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ABSTRACT

This paper outlines a scalable to lossless coder, that is the coder
presented is a scalable coder that scales from lossy quality to
lossless quality. Lossless compression is achieved by concate-
nating a lossy, scalable transform coder with a scalable scheme
for the compression of the synthesis error signal. The lossless
compression results obtained are comparable with the state of
the art in lossless compression (that is a compression ratio rang-
ing from 1.74 to 5.27). The added advantage of the compres-
sion scheme presented is the scalability, which is obtained by
basing the lossy coder on the Set Partitioning In Hierarchical
Trees (SPIHT) algorithm.

1. INTRODUCTION

With the introduction of third generation cellular phone sys-
tems and the possible expansion of those systems, digital cellu-
lar phone users may in the near future have access to data rates
above 144 kbps [1]. This is a considerable increase on what
the second generation of mobile telephony presented, known
as GSM [1, 2], which in most implementations only provides
users access to 9.6 kbps of data [1]. Such an explosion in
the possible bit rate and the nature of the proposed bit streams
means that multimedia compression schemes may be adjusted
to allow for increased quality of the delivered product to the
user. The other well known medium of multimedia delivery,
the internet, is also experiencing an increase in possibilities
with the introduction of broadband technology.

The increase in bit rates means that audio compression al-

gorithms with higher bit rates than currently used, such as MPEG’s

mp3 [3], can be used to obtain higher quality. However, the
new increased data rates are not necessarily constant. This is
especially the case when considering the internet. As such,
scalable and lossless schemes have become rather interesting
from an application point of view.

Currently, lossless audio coding has been approached from
a signal model perspective [4],[51,[6]. The signal is typically
modelled using a linear predictor, which may either be FIR or
as in the case of [5] IIR. The compression ratio of such coders

typically depends on the nature of the audio signal being coded
and may range between 1.4 and 5.3 [4].

Similarly, scalable audio compression has been approached
from a signal model point of view. Recent scalable coding
schemes, such as the scheme described in [7], use a composite
signal model. The model is built through the combination of
Sinusoids, Transients and Noise (STN). The STN model of an
audio signal is described in detail in [7] and [8]. The scalability
obtained in [7] is mainly large step scalability, with more gran-
ular scalability made possible through theuse of an adequately
designed entropy code. The system in [7] is scalable between 6
kbps and 80 kbps, however as different frame lengths are used
to model the different signal components more adequately the
scheme is presented more as an ‘off-line’ tool in [7].

With the aim of standardizing a scalable compression scheme,
MPEG proposed different audio coders for different rates [3].
A scalable parametric coder has been adopted by MPEG as de-
scribed in [9], which is built around a sinusoidal model of the
audio signal.

Having described the advances in the bandwidth availabil-
ity for cellular telephones, and that for internet users, it is clear
that a compression scheme that combines both scalability and
lossless compression is of interest and potential use. MPEG
have started a process of standardization for such a scheme
[10].

In this paper we present an implementation of a scalable
audio coder that allows very fine granular scalability as well
as compression at the lossless stage. The compression scheme
is built around transform coding of audio. Particularly, the Set
Partitioning In Hierarchical Trees (SPIHT) algorithm [11] is
used to allow scalability as well as perfect reconstruction. The
results presented show that significant lossless compression is
obtained.

2. LOSSLESS AUDIO COMPRESSION

Lossless compression of audio aims to reduce the bandwidth or
memory required to transmit or store the original audio signal.
That is, the error between the original Pulse Code Modulated
(PCM) signal and the compressed version is zero. The major-
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Figure 2: Lossless Compression Using Transform Cod-
ing

ity of digital audio material in use today is quantized using 16
bits per sample and obtained at a sampling frequency of 44.1
kHz. That is the CD standard of a digital audio signal, however
other sampling rates may be used and a different quantization
scheme utilized.

A lossless compression scheme achieves the stated aim by
the removal of redundancy in the original signal. This redun-
dancy is typically removed by the use of a linear predictor [4].
The output of the linear predictor is treated as the approxima-
tion of the audio signal. The error between the original signal
and the approximate signal is typically coded through the use
of an entropy code, such as Huffman or Rice, which are loss-
less. Figure 1 illustrates a typical lossless scheme.

Lossless audio compression may be viewed as an adapta-
tion of more general lossless coding schemes such as ‘Lempel
Ziv’ [12] which attempt to reduce the storage capacity required
for a given set of samples. However, it has been found that such
algorithms only produce a small amount of compression when
applied to PCM audio signals [6], and hence the use of algo-
rithms that take advantage of the nature of the audio signal. The
linear prediction algorithms tend to use frame lengths of ap-
proximately 25 ms to take advantage of the pseudo-stationary
nature of the audio signal of that length.

