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ABSTRACT
The bag-of-audio-words approach has been widely used

for audio event recognition. In these models, a local fea-
ture of an audio signal is matched to a code word according
to a learned codebook. The signal is then represented by
frequencies of the matched code words on the whole sig-
nal. We present in this paper an improved model based on
the idea of audio phrases which are sequences of multiple
audio words. By using audio phrases, we are able to cap-
ture the relationship between the isolated audio words and
produce more semantic descriptors. Furthermore, we also
propose an efficient approach to learn a compact codebook
in a discriminative manner to deal with high-dimensionality
of bag-of-audio-phrases representations. Experiments on the
Freiburg-106 dataset show that the recognition performance
with our proposed bag-of-audio-phrases descriptor outper-
forms not only the baselines but also the state-of-the-art
results on the dataset.

Index Terms— audio phrase, bag-of-words, audio event,
recognition, human activity

1. INTRODUCTION

Machine hearing has recently received great attention [1]. In
particular, recognition of audio events is important for many
applications such as automatic surveillance, multimedia re-
trieval, and ambient assisted living. Apart from speech and
music, audio events can be indicative of natural sounds (e.g.
wind sounds, water sounds, and animal sounds) and artificial
sounds (e.g. laugh, applause, and foot steps) [2]. In this work,
we focus on the recognition of artificial sounds related to daily
human activities which are useful for ambient assisted living,
the new emerging application to tackle the fast aging popula-
tion problem [3, 4].

Many descriptors have been proposed to represent audio
events for recognition. In general, any features that are used
to describe an audio signal are also suited for audio events.
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Different hand-crafted representations have been proposed.
Most of them are borrowed from the field of speech recog-
nition, such as mel-scale filter banks [5], log frequency filter
banks [6], and time-frequency features [7, 8]. With the rapid
advance of machine learning, automatic feature learning is
becoming more common [9–11]. Among these techniques,
bag-of-words (BoW) models have been widely adapted to the
field and good performance has been reported [10–12].

Many audio events expose temporal structure, i.e. it is
possible to decompose them into atomic units of sound [13].
For example, the sound of a “using water tap” event may be
further composed of the sounds of the water running in the
tap, then pushing into the air, and finally splashing into the
sink. Therefore, aggregating temporal configurations of audio
events is a promising approach. The problem with the BoW
descriptors is that they are produced by unordered isolated
words, hence do not take the structural information into ac-
count. To model the temporal context for audio events, pyra-
mid BoW models [11] and n-gram extensions [14] have been
proposed.

In this work, we propose to use audio phrases which
are composites of multiple words. By grouping audio words
into phrases, we are able to encode the arrangement between
the words and capture the temporal information at a certain
degree. The idea is similar to the n-gram language mod-
els [14, 15] and the visual phrase concept in computer vision
field [16,17]. However, this class of representations confronts
one with the large induced dimensionality [14, 16, 17]. Our
proposed audio phrase focuses on coping with this problem.
The dimensionality of the bag-of-phrases (BoP) feature space
grows exponentially with the size of the codebook, which
hinders the conventional clustering-based codebook learning
approaches in which the number of audio words needs to be
reasonably large to obtain a good performance. To alleviate
this issue, we alternatively employ a classification model to
discriminatively learn a compact codebook in which the num-
ber of code words is equal to the number of target event cat-
egories. The experiments on the Freiburg-106 dataset show
that: (1) the BoW descriptors with the compact codebook
show superior performance compared to the clustering-based
counterparts, and (2) the recognition with BoP descriptors
outperforms not only the BoW and pyramid BoW baselines
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Fig. 1. Illustration of BoW and order-2 BoP descriptors produced for two different events. The events are simulated as two
sequences of matched code words of the codebook K = {A,B,C}.

but also the state-of-the-art results on the dataset in terms of
the f-score measure.

Our main contributions are two-fold. First, we propose
the concept of audio phrases which are combinations of mul-
tiple words and BoP descriptors for efficient audio event rep-
resentation. Second, we propose to learn a compact codebook
to deal with the large dimensionality of BoP feature space.

