutively mixed with the synthetic mixing
system to obtain 2 mixed signals. With the assump-
tion that speech is quasi-stationary over a period of
approximately 20ms, the observed mixed signals were
buffered and segmented into 401 frames each having
160 samples in length. The non-stationarity assumption
assumes that the SOS in each frame does not change.
The correlation matricesRτ

XX ,k can be found via
Equations (15,16) forK = 401 frames of the two
mixed signals. This allows the method of joint diago-
nalization by minimizing the off-diagonal elements of
the correlation matrices of the recovered signals at each
respective time lagτ as defined in Equations (17,19).
Figure 3 shows the input, mixed and recovered speech
signals. A good qualitative recovery is confirmed by
subjective listening to the recovered audio signals and
inspection of graphs (e) and (f) in Figure 3.

VI. CONCLUSION

A new method for convolutive BSS in the time
domain using an existing instantaneous BSS frame-
work has been presented. This method avoids the
inherent permutation problem when dealing with solv-
ing the convolutive BSS problem in the frequency
domain. Optimization algorithms including SGD and
Newton methods have been compared for convolutive
mixing environments. Future work will be directed
at implementing the simulations with recorded data
such as speech in real reverberant environments where
the orders of the mixing and un-mixing MIMO FIR
systems are very high.
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Fig. 1. Convergence of SGD and Newton algorithms for a 1st order
MIMO FIR unmixing system.
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