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{phan,hertel,maass,mertins}@isip.uni-luebeck.de

Abstract
We present in this paper a simple, yet efficient convolutional
neural network (CNN) architecture for robust audio event
recognition. Opposing to deep CNN architectures with multi-
ple convolutional and pooling layers topped up with multiple
fully connected layers, the proposed network consists of only
three layers: convolutional, pooling, and softmax layer. Two
further features distinguish it from the deep architectures that
have been proposed for the task: varying-size convolutional fil-
ters at the convolutional layer and 1-max pooling scheme at the
pooling layer. In intuition, the network tends to select the most
discriminative features from the whole audio signals for recog-
nition. Our proposed CNN not only shows state-of-the-art per-
formance on the standard task of robust audio event recogni-
tion but also outperforms other deep architectures up to 4.5%
in terms of recognition accuracy, which is equivalent to 76.3%
relative error reduction.
Index Terms: audio event recognition, robustness, convolu-
tional neural networks, 1-max pooling

1. Introduction
The success of deep architectures in many applications is ex-
plained by their ability to discover multiple levels of features
from data. Inspired by this, many deep neural networks have
recently been proposed for audio event recognition. In [1, 2],
deep neural networks (DNNs) are first initialized using unsuper-
vised training with deep belief networks (DBNs) [3] and then
trained by the standard backpropagation. In order to deal with
event overlap, DNNs with multi-label classification schemes
have also been proposed [4]. Recently, various deep CNN archi-
tectures with multiple convolutional and pooling layers for hier-
archical feature extraction have also been employed [5, 6, 7, 8].
Although these deep networks showed promising performance,
especially under difficult conditions such as under interference
[1, 6] and event overlapping [4], they come with a significant
shortcoming. These deep architectures require equal-size in-
puts while the nature of audio events exhibits high intra- and
inter-class temporal durations. To go around this issue, the sig-
nals were decomposed into equal segments and the models were
then trained on these local features. In turn, the evaluation also
took place on local features followed by some voting schemes,
e.g. majority voting [1, 7, 8] and probability voting [7], to ob-
tain a global classification label. Although this adaptation helps
to facilitate the training and testing of the models, it is incapable
of capturing theshift-invarianceproperty [9] that the cochlea
and auditory nerve in the auditory system have [10]. This is re-
ally undesirable since a particular feature could be replicated at
anytime in the signal instead of its local segments.

We present a convolutional neural network architecture for
robust audio event recognition that is able to address these is-
sues. Our architecture is much simpler and more “shallow”. It
consists of three layers: convolutional, pooling, and softmax
layer. The convolution layer coupled with the pooling layer are
responsible for feature extraction and the final softmax layer is
in charge of classification. Our proposed architecture is differ-
ent from the deep ones that have been used for the task in many
aspects. Foremost, it takes the whole signals of audio events
as input instead of their small fractions. Second, we do not fix
the size of the convolutional filters at the convolutional layer
as in conventional CNNs but allow multiple filters with differ-
ent sizes to be learned simultaneously. Consequently, we are
able to capture features at multiple resolutions of audio signals.
Third, we do not pursuit subsampling at the pooling layer but
1-max poolingscheme. As a result, with the feature map in-
duced by convolving one of the filters on an input signal, we
only select the most prominent feature. The prominent features
produced by all filters are finally concatenated and presented to
the final softmax layer for classification. Furthermore, owing
to the 1-max pooling, the inputs to the network can be of any
arbitrary size. That is, we can naturally deal with the intra- and
inter-class temporal variation of audio events. Lastly, each con-
volutional filter can be thought of playing the role of a cochlear
filter which spikes on a specific feature of the signal [11, 10].
In addition, the feature is allowed to happen at any time in the
signal, i.e. it is shift-invariant.

2. The proposed approach
In this section we will present the spectrogram image features
that are used to represent audio signals. Afterwards, our pro-
posed CNN architecture will be described. The spectrogram
images are used as inputs for the network.