2. THE APPROACH

2.1. A typical BoW model

The BoW approach is a technique used to model an audio
signal using its local features. Typically, the signal is decom-
posed into multiple segments each of which is described by
a vector of low-level features. The goal is to quantize these
local features using a codebook. The codebook can be built
from the local features obtained by audio events in training
data using a clustering method such as k-means [12] or Gaus-
sian Mixture Model (GMM) [11]. In k-means based methods,
a code word is usually represented by the cluster centroid.
Within a probabilistic clustering framework, code words can
be represented by the GMM . A local feature vector is then
matched to a code word in the learned codebook with a cer-
tain weight. The weight assignment can be “hard” (e.g. with
k-means) or “soft” (e.g. with GMM). The descriptor for the
signal is finally produced by simply accumulating the weights
of the code words.

2.2. Audio phrases and BoP descriptor

While the audio words in a BoW model are unordered, it is
reasonable to group words into phrases which offer a higher
semantic information level to enrich the BoW representation.
Suppose that we have learned a codebook K = {c1, . . . , cK}
of size K from training data. Without loss of generality,
we denote an audio phrase P(ck1

,...,ckN
) of order N ≥ 1 as

an ordered sequence of N code words (ck1
, . . . , ckN

) where

ck1
, . . . , ckN

∈ K. As a result, there are totally KN possible
order-N audio phrases. It reduces to the standard BoW model
when N = 1.

Given an audio signal, we decompose it into a sequence
of S segments (x1, . . . ,xS) where xi is the descriptor of the
segment at the time index i. Each subsequence of N local
segments (xi, . . . ,xi+N−1) is then matched to the order-N
audio phrase P(ck1

,...,ckN
) with the assigned weight given by

W
(
P(ck1

,...,ckN
)|(xi, . . . ,xi+N−1)

)
=

N∏
m=1

W(ckm |xi+m−1).

(1)

Here, W(c|x) is the assigned weight by matching the seg-
ment x to the code word c. W can be a probability function
(e.g. using GMM-based clustering) or an indicator function
(e.g. using k-means clustering). The accumulated weight by
matching all possible order-N subsequences of the signal to
the audio phrase P(ck1

,...,ckN
) reads

W
(
P(ck1

,...,ckN
)|(x1, . . . ,xS)

)
=

S−N∑
i=1

W
(
P(ck1

,...,ckN
)|(xi, . . . ,xi+N−1)

)
. (2)

Eventually, the audio signal is represented by the weights ob-
tained by matching it to all possible order-N audio phrases.
In Fig. 1, we illustrate the BoW and BoP representations for
two simple simulated events.

It has been shown that audio events embed temporal
structure [13]. Descriptors that encode these temporal config-
urations would offer better discrimination. Recently, the ap-
proach using temporal pyramids of BoW representations [11]
has demonstrated state-of-the-art results on several bench-
mark datasets. This model encodes the temporal layouts by
splitting the audio signal into hierarchical cells, then com-
putes BoW representations for each cell, and concatenates all



the representations at the end. Towards this goal, the ratio-
nal behind using phrases is to model the co-occurrences of
the words in local neighborhoods, and therefore encode the
temporal configuration of the events.

Furthermore, the BoP representations also exhibit a de-
noising property. Usually, if there exist sharing features be-
tween audio events [18], in which two events may have sim-
ilar subsequences, they likely occur in patterns of multiple
consecutive segments. The intermittent occurrence of a code
word, which is different from its neighbors, should be consid-
ered as noise, and therefore, filtered out. Let us revisit the ex-
ample in Fig. 1. Two different events have the code word “C”
in common which should be considered as noise. Compari-
son of the BoW descriptors, e.g. histogram intersection, will
result in a positive similarity value due to the positive weights
assigned to “C”. Whereas, the similarity value is zero when
using the BoP descriptors. In other words, using the BoP de-
scriptors has canceled out the noisy “C” and increased the
distinction between two events.

2.3. Discriminative learning of compact codebook

For the BoW models that use clustering methods for code-
book learning, the performance heavily depends on the code-
book size. More often than not, the codebook size is multiple-
order larger than the number of target event categories. To
support our argument, we show in Fig. 2 the performance of
the baseline system using a BoW model (more details in Sec-
tion 3) on the Freiburg-106 dataset [19] as a function of code-
book size. The codebook was constructed using k-means. It
can be seen that a codebook size of 200 is a good choice in
this case. Given the fact that the number of event categories
is 22, the codebook size is about ten times larger. On the
other hand, using this codebook, the feature space induced by
the order-N BoP has the dimensionality of 200N . It is 4×104
withN = 2 and 8×106 withN = 3. This exponential growth
of dimensionality makes clustering-based codebook learning
inappropriate for the BoP models.

