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Introduction I

* Obtaining training data is very costly In
iIndustrial classification problems.

* Classifier quality crucial for economic
success.

* Usually multiclass classification
problems.

* When do we have enough samples?

Objectives I

* Give hint on best possible classifier
performance with given problem.

* Gather enough training samples for
desired classifier quality.

* Avoid gathering of too many samples.

* Make concrete statement on training set
extension process.

Assumptions I

e Asymptotical error rate e, =lim,__ e(n)
exists for chosen classifier.

e Error rate e(n) converges towards é..
e Specific problem is given.
* 3-NN Is used for classification.

ldea I

* Model e(n) through measurements on
data set of size M.

* Decrease data set size by randomly
removing samples.

e For every N estimate e(N ) by cross-
validation.

* Fit model function e, (n)to measurements
to extrapolate e(n) beyond N,

e Derive e, (n) based on error probability.
~or detalls see paper. Use k-NN
orobability density estimates given by [5]:
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with n.being number of samples of class

w, and V, volume of the hypersphere
around x spanning over k neighbours.

p(x|w;)=

e Chosen model function:

em(n)ziaJreoo

n

* Determine parameters g and e_ by
nonlinear regression analysis.

* Convert equation to calculate number of
samples needed for a desired error rate:

Experiments I

Test method on four data sets:

1. Optical media inspection set from
iIndustrial quality inspection, 20 features,
10 classes.

2. Modified NIST set [4] consisting of hand-
written digits of size 28x28, 784
features, 10 classes.

3. Artificial Gaussian distributed set A
(Class means table 1, class variances 1,
Bayes error probability 39.6%).

4. Set B like 3., Bayes probability 4.62%.

e Use N /2 training samples to fit model to
measured error rate values

e Compare e, to minimum error rate in real
world sets and to Bayes error probabillity
p(e) in artificial sets.

e Compare e¢(N) to extrapolated ¢, (N ) .

e Compare number of samples N to reach

e(n)to M.
Table 1. Class means for sets A and B.
Set A Set B
Class || Feat. 1 | Feat. 2 | Feat. 1 | Feat. 2
o 1 1 2 2
Wo 1 -1 2 -2
s 1 1 2 2
o4 1 1 2 2

Results I

Optical Media Inspection (OMI) data set:
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Modified NIST (MNIST) data set:
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Artificial Gaussian distributed set A :
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Artificial Gaussian distributed set B:
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Table 2. Estimation results for all data sets.

Data set OMI | MNIST A B

a || 0.3721 | 0.2021 | 1.0176 | 0.8933
N [ 500 2000 200 200
N 499 3577 - 13
e || 15.75% | 5.0% | 39.6% | 4.78%
oo || 6.91% | -6.47% | 40.56% | 3.12%
e(N) | 16.82% | 12.64% | 38.76% | 4.62%
em(N) || 16.79% | 15.02% | 41.01% | 4.0%

e, = min. error rate for sets 1 and 2 and e, = pg(e) for A and B.

Conclusions I

* Method performs best for OMI data set —
the targeted kind of problem.

* Parameter e, can be used as quality
measure of other values.

e If N<Nore(N)<e, samples can be
removed from the data set.

e If N=N and e(N)=e,(N)the model can
be used to determine error rates beyond N
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