1t has been argued in [13] that transform coding would be
more suitable for lossless compression as it models the audio
signal more accurately. Lossy audio compression is fundamen-
tally based on transform coding [14] as that allows the har-
monic nature of the audio signal to be captured. Based on this
model, the work in [13] proposes approximating the audio sig-
nal by the use of a transform coder and coding the error signal
by the use of an entropy code. Figure 2 shows the structure of
the lossless coder proposed in [13]. This approach is actually
very similar in nature to the linear prediction approach as the
use of the transform coder decorrelates the audio samples and
hence the transform coder operates on the same basic princi-

ples of decorrelation and entropy coding as the linear predic-
tion based lossless coders [4]. The compression ratios reported
in [13] again varied with the nature of the input audio signal
and ranged between 2.2 and 3.2 for the test set that was used,
which had some similarity with that presented in [4] but was
not exactly the same.

The vast majority of lossless compression algorithms can
be grouped under the two groups of prediction based coders
and transform based coders as described previously [4], [13],
[10]. However, such coders have been optimized to obtain
the greatest possible comi)ression at lossless operation. Also,
all the coders reviewed here are variable rate coders. Hav-
ing an optimized lossless scheme limits the ability to use such
a scheme in a scalable system. Similarly, a scalable system
should be theoretically scalable to lossless with a preferably
linear increase in perceptual quality. In the next section we
present a scalable to lossless scheme that allows bit rates to be
controlled bitwise. That is, each bit received adds to the quality
of the synthesized signal, in terms of signal to noise ratio.

3. A SCALABLE TO LOSSLESS SCHEME
USING SPIHT

To achieve lossless compression, that is to obtain zero error be-
tween the original signal and the synthesized signal, a number
of approaches may be taken. Section 2 discussed the current
approaches taken by researchers. Building on the approach of
[13], a lossy transform compression scheme may be combined
with a lossless compression scheme for the error signal. In our
case, the lossy transform scheme is actually a scalable scheme.
In a previous work involving SPIHT [15] we presented results
that indicated the developed coder produced very good syn-
thesized audio (that is, near perceptually insignificant error) at
rates around and above 56 kbps. That coder used the MLT, as
well as a perceptual model that removed perceptually insignif-
icant signal components.

The solution proposed here is also built on that system of
[15] but without the perceptual model. Figure 3 shows the pro-
posed coder The input signal is transformed using the MLT,
here floating point calculations are used, the signal is coded us-
ing SPIHT and the bit-stream transmitted to the decoder. We
will refer to the first bit stream as bit stream one. Bit stream -
one is decoded at the encoder and the synthesized audio is sub-
tracted from the original audio to obtain the output error. Here
integer operations are used so that the error output is integer,
and typically has a dynamic range that is equal to or less than
that of the original integer signal (otherwise the lossy compres-
sion scheme would not have done a good job of mimicking
the original signal). An Example of the difference in dynamic
range between the original audio signal and the synthesized
signal is shown in Figure 4 where the original signal is coded
at 64 kbps. The smaller dynamic range is important when cod-
ing a signal with losslessly (see the discussion in [16]). In the




present case, the given coefficients are in the time domain. Al-
though SPIHT was originally aimed at frequency domain sig-
nals [11], the error signal has an important property in common
with a frequency domain signal (that is one transformed from
the time domain) in that its individual samples are much less
correlated with each other than the original samples. In fact :
the more bits that are spent on the compression of the original Inp ut Audio (PCM)
signal the more white-noise like is the error signal. To illustrate
this, Figure 5 shows the PSD of two versions of the error signal
for a coded. frame of audio at rates of 64 kbps and 128 kbps. Normzrllize
Hence, the shrinking of the dynamic range improves the '
coding performance of SPIHT for the error signal, and the un-
correlated nature of the time domain error signal means that g’
\
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very little will be gained if the signal is transformed, and so in
this case it is not.

Having developed the idea to this stage, it is now impor-
tant to decide the rate to which the lossy side of the coder QPCM
operates. The accuracy of the synthesized signal to the orig- i
inal is dictated by the quantization resolution that is chosen in SPIHT Encode
SPIHT. Quantization resolution in this context refers to the res-
olution chosen to quantize the frequency domain transform co-
efficients, and should not be confused with the resolution used SPIHT Decode g
for the quantization of the time domain signal, which is 16 bits
PCM. Figure 6 shows the relationship between the SegSNR
and the quantization resolution used in SPIHT (here complete
reconstruction of the quantized transform coefficients is used). » SPIHT Encode
The 13 SQAM files (Cd guality, monotone) used in obtaining
the results discussed in this paper are listed in Table 1. The # 4
curves in the ﬁg\.lre a.rej quite line’ar indicating.a li.near trade-.off Bit Stream Two Bit Stream One
between synthesized signal quality and quantization resolution
(remember that in this case no perceptual model is being used).
As a matter of experience, a SegSNR of 50 dB produces very / y
good quality and so the quantization resolution that is used in
the first section of the coder has been set to 18 bits, as all of the
coded files show a SegSNR well above 50 dB at that quantiza-
tion resolution. 4