2.1. Spectrogram image features (SIF)

Given an audio signal, it is decomposed into overlapping seg-
ments from which a spectrogram is generated by short-time
Fourier transform. The short-time spectral column representing
a length-L segmentst(n) at the time indext is given by

S(f, t) =
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wheref = 0, . . . , (L
2
− 1) andφ(n) denotes aL-point Ham-

ming window. The spectrogram is then down-sampled in fre-
quency to keep aF -bin frequency resolution by averaging over
a window of lengthW = ⌊L/2F ⌋.



A de-noising step is finally performed by subtracting the
minimum value from each spectral vector over time:

Sdn(f, t) = S(f, t)−min
t

(S(f, t)), (2)

for f = 0, . . . , (F − 1). The short-time energye(t) can also be
appended to the spectrogram image as an augmented feature:

e(t) =

F−1
∑

f=0

Sdn(f, t). (3)

Our proposed SIF features are similar to those in [1]. How-
ever, instead of classifying on equal spectro-temporal patches
of the images, our classification is efficiently performed on the
whole varying-size spectrogram images.

2.2. 1-Max Pooling CNN

The proposed network consists of three layers, including con-
volutional, pooling, and softmax layer as illustrated in Figure 1.

2.2.1. Convolutional layer

We aim to use the convolutional layer to extract discrimina-
tive features within the whole signals that are useful for the
classification task at hand. Suppose that a spectrogram im-
age presented to the network is given in the form of a matrix
S ∈ R

F×T whereF andT denote the number of frequency
bins and the number of audio segments, respectively. We then
perform convolution on it via linear filters. For simplicity, we
only consider convolution in time direction, i.e. we fix the
height of the filter to be equal to the number of frequency bins
F and vary the width of the filter to cover different number of
adjacent audio segments.

Let us denote a filter by the weight vectorw ∈ R
F×w with

the widthw. Therefore, the filter containsF × w parameters
that need to be learned. We further denote the adjacent spectral
columns (e.g. audio segments) fromi to j by S[i : j]. The
convolution operation∗ betweenS andw results in the output
vectorO = (o1, . . . , oT−w+1) where

oi = (S ∗w)i =
∑

k,l

(S[i : i+ w − 1]⊙w)k,l. (4)

Here,⊙ denotes the element-wise multiplication. We then
apply an activation functionh to eachoi to induce the feature
mapA = (a1, . . . , aT−w+1) for this filter:

ai = h(oi + b), (5)

whereb ∈ R is a bias term. Among the common activation
fuctions, we choseRectified Linear Units(ReLU) [12] due to
their computational efficiency:

h(x) = max(0, x). (6)

To allow the network to extract complementary features and
enrich the representation, we learnP different filters simultane-
ously. Furthermore, the use of multiple resolution levels has
been shown important for the task [5] as the time duration that
yields salient features may vary depending on the event cate-
gories. In order to account for this, we learnQ different sets
of P filters, each of which has different widthw to form totally
Q× P filters.
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Figure 1: Illustration of 1-max pooling CNN architecture. The
network consists of two filter sets with two different widths
w = {3, 5} at the convolutional layer. There are two indi-
vidual filters on each filter set.

2.2.2. 1-max pooling layer

The feature maps produced by the convolution layer are for-
warded to the pooling layer. We employ 1-max pooling func-
tion [13] on a feature map to reduce it to a single most domi-
nant feature. Pooling onQ× P feature maps results inQ× P
features that will be joined to form a feature vector inputted to
the final softmax layer. This pooling strategy offers a unique
advantage. That is, although the dimensionality of the feature
maps varies depending on the length of audio events and the
width of the filters, the pooled feature vectors have the same
size ofP × Q. The same strategy has recently been proved
useful in different tasks of natural language processing owing
to its ability to cope with varying-size input texts, such as sen-
tences [14, 15]. Coupled with the 1-max pooling function, each
filter in the convolutional layer is optimized to detect a specific
feature that is allowed to occur at any time in a signal.

