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ABSTRACT

This paper aims to solve the problem of Blind Signal Sepa-
ration (BSS) in a convolutive environment based on output
correlation matrix diagonalization. Firstly an extension
of the closed form gradient and Newton methods used by
Joho and Rahbar [1] is developed which encapsulates the
more difficult convolutive mixing case. This extension
is completely in the time domain and thus avoids the
inherent permutation problem associated with frequency
domain approaches. We also compare the performance
of three commonly used algorithms including Gradient,
Newton and global optimization algorithms in terms of
their convergence behavior and separation performance in
the instantaneous case and then the convolutive case.

Keywords - Blind source separation, Global optimiza-
tion, Joint diagonalization, multivariate optimization,
Newton method, Steepest gradient descent.

1. INTRODUCTION

Blind Signal Separation (BSS) has been a topic which at-
tracted many researchers in recent years. BSS is a challeng-
ing problem in that neither the signal sources nor the mixing
system are known. The only information which can be used
is the assumption that the unknown signal sources are stat-
ically independent. Suppose there areN statistically inde-
pendent sources,s(t) = [s1(t), ..., sN (t)]T . These sources
are mixed in a medium providingM sensor or observed sig-
nals,x(t) = [x1(t), ..., xM (t)]T , given by:

x(t) = H(t) ∗ s(t) (1)

whereH(t) is a M × N mixing matrix with its element
hij(t) being the impulse response fromjth source signal to
ith measurement.∗ defines the convolution of correspond-
ing elements ofH(t) ands(t) following the same rules for
matrix multiplication.

Assuming that the mixing channels can be modelled as
FIR filters with length P, Equation (1) can be rewritten as:

x(t) =
P−1∑
τ=0

H(τ)s(t− τ). (2)

The M observed signalsx(t) are coupled to theN re-
constructed signalŝs(t) via the de-mixing system. The de-
mixing system has a similar structure to the mixing system.
It containsN×M FIR filters of lengthQ,whereQ ≥ P. The
de-mixing system can also be expressed as aN×M Matrix
W(t), with its elementwij(t) being the impulse response
from jth measurement toith output. The reconstructed sig-
nal can be obtained as:

ŝ(t) =
Q−1∑
τ=0

W(τ)x(t− τ) (3)

where ŝ(t) = [ŝ1(t), ..., ŝN (t)]T . A straight forward ap-
proach for BSS is to identify the unkown system first and
then to apply the inverse of the identified system to the
measurement signals in order to restore the signal sources.
However this approach can lead to problems of instability.
Therefore it is desired that the de-mixing system be esti-
mated based on the observations of mixed signals.

The simplest case is the instantaneous mixing in which
matrix H(t) is a constant matrix with all elements being
scalar values. Many effective algorithms have been devel-
oped for this case during the past years. However, in many
practical applications mixing is convolutive, in which situ-
ation BSS is much more difficult due to the expansion of
complexity associated with the mixing system. The fre-
quency domain approaches are considered to be effective
to separate signal sources in convolutive cases, but another
difficult issue, the inherent permutation and scaling ambi-
guity in each individual frequency bin, arise which makes
the reconstruction of signal sources almost impossible [2].
Therefore it is worthwhile to develop an effective approach
in the time domain.



Joho and Mathis [1] proposed a BSS approach based on
joint diagonalization of the output signal correlation matrix
using gradient and Newton optimization methods. However
the approaches in [1] are limited to the instantaneous mixing
cases whilst in the time domain.

This paper aims to extend the approaches in [1] to the
convolutive mixing cases. In Section 2 the approaches in [1]
are briefly reviewed. The extended approach in convolutive
mixing cases is given in Section 3. Section 4 presents com-
puter simulation results which gives a performance compar-
ison of three optimization methods: Gradient, Newton and
Global optimization.