We propose to learn a compact codebook in a supervised
manner to alleviate the high-dimensionality problem. While
the conventional clustering methods ignore the labeling infor-
mation, integrating them into the codebook construction of-
fers more discrimination power [20]. Inspired by this, rather
than using clustering, we employ classification models for
codebook matching. As a result, the codebook size is equal
to the number of target event categories, and the dimension-
ality of the BoP descriptors will be magnificently reduced.
Although multiple one-vs-rest binary classifiers would suite
this goal, we use random-forest classification [21] to learn a
multi-class classifier at once. Moreover, random forest natu-
rally supports probability outputs. Therefore, both hard and
soft codebook matching can be explored simultaneously.

Suppose that we have C event categories of interest, and
hence, the number of code words is K ≡ C. Furthermore,
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Fig. 2. Performance variation of the BoW model on the
Freiburg-106 dataset as a function of codebook size.

suppose that we have learned the random forest classifierM
for codebook matching from training audio segments. The
soft assigned weight by matching an unseen audio segment x
to a code word c ∈ {1, . . . , C} reads

W(c|x) = P (c|x). (3)

Here, P (c|x) is the probability that x is classified as class c.
On the other extreme, the hard assignment yields the weight

W(c|x) = I(c = ĉ|x), (4)

where

ĉ = argmax
c∈{1,...,C}

P (c|x), (5)

and

I(c = ĉ) =

{
1, if c = ĉ
0, otherwise. (6)

It will be shown in the experiments that the hard assign-
ment scheme produces much sparser descriptors compared to
those obtained with the soft assignment scheme at the cost of
lower recognition accuracies.

3. EXPERIMENTS

3.1. Experimental setup

Test datasets. We tested our approach on the Freiburg-106
dataset [19]. This dataset was collected using a consumer-
level dynamic cardioid microphone. It contains 1,479 audio-
based human activities of 22 categories. Several sources of
stationary ambient noise were also present. As in [19], we
divided the dataset so that the test set contains every second
recordings of a category, and the training set contains all the
remaining recordings1.

Parameters. Each audio signal was decomposed into a
sequence of 50 ms segments with a step size of 10 ms. We
trained a classifierM using random-forest classification [21]

1This is based on unofficial communication with the authors of [19].



with 200 trees for codebook matching. For the purpose of
classification, an audio segment was labeled with the label of
the event from which it originated.

Audio event classification models. Our event recogni-
tion systems were trained on the BoP descriptors using one-
vs-one support vector machine classification (SVM) with his-
togram intersection kernel. To extract the descriptors for the
training events, we conducted 10-fold cross validation on the
training data. The hyperparameters of the SVMs were tuned
via leave-one-out cross-validation.

Baseline systems. We compare the performance of our
systems with two baseline systems:
1. Bag-of-words system (BoW): this system used a BoW

model which has been widely used for audio event recog-
nition [10, 12]. Using this model, an audio event is repre-
sented by a histogram of codebook entries.

2. Pyramid bag-of-words system (pBoW): We extracted
BoW descriptors on different pyramid levels [22] to en-
code temporal structure of audio events. This approach
has recently achieved state-of-the-art results on different
benchmark datasets [11].
For all baselines, we used k-means for unsupervised code-

book learning. The entries were obtained as the cluster cen-
troids, and codebook matching was based on Euclidean dis-
tance. We used different codebook sizes {50, 75, . . . , 250}.
In particular, we tried 2, 3, and 4 pyramid levels for the pBoW
systems. In addition to standard SVM, nonlinear SVMs with
radial basis function (RBF), χ2, and histogram intersection
kernels were also implemented. All the hyperparameters were
tuned by cross-validation. Finally, the systems which ob-
tained the best performance were compared with our systems.