2.2.3. Softmax layer

The fixed-size feature vector after the pooling layer is subse-
quently presented to the standard softmax layer to compute
the predicted probability over the class labels. The network is
trained by minimizing the cross-entropy error. This is equiv-
alent to minimizing the KL-divergence between the prediction
distributionŷ and the target distributiony. With the binary one-
hot coding scheme and the network parameterθ, the error for
N training samples is given by:

E(θ) = −
1

N

N
∑

i=1

yi log(ŷi(θ)) +
λ

2
||θ||2. (7)

The hyper-parameterλ governs the trade-off between the error
term and theℓ2-norm regularization term. For regularization
purposes, we also employ dropouts [16] at this layer by ran-
domly setting values in the weight vector to zero with a pre-
defined probability. The optimization is performed using the
Adamgradient descent algorithm [17].



3. Experiments
3.1. Databases

We set up the standard experiment of the robust audio event
recognition task similar to current state-of-the-art works [18, 1,
6] so that the results are comparable.
Audio event database.We targeted 50 sound event categories1

from the Real Word Computing Partnership (RWCP) Sound
Scene Database in Real Acoustic Environments [19]. For each
category, we randomly selected 80 sound instances which were
divided into 50 instances for training and 30 instances for test-
ing. Out of 50 training instances, we left out 10 instances for
validation, and other 40 instances were used to tune the net-
works. It turns out that there are totally 2000, 500, and 1500
event instances for training, validation, and testing purpose, re-
spectively.
Noise database.As in [18, 1, 6], we chose four different en-
vironmental noises from NOISEX-92 database [20], including
“Destroyer Control Room”, “Speech Bable”, “Factory Floor
1”, and “Jet Cockpit 1”. Beside clean signals, we also created
noise-corrupted signals by randomly choosing one of four noise
signals to add to the clean signals at random starting points. The
noise signals were added with different level of 20, 10, and 0
dB signal-to-noise ratio (SNR). We evaluate both mismatched
condition (tranining with only clean event instances) and multi-
condition (training with both clean and noise-corrupted event
instances).

3.2. Parameters

Audio signals sampled at 16 kHz sampling frequency were di-
vided into 100 ms frames with a hop of 10 ms. Each frame
was analyzed with2048-point FFT to obtain a spectral column
which is then down-sampled as described in Section 2.1 to keep
F = 52 frequency bins. Although the SIFs can be of arbitrary
sizes, we zero-padded them column-wise in time direction to
ease the implementation.

The proposed CNN architecture involves different hyper-
parameters which are specified in Table 1. Although the hyper-
parameters were set to very common values, parameter search
can be done to further enhance the performance. The networks
were trained using the training set for 1000 epochs (mismatched
condition) and 500 epochs (multi-condition) with a minibatch
size of 100. During training the networks that maximize the
classification accuracy on the validation set will be retained.

3.3. Classification systems

We trained four different networks using our proposed architec-
ture:
• 1MaxCNN: our proposed SIF and 1-max pooling CNN (mis-

matched condition).
• 1MaxCNN-E: our proposed energy-augmented SIF and 1-

max pooling CNN (mismatched condition).
• 1MaxCNN-MC : our proposed SIF and 1-max pooling CNN

(multi-condition).
• 1MaxCNN-E-MC : our proposed energy-augmented SIF and

1-max pooling CNN (multi-condition).
We compare the classification accuracy against other systems
[18, 1, 6] with the standard experimental setup. They include
• MFCC-HMM [18]: Mel Frequency Cepstral Coefficients

(MFCC) with a Hidden Markov Models (HMM) backend.

1The specific event categories are based on unofficial communica-
tion with Jonathan W. Dennis, the author of [18].