The following notations are used in this paper. Vectors
and matrices are printed in boldface with matrices being
in capitals. Matrix and vector transpose, complex conju-
gation, and Hermitian transpose are denoted by(·)T , (·)∗,
and (·)H , ((·)∗)T , respectively.† is the pseudo-inverse
while E(·) means the expectation operation.‖ · ‖F is the
Frobenius norm of a matrix. Witha = diag(A) we ob-
tain a vector whose elements are the diagonal elements of
A anddiag(a) is a square diagonal matrix which contains
the elements ofa. ddiag(A) is a diagonal matrix where its
diagonal elements are the same as the diagonal elements of
A and

off(A) , A− ddiag(A). (4)

2. OPTIMIZATION OF INSTANTANEOUS BSS

This section gives a brief review of the algorithms proposed
in [1]. Assuming that the sources are statistically indepen-
dent and non-stationary, observing the signals overK dif-
ferent time slots, we define the following noise free instan-
taneous BSS problem. In the instantaneous mixing cases
both the mixing and de-mixing matrices are constant, that
is, H(t) = H andW(t) = W. In this case the recon-
structed signal vector can be expressed as:

ŝ(t) = Wx(t). (5)

The instantaneous correlation matrix ofŝ(t) at timeframek
can be obtained as:

Rŝŝ,k = WRxx,kWH (6)

whereRxx,k is defined as:

Rxx,k = x(k)xH(k). (7)

For a given set ofK observed instantaneous correlation
matrices,{Rxx,k}K

k=1, the aim is to find a matrixW that
minimizes the following cost function:

J1 ,
K∑

k=1

βk‖off(WRxx,kWH)‖2F (8)

where {βk} are positive weightingnormilization factors
such that the cost function is independent of the absolute
norms and are given as:

βk = (
K∑

k=1

‖Rxx,k‖2F )−1. (9)

Perfect joint diagonalization is possible under the condition
that {Rxx,k} = {HΛss,kHH} where{Λss,k} are diago-
nal matrices due to the assumption of the mutually indepen-
dent unknown sources. This means that full diagonaliza-
tion is possible, and when this is achieved, the cost function
is zero at its global minimum. This constrained non-linear
multivariate optimization problem can be solved using var-
ious techniques including gradient-based steepest descent,
Newton and global optimization routines. However, the per-
formance of the first two techniques depends on the initial
guess of the global minimum, which in turn relies heavily
on an initialization of the unknown system that is near the
global trough. If this is not the case then the solution may be
sub-optimal as the algorithm gets trapped in one of the lo-
cal multi-minima points. Global optimization routines such
as those that utilize tunnelling, simulated annealing and a
combination of first and second order methods allow a more
robust convergence of the cost function to the global mini-
mum.

To prevent a trivial solution whereW = 0 would mini-
mize Equation (8), some constraints need to be placed on
the unknown systemW to prevent this. One possible con-
straint is thatW is unitary. This can be implemented as a
penalty term such as given below:

J2 , ‖WWH − I‖2F (10)

or as a hard constraint that is incorporated into the adapta-
tion step in the optimization routine. For problems where
the unknown system is constrained to be unitary, Manton
presented a routine for computing the Newton step on the
manifold of unitary matrices referred to as thecomplex
Stiefel manifold. For further information on derivation and
implementation of this hard constraint refer to [1] and ref-
erences therein.

The closed form analytical expressions for first and sec-
ond order information used for gradient and Hessian ex-
pressions in optimization routines are taken from Joho and
Rahbar and will be referred to when generating results for
convergence. Both the Steepest gradient descent (SGD)
and Newton methods are implemented following the same
frameworks used by Joho and Rahbar. The primary weak-
ness of these optimization methods is that although they do
converge relatively quickly there is no guarantee for con-
vergence to a global minimum which provides the only true
solution. This is exceptionally noticeable when judging the
audible separation of speech signals. As one contribution



of this paper we provide a comparative analysis of an ex-
isting global optimization algorithm which solves the prob-
lem of converging to local minima without a good initial-
ization of the unknown system and note the differences in
convergence and quality of separation with existing SGD
and Newton methods.