The combination of bit stream one and bit stream two gives ‘ Inv MLT
the complete bit stream which determines the rate of the coder.
The base rate which produces-theleast overall rate may be de- $
termined experimentally, Table 2 shows the results of an exper- ) Q
iment with a voiced section of signal x1. The table includes the PCM
first order entropy of the error signal, obtained with the equa-
tion:

4

SPIHT Decode SPIHT Decode

H(z) =~ p(z)log, p(z) (1) Output Audio (PCM)

z€X

The first order entropy indicates the expected limit to loss-
lessly code the error bit stream. Using this expected limit, the
expected-lowest rate is calculated. Table 2 shows that the low-
est expected rate is obtained when a base rate of 192 kbps is
used. This does not match the actual rate results exactly (the
final column in the table), yet it is close. The difference be-
tween the expected overall rate and the actual is due to the sort-
ing carried out by SPIHT. The entropy describes the minimum

Figure 3: The Scalable to Lossless scheme based on
SPIHT
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Table 1: The Signal Content

[ Signal Name | Signal Content | Signal Name |

Signal Content

x1 Bass

x9 English Female Speech

x2 Electronic Tune

x10 French Female Speech

x3 Glockenspiel

x11 German Female Speech

x4 Glockenspiel

x12 English Male Speech

x5 Harpsicord

x13 French Male Speech

x6 Horn

x14 German Male Speech

x7 Quartet

x15 Trumpet

x8 Soprano

x16 Violoncello

Comparison of the input signal
and the error signal at 64 kbps
T T T

Magnitude (quantized at 186 bits)
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Figure 4: The difference in the dynamic range between

the error signal and the original signal when the lossy

coder is operating at 64 kbps (the smaller signal is the

error)

number of bits required to faithfully recreate the error signal
[12], however this can only be used as an indication as to the
possible performance of SPTHT. The reason being that SPIHT
sorts samplés (or coefficienits), thus requiring sorting informa-
tion, but it also does not transmit insginificant bits or any zero
samples. The non-transmission of zero samples is actually a
saving on the typical implementation of an entropy code which
normally requires some bits (the number of which depends on
the statistics of the signal) to code each zero sample [12].

As the error signal is being sorted and coded in its time
domain form, each loop of SPIHT reduces the time domain
error between the original signal and the synthesized signal.

4. RESULTS

Table 3 shows the results for the lossless compression of the
SQAM files of Table 1. Most of the files show a compression
ratio that is above 2, which is competitive with the current state

Power Spectral densities of the original signat and the error at different rates
T T - T T

Magnitude (dB)

L
150
Samples in frequency

Figure 5: PSD of the error signal at 64 kbps and 128
kbps as compared to the original

of the art in lossless compression [4]. The lowest compression
ratio was 1.74 for female French speech, whilst the greatest
ratio obtained was 5.27 for an electronic tune. The average
compression ratio obtained was 2.46. ' As with other current
schemes, the compression ratio depends strongly on the con-
tent of the signal [4]. In most current schemes, the compression
ratio is higher for highly predictable signals that can be very
well modelled by the use of a linear predictor. In this case, and
because of the scalability capability, the more concentrated the
energy of the signal is in the frequency domain the higher the
compression ratio. The reason being that a signal with concen-
trated energy in the frequency domain is coded very well in the
first part of the coder and so a very small, highly uncorrelated,
error signal is produced leading to a high lossless compression
ratio overall.

5. CONCLUSION

‘We have presented a lossless compression scheme for CD qual-
ity audio that is at the same time scalable. To achieve this, a




Table 2: Experimental Results for The Overall Rate Given Various Base Rates

Base Rate | First Order Entropy | Total Rate Expected | Actual Error Rate | Actual Total Rate
(kbps) (bits per sample) (kbps) (kbps) (kbps)
64 7.02 374 344 408
80 6.48 366 329 409
96 6.01 362 305 401
128 5.24 359 273 401
192 3.72 356 213 405
256 2.56 369 170 426

SegSNR vs quantization levet for 13 of the SQAM files
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Figure 6: The SegSNR vs the quantization resolution
for the lossy side of the coder

scalable lossy scheme has been combined with a scalable time
domain scheme. Both schemes are built around SPIHT, and
the combination of these two schemes has produced lossless
compression results that are comparable with the current state
of the art. The results presented are mean bit rates, however
the coder does have the added advantage of having its bit rate
controlled to a resolution of one bit.
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