Table 1: Hyper-parameters of the proposed CNN networks.

Hyper-parameter Value

Filter sizes {1, 3, . . . , 25}
Number of filterP for each size 100
Learning rate for the Adam optimizer 0.0001
Dropout rate 0.5
Regularization parameterλ 0.0001

• MFCC-SVM [18]: MFCC with a Support Vector Machine
(SVM) backend.

• ETSI-AFE [18]: above MFCC-SVM that is further evaluated
with an ETSI Advanced Front End toolkit enhancement [21].

• MPEG-7 [18]: a set of 57 low-level features coupled with
Principle Component Analysis (PCA) feature selection and a
HMM classifier.

• Gabor [18]: Gabor features followed by single-layer percep-
tron feature selection and HMM classification.

• GTCC [18]: Gammatone cepstral coefficients features with a
HMM backend.

• MP+MFCC [18]: MFCCs and Gabor features from top five
Gabor bases found by the matching pursuit (MP) algorithm
[22] backed with a HMM classifier.

• Dennis SIF [18]: a similar SIF and a SVM classifier.
• SIF-DNN [1]: a similar SIF and DNN classification (mis-

matched condition).
• SIF-DNN-MC [1]: a similar SIF and DNN classification

(multi-condition).
• SIF-CNN [6]: a similar SIF and deep CNN classification.
• SIF-IS-CNN [6]: an enhanced SIF by smoothing and deep

CNN classification.
• SIF-IS-DNN [6]: an enhanced SIF by smoothing and DNN

classification.
• MelFb-CNN [6]: an enhanced SIF features with Mel-

filterbank analysis and deep CNN classification.

3.4. Experimental results

3.4.1. Performance as a function of the filter width

We show in Figure 2 the performance of our systems in terms of
classification accuracy as a function of the filter widthw in dif-
ferent noise conditions. Whenw varies from small to large val-
ues, the features learned by the networks are expected to change
from detail to higher abstracted ones. As can be seen, in most
of the cases the accuracies grow with the increase ofw.

For the1MaxCNN system with mismatched condition, al-
though it shows good robustness in low to mid-range noise con-
ditions, it is less robust in harsh noise condition of 0 dB. In ad-
dition, when augmented with the short-time energy feature, the
system1MaxCNN-E exhibits strong sensitivity in noise condi-
tions. However, when being trained with multi-condition data,
both 1MaxCNN-MC and 1MaxCNN-E-MC expose remark-
ably strong robustness to all noise conditions. The reason is
that presenting the networks with mutli-condition data is not
only about data augmentation but also enforces them to learn
noise-robust filters.

3.4.2. Performance comparison

The comparison on classification accuracy of our systems and
the competitive systems is given in Table 2. Note that although
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Figure 2: Classification accuracy as a function of the filter width
w for different noise conditions.

our systems with a single filter size trained with multi-condition
data can easily outperform the best competitor, we use the sys-
tems with multiple filter widths in{1, 3, . . . , 25} (equivalent to
{100, 120, . . . , 340} ms respectively) for comparison here. It
is partly because of the clarity’s sake and partly because these
systems are able to capture features on multiple resolutions and
offer even better performance.

It can be seen that our system1MaxCNN performs sig-
nificantly better than all deep-architecture opponents on clean,
20 dB, and 10 dB conditions although it is incomparable with
the low-level feature systems (e.g. Gabor, GTCC) on the clean
conditions and less robust than some deep architectures (e.g.
SIF-CNN, SIF-DNN) in worst noise condition of 0 dB. Again,
when augmented with short-time energy features, the system
1MaxCNN-E exhibits its sensitivity in noise conditions al-
though 1.1% absolute improvement can be seen in the noise-
free condition.