3. EXTENDED CONVOLUTIVE BSS ALGORITHM
IN THE TIME DOMAIN

As mentioned previously and as with most BSS algorithms
that assume convolutive mixing, solving many BSS prob-
lems in the frequency domain for individual frequency bins
can exploit the same algorithm derivation as the instanta-
neous BSS algorithms in the time domain. However the
inherentfrequency permutation problemremains a problem
and will always need to be addressed. The tradeoff is that
by formulating algorithms in the frequency domain we can
perform less computations and processing time falls but we
still must fix the permutations for individual frequency bins
so that they are all aligned correctly. The main contribu-
tion in this paper is to provide a way to utilize the existing
algorithm developed for instantaneous BSS but avoid the
permutation problem.

Now we extend the above approach to the convolutive
cases. We still assume that the de-mixing systems are de-
fined by Equation (3),which consists ofN ×M FIR filters
with length Q. We want to get a similar expression to those
in the instantaneous cases. It can be shown that Equation
(3) can be written as the following matrix form:

ŝ(n) = WX (n) (11)

whereW is a(N ×QM) matrix given by:

W = [W(0),W(1), ...,W(Q− 1)] (12)

andX (n) is a(QM × 1)vector defined as:

X (n) =




x(n)
x(n− 1)

...
x(n− (Q− 1))


 . (13)

Then the output correlation matrix at timek can be de-
rived as:

Rŝŝ,k = WRXX ,kWH (14)

where,
RXX ,k = X (k)XH(k). (15)

Correlation matrices for the recovered sources for all neces-
sary time lags can also be obtained as:

Rŝŝ,k(τ) = WE{X (k)XH(k+τ)}WH = WRXX ,k(τ)WH

(16)

If the inner order ofW does not match the inner order of
RXX ,k(τ) due to the fact that Q is chosen arbitrarily then a
subset ofRXX ,k(τ) or a zero padded version of it is used
depending on whetherQ < τ or Q > τ, respectively.

Using the joint-diagonalization criterion in [1] for the in-
stantaneous modelling of the BSS problem we can formu-
late a similar expression for convolutive mixing in the time
domain. Consider the correlation matrices with all different
time lags we should have the following cost function:

J3 ,
τmax∑

τ=−τmin

K∑

k=1

βk‖off(WRXX ,k(τ)WH)‖2F . (17)

The only difference betweenJ1 andJ3 is that we now take
into account all the different time lagsτ for the correlation
matrices for each respective time epochk where the SOS
are changing. Alsoβk is now defined as,

βk = (
τmax∑

τ=−τmin

K∑

k=1

‖RXX ,k(τ)‖2F )−1, (18)

and we note the new structure ofW. In the ideal case
where we know the exact systemWideal, all off-diagonal
elements would equal zero and the value of the objective
function would reach its global minimum whereJ3 = 0.
Each value ofk represents a different time window frame
where the Second Order Statistics (SOS) are considered sta-
tionary over that particular time frame. In adjacent non-
overlapping time framesk, the SOS are changing due to the
non-stationarity assumption. As this is a non-linear con-
strained optimization problem withNQM unknown pa-
rameters we can rewrite it as,

Wopt = arg min J3(W)
W

s/t ‖ddiag(WWH − I)‖2F = 0
(19)

Due to the structure of the matrices and with the tech-
nique of matrix multiplication to perform convolution in the
time domain, optimization algorithms similar to those per-
formed in the instantaneous climate can be utilized. Notice
also that in the instantaneous version the constraint used to
prevent the trivial solutionW = 0 was a unitary one. In
the convolutive case a different constraint is used where the
row vectors ofW are normalized to have length one. Again
referring to the SGD and Newton algorithms closed form
analytical expressions of the gradient and Hessian deduced
by Joho and Rahbar are extended slightly to accommodate
the time domain convolutive climate of the new algorithm.
These expressions are shown in Table 1.RXX ,k(τ) will
be denoted asRτ

XX ,k. With these expressions the steepest-
descent algorithm and the Newton method are summarized
in the Tables 2 and 3 respectively and are mainly similar
to the method proposed by Joho and Rahbar, however, they



Table 1: Closed Form Analytical Expressions for the gradi-
ent and Hessian of the cost function and constraints

