

Predicting the Benefit of Sample Size Extension in Multiclass k-NN Classification

Christian Kier¹ and Til Aach²

¹Institute for Signal Processing, University of Lübeck, D-23538 Lübeck, kier@isip.uni-luebeck.de ²Institute of Imaging and Computer Vision, RWTH Aachen University, D-52074 Aachen

Introduction

Experiments

Artificial Gaussian distributed set A:

- Obtaining training data is very costly in industrial classification problems.
- Classifier quality crucial for economic success.
- Usually multiclass classification problems.
- When do we have enough samples?

Objectives

- Give hint on best possible classifier performance with given problem.
- Gather enough training samples for desired classifier quality.
- Avoid gathering of too many samples.
- Make concrete statement on training set extension process.

Assumptions

• Asymptotical error rate $e_{\infty} = \lim_{n \to \infty} e(n)$ exists for chosen classifier.

- Test method on four data sets:
- 1. Optical media inspection set from industrial quality inspection, 20 features, 10 classes.
- 2. Modified NIST set [4] consisting of handwritten digits of size 28x28, 784 features, 10 classes.
- 3. Artificial Gaussian distributed set A(Class means table 1, class variances 1, Bayes error probability 39.6%).
- 4. Set \mathcal{B} like 3., Bayes probability 4.62%.
- Use N/2 training samples to fit model to measured error rate values
- Compare e_{∞} to minimum error rate in real world sets and to Bayes error probability $p_{R}(e)$ in artificial sets.
- Compare e(N) to extrapolated $e_m(N)$.
- Compare number of samples \hat{N} to reach e(n) to N.
- Table 1. Class means for sets A and B.

- Error rate e(n) converges towards e_{∞} .
- Specific problem is given.
- 3-NN is used for classification.

Idea

- Model e(n) through measurements on data set of size N.
- Decrease data set size by randomly removing samples.
- For every N estimate e(N) by crossvalidation.
- Fit model function $e_m(n)$ to measurements to extrapolate e(n) beyond N.
- Derive $e_m(n)$ based on error probability. For details see paper. Use k-NN probability density estimates given by [5]:

	Set	\mathcal{A}	Set \mathcal{B}	
Class	Feat. 1	Feat. 2	Feat. 1	Feat. 2
ω_1	1	1	2	2
ω_2	1	-1	2	-2
ω_3	-1	1	-2	2
ω_4	-1	-1	-2	-2

Results

Optical Media Inspection (OMI) data set:

Table 2. Estimation results for all data sets.

Data set	OMI	MNIST	\mathcal{A}	${\mathcal B}$
a	0.3721	0.2021	1.0176	0.8933
N	500	2000	200	200
\hat{N}	499	3577	_	43
e_b	15.75%	5.0%	39.6%	4.78%
e_{∞}	6.91%	-6.47%	40.56%	3.12%
e(N)	16.82%	12.64%	38.76%	4.62%
$e_m(N)$	16.79%	15.02%	41.01%	4.0%

 $e_b = \min$. error rate for sets 1 and 2 and $e_b = p_B(e)$ for \mathcal{A} and \mathcal{B} .

Conclusions

- Method performs best for OMI data set the targeted kind of problem.
- Parameter e_{∞} can be used as quality measure of other values.
- If $\hat{N} < N$ or $e(N) < e_{\infty}$ samples can be removed from the data set.
- If N = N and $e(N) = e_m(N)$ the model can be used to determine error rates beyond N

- with n_i being number of samples of class ω_i and V_k volume of the hypersphere around *x* spanning over *k* neighbours.
- Chosen model function:

 $e_m(n) = \frac{1}{n^a} + e_\infty$

- Determine parameters a and e_{∞} by nonlinear regression analysis.
- Convert equation to calculate number of samples needed for a desired error rate:

References

[1] B. V. Dasarathy. *Nearest neighbor classification* techniques. IEEE CS Press, 1990.

- [2] R. O. Duda, P. E. Hart, and D. G. Stork. *Pattern Classification*. John Wiley and Sons, 2nd ed., 2001.
- [3] H. M. Kalayeh and D. A. Landgrebe. *Predicting the* required number of training samples. IEEE T-PAMI, 5(6):664-667, 1983.
- [4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document *recognition*. Procs IEEE, 86(11):2278-2324, 1998.
- [5] B. W. Silverman. *Density estimation for statistics and* data analysis, vol. 26 of Monographs on Statistics and Applied Probability. Chapman and Hall, London, 1986.