On the other hand, our multi-condition trained systems
1MaxCNN-MC and1MaxCNN-E-MC show superior perfor-
mance compared to all deep-architecture opponents in all test-
ing conditions, especially in the hardest one of 0 dB. Compared
to the best deep-architecture competitor (i.e. SIF-IS-CNN),
1MaxCNN-MC shows absolute gains of 1.1%, 1.0%, 2%, and
12.2% on noise-free, 20 dB, 10 dB, and 0 dB conditions, re-
spectively. Those corresponding improvements obtained by
1MaxCNN-E-MC are even better with 1.8%, 1.7%, 2.7%, and
12.0%. These lead to average absolute accuracy gains of 4.1%
and 4.5% which are equivalent to relative error reduction rates
of 69.5% and 76.3% for1MaxCNN-MC and 1MaxCNN-E-
MC , respectively. Given the fact that multi-condition training
was reported to result in little benefit on the task (for example,
SIF-DNN-MC compared to SIF-DNN [1]), the performance of
our multi-conditioned systems are quite impressive.

3.5. Discussion

Our proposed 1-max pooling CNN shows very promising
performance even though we conservatively set the hyper-
parameters to very common values. Since there are many hyper-
parameters (e.g. the activation function, the filter width, the
number of filters, the learning rate, the dropout rate, the regu-
larization termλ), the chance to find a better set of values for
them via parameter tuning is actually large. Furthermore, it is

Table 2: Classification accuracy (%) comparison (results of the
competitive systems courtesy of [18, 1, 6]).

System clean 20dB 10dB 0dB mean

MFCC-HMM 99.4 71.9 42.3 15.7 57.4

MFCC-SVM 98.5 28.1 7.0 2.7 34.1

ETSI-AFE 99.1 89.4 71.7 35.4 73.9

MPEG-7 97.9 25.4 8.5 2.8 33.6

Gabor 99.8 41.9 10.8 3.5 39.0

GTCC 99.5 46.6 13.4 3.8 40.8

MP+MFCC 99.4 78.4 45.4 10.5 58.4

Dennis SIF 91.1 91.1 90.7 80.0 88.5

SIF-DNN 96.0 94.4 93.5 85.1 92.3

SIF-DNN-MC 94.7 95.8 92.1 87.7 92.6

SIF-CNN 97.3 97.4 95.7 83.1 93.4

SIF-IS-CNN 97.3 97.3 96.2 85.5 94.1

SIF-IS-DNN 86.7 86.4 85.3 73.5 83.0

MelFb-CNN 97.7 97.5 94.7 70.3 90.0

1MaxCNN 98.0 98.1 97.3 75.5 92.2

1MaxCNN-MC 98.4 98.3 98.2 97.7 98.2

1MaxCNN-E 99.1 88.5 74.9 50.3 78.2

1MaxCNN-E-MC 99.1 99.0 98.9 97.5 98.6

also worth further analyzing the sensitivity of the networks to
these hyper-parameter values.

On the other hand, for simplicity we fixed the height of the
filters equal to the number of frequency bins and only varied
the width of the filters in time. And by this, we only conducted
convolution in time direction. One possible improvement is to
additionally allow convolution in frequency dimension, for ex-
ample in different frequency subbands. However, the convolu-
tion should respect the order of the frequencies since it simply
matters for audio signals. Lastly, it is also interesting to visual-
ize the filters to see what the networks actually learn.

4. Conclusions

We presented a CNN network architecture that is efficient for
robust audio event recognition. Compared to deep CNNs, our
proposed architecture is relatively simple and more “shallow”.
Intuitively, with each convolutional filter coupled with 1-max
pooling scheme, our CNNs based on the proposed architecture
tend to extract the most discriminative and shift-invariant fea-
tures from the audio signals for recognition. In addition, we
can naturally deal with the temporal variations of audio events,
thanks to the 1-max pooling scheme. In an evaluation on the
standard task of robust audio event recognition, we obtain a rel-
ative error reduction of 76.3% compared to the reported results
from the best deep CNN opponent.
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