Cost function -JW
JW ,

Pτmax
τ=−τmin

PK
k=1 ‖off(WRτ

XX ,kWH)‖2
F

Gradient -GW
GW = 2

Pτmax
τ=−τmin

PK
k=1{off(WRτ

XX ,kWH)WRτ
XX ,k

H

+off(WRτ
XX ,k

HWH)WRτ
XX ,k}

Hessian -HW
HW = 2

Pτmax
τ=−τmin

PK
k=1{(Rτ

XX ,k
∗ ⊗ off(WRτ

XX ,kWH))

+(Rτ
XX ,k

T ⊗ off(WRτ
XX ,k

HWH))

+(Rτ
XX ,k

TWT ⊗ I)Poff (W∗Rτ
XX ,k

∗ ⊗ I)

+(Rτ
XX ,k

∗WT ⊗ I)Poff (W∗Rτ
XX ,k

T ⊗ I)
+(Rτ

XX ,kWH ⊗ I)PvecPoff (W∗Rτ
XX ,k

∗ ⊗ I)

+(Rτ
XX ,k

HWH ⊗ I)PoffPvec(W∗Rτ
XX ,k

T ⊗ I)}
Row-normailzed Constraint

J4 = ‖ddiag(WWH − I)‖2F
Constraint Gradient

G4 = 4ddiag(WWH − I)W

Table 2: Steepest-descent algorithm for the joint-
diagonalization task with a weighted constraint

Initialization (k = 0) : W0

Fork = 1, 2, ...

4Wk = −µ(GW + αG4)
Wk+1 = Wk +4Wk

work for convolutive mixing. A software package called
TOMLAB [3] was used to solve the constrained global op-
timization problem. The application serves as an interface
between the user defined problem which in our case has
been outlined as the convolutive BSS algorithm in the time
domain, and numerous global optimization solver routines
that are included. For a more detailed explanation of the
global solver routines refer to [3] and references therein.

Table 3: Newton algorithm for the joint-diagonalization task
with a weighted constraint

Initialization (k = 0) : W0

Fork = 1, 2, ...

4Wk = (HW + αH4)−1(GW + αG4)
Wk+1 = Wk +4Wk

4. SIMULATION

To demonstrate the performance of the extended convolu-
tive BSS algorithm in the time domain we firstly investi-
gated the instantaneous BSS algorithm using a variety of
optimization techniques. A set ofK = 15 real diagonal
square matrices{Λk} were randomly chosen representing
the unknown source input uncorrelated matrices. The diag-
onal assumption is crucial to all BSS problems as it reflects
that the sources are mutually independent allowing sepa-
ration. Following the assumption that the unknown sepa-
rating systemW is unitary, preventing the trivial solution,
the observed correlation matrices can be constructed where
{Rxx,k} = {HΛkHH} andH is chosen as a two by two
unitary mixing matrix,

H =
1√
2

[
1 −1
1 1

]
. (20)

This simulation compares the different optimization meth-
ods used in [1] with the global optimization solver rou-
tine glcCluster available in the TOMLAB software envi-
ronment. Equation (8) forms the objective to be optimized
while Equation (10) forms the constraint preventing a triv-
ial solution of the unknown separating systemW. Figure
1 shows the comparison of the convergence rates of each
optimization algorithm for ten independent runs with ten
distinct sets of correlation matrices. It is evident that with
the second order information available, convergence of the
Newton algorithm is much quicker. The optimization for
this particular instantaneous BSS problem where the system
is assumed to be unitary is performed on the Stiefel mani-
fold. The step sizeµ = 0.2 was used and the various slopes
of the different convergence curves of the gradient method
depends entirely on the ten different sets of randomly gen-
erated diagonal input matrices.

With the SGD and Newton methods, convergence to the
global minimum depends entirely on a good initial starting
pointW0. The starting point selected in this simulation was

W0 =
[

cos(1) −sin(1)
sin(1) cos(1)

]
. (21)

Although taking slightly longer to converge than the New-
ton method, the benefit of using global optimization solvers
such asglcCluster to solve the constrained optimization
problem is that no information on the initial starting point
is necessary for the global minimum to be found. This is an
important point as the goal of BSS problems is to separate
observed signals with the least amount of information and
assumptions as possible. Although techniques like geomet-
ric beamforming [4] are good procedures to allow feasible
starting points for optimization, they require additional in-
formation and assumptions on the problem space.

To investigate the performance of the extended instanta-
neous BSS algorithm to the convolutive case in the time



domain the SGD and Newton algorithm implementation
were slightly changed. As the constraint no longer requires
the unknown systemW to be unitary the constraint was
changed to that given in Equation (19). The technique of
weighted penalty functions was used to ensure the con-
straints preventing the trivial solution were met. No longer
performing the optimization on the Stiefel manifold the
SGD and Newton algorithms were changed and the steps
for each algorithm are shown in Tables 2 and 3 respectively.
A TITO two tap FIR known mixing system was chosen and
is given below in thez domain.

H(z) =
[

1 + z−1 −1 + z−1

−1 + z−1 1 + z−1

]
. (22)

The corresponding known unmixing system which would
separate mixed signals which are produced by convolving
the source signals with the TITO mixing systemH(z) given
above is

Wideal(z) =
[

1 + z−1 1− z−1

1− z−1 1 + z−1

]
. (23)

The convolution of these two systems in cascade would en-
sure the global systemG(z) = Wideal(z)H(z) would be
a delayed version of the identity, i.e.z−1I. Using matrix
multiplication to perform convolution in the time domain,
Equation (12) can be used to represent the equivalent struc-
ture of Equation (23),

Wideal =
[

1 1 1 −1
1 1 −1 1

]
. (24)

Setting the parametersµ = 0.6 and α = 0.2 we solve
the constrained optimization problem given in Equation
(19) using the SGD, Newton method and global optimiza-
tion solver(s) from TOMLAB. With the Newton method it
should be noted that in Table 3 a closed form expression for
the Hessian of the constraint has not been given. For this
part numerical differentiation using finite differences was
used to obtainH4. A set ofK = 15 real diagonal square
uncorrelated matrices for the unknown source input signals
were randomly generated. Using convolution in the time
domain a corresponding set of correlation matricesRτ

XX ,k

for each respective time instantk = 1, ..., 15 at multiple
time lagsτ were generated for the observed signals. Each
optimization algorithm was run ten independent times and
convergence graphs similar to the instantaneous case were
observed and are shown in Figure 2. The main difference
between Figure 1 and Figure 2 is that the algorithms take
longer to converge. This is due to the increased dimension
of unknown variables. Again the initialization of the SGD
and Newton algorithms plays an important role in the con-
vergence to either a local or global minimum. Initial values
for the estimated unmixing systemW were randomly gen-
erated by adding Gaussian random variables with standard
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Figure 1: Convergence of differing optimization methods
for instantaneous BSS.

deviationσ = 0.1 to the coefficients of the true system. For
the global optimization routineglcClusterin TOMLAB no
initial value for the unknown system is needed. This par-
ticular solver uses a global search to approximately obtain
the set of all global solutions and then uses a local search
method which utilizes the derivative expressions to obtain
more accuracy on each global solution.

After convergence of the objective function to an order
of magnitude approximately equal to10−16 the unknown
de-mixing FIR filter systemW in cascade with the known
mixing systemH(z) resulted in a global system which was
equivalent to a scaled and permuted version of the true
global systemz−1I as can be seen by the following exam-
ple,

G(0) =
[

0.008 0.003
0.008 0.003

]
,

G(1) =
[

0.007 −0.98
−0.87 0.006

]
,

G(2) =
[

0.013 −0.003
−0.013 0.003

]
.

(25)

5. CONCLUSION

A new method for convolutive BSS in the time domain us-
ing an existing instantaneous BSS framework has been pre-
sented. This method avoids the inherent permutation prob-
lem when dealing with solving the convolutive BSS prob-
lem in the frequency domain. Optimization algorithms in-
cluding SGD and Newton methods have been compared to
a global optimization routineglcClusteravailable in TOM-
LAB, a robust software package for solving global opti-
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Figure 2: Convergence of differing optimization methods
for convolutive BSS.

mization problems, for both the instantaneous and convo-
lutive mixing environments. Future work will be directed
at implementing the simulations with recorded data such as
speech and audio mixed in a real reverberant environment.
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