Evaluation metrics. For evaluation, we used the f-score
metric, which considers both precision and recall values, to
compare recognition accuracies:

f-score = 2× precision× recall
precision + recall

. (7)

3.2. Experimental results

Efficiency of the discriminative codebook. Let us denote
an order-N BoP system as BoP-N . To show the advantage
of the discriminative compact codebook, we compare the per-
formance achieved by our BoP-1 systems (both hard and soft
assignment schemes) with those of the baselines as in Ta-
ble 1. It is worth emphasizing that no structural information
was introduced in the model with the order-1 BoP descrip-
tors, thus, they are essentially bag-of-words descriptors with
the discriminative codebook. For the baselines, the best per-
formances were obtained with the χ2 kernel and a codebook
size of 200. On the other hand, a pyramid level of two is
found optimal for the pBoW baseline. It can be seen that our
systems consistently outperform all baselines. Individually,
our BoP-1 systems achieve equivalent or higher f-score on 17

Table 1. Recognition performance comparison in terms of
f-score (%) of the BoP-1 systems and the baselines. We
marked in bold where the BoP-1 systems give equal or bet-
ter performance than both BoW and pBoW baselines.

Event Type ID BoW pBoW hard
BoP-1

soft
BoP-1

background 1 76.9 80.0 82.9 88.9
food bag opening 2 96.3 96.3 98.7 98.7
blender 3 100 100 100 100
cornflakes bowl 4 92.3 92.3 97.3 97.3
cornflakes eating 5 97.7 100 100 100
pouring cup 6 100 100 95.7 100
dish washer 7 96.7 97.8 97.8 98.9
electric razor 8 98.8 98.8 100 100
flatware sorting 9 91.9 91.9 92.3 92.3
food processor 10 91.9 91.9 100 97.1
hair dryer 11 100 100 100 100
microwave 12 97.9 96.8 100 100
microwave bell 13 100 100 100 100
microwave door 14 96.5 96.5 96.4 93.8
plates sorting 15 100 99.3 97.8 98.5
stirring cup 16 100 100 100 100
toilet flush 17 95.9 95.0 95.3 96.8
tooth brushing 18 96.3 96.3 100 100
vacuum cleaner 19 98.7 98.7 100 100
washing machine 20 100 100 100 100
water boiler 21 100 100 100 100
water tap 22 98.2 98.2 97.3 99.1

Average 96.6 96.8 97.8 98.3

out of 22 and 20 out of 22 event categories with the hard and
soft assigment schemes, respectively. They also outperform
the state-of-the-art results on the dataset reported in [19] with
5.4% and 5.9% relative improvements on average f-score, re-
spectively.

Increasing the order of the BoP descriptors. In this ex-
periment, we studied how the recognition performance and
the sparseness of the BoP descriptors change with increasing
orders. With a higher order, we are able to encode higher-
level dependency between the isolated words in the BoP de-
scriptors. We show in Table 2 the recognition performance of
the BoP descriptors with different orders N = {1, 2, 3, 4} for
both hard and soft assignment schemes. One can clearly see
the upward trend in f-score of the soft-assignment BoP sys-
tems when the order increases. The BoP-4 system achieves
an improvement of 0.6% on f-score compared to the BoP-1
system. Given the high-level accuracy of the BoP-1 system,
this improvement is very meaningful. When comparing the
BoP-4 system to the pBoW baseline which takes into account
the temporal structure of the events, an improvement of 2.1%
on f-score is seen. Nevertheless, the upward trend is not clear
on the system with the hard assignment scheme, most likely



Table 2. Recognition performance and sparseness of the BoP
descriptors with different orders.

BoP-1 BoP-2 BoP-3 BoP-4
hard f-score

(%)
97.8 97.8 98.0 97.8

soft 98.3 98.7 98.7 98.9
hard sparseness

(%)
81.53 97.74 99.81 99.99

soft 8.57 23.23 38.74 52.29

due to higher quantization errors. It is also expected that the
performance will level off at a certain order.

It is also worth analyzing the sparseness of the BoP de-
scriptors. We measure the sparseness by the percentage of
zeros in all descriptors. It can be seen in Table 2 that when
the order increases, the descriptors become sparser. In addi-
tion, the hard-assignment descriptors are much sparser than
the soft-assignment counterparts, especially at