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Introduction

● Obtaining training data is very costly in 
industrial classification problems.

● Classifier quality crucial for economic 
success.

● Usually multiclass classification 
problems.

● When do we have enough samples?When do we have enough samples?

Objectives

● Give hint on best possible classifier 
performance with given problem.

● Gather enough training samples for 
desired classifier quality.

● Avoid gathering of too many samples.
● Make concrete statement on training set 

extension process.
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 Conclusions

Assumptions

Experiments

Idea

● Asymptotical error rate 
exists for chosen classifier.

● Error rate converges towards     .
● Specific problem is given.
● 3-NN is used for classification.
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● Model    through measurements on 
data set of size   .

● Decrease data set size by randomly 
removing samples.

● For every    estimate          by cross-
validation.

● Fit model function       to measurements 
to extrapolate    beyond   .

● Derive      based on error probability. 
For details see paper. Use k-NN 
probability density estimates given by [5]:

with    being number of samples of class
     and      volume of the hypersphere 
around    spanning over    neighbours.

● Chosen model function:
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Results

● Method performs best for OMI data set – 
the targeted kind of problem.

● Parameter      can be used as quality 
measure of other values.

● If           or samples can be 
removed from the data set.

● If      and      the model can 
be used to determine error rates beyond 
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Artificial Gaussian distributed set    :

Artificial Gaussian distributed set    :

Table 2. Estimation results for all data sets.

Modified NIST (MNIST) data set:

Optical Media Inspection (OMI) data set:

Table 1. Class means for sets     and   .

● Use    training samples to fit model to 
measured error rate values

● Compare      to minimum error rate in real 
world sets and to Bayes error probability 

  in artificial sets.
● Compare      to extrapolated .
● Compare number of samples     to reach 

   to   .

Test method on four data sets:

1. Optical media inspection set from 
industrial quality inspection, 20 features, 
10 classes.

2. Modified NIST set [4] consisting of hand-
written digits of size 28x28, 784 
features, 10 classes.

3. Artificial Gaussian distributed set 
(Class means table 1, class variances 1, 
Bayes error probability 39.6%).

4. Set     like 3., Bayes probability 4.62%.
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● Determine parameters    and     by 
nonlinear regression analysis.

● Convert equation to calculate number of 
samples needed for a desired error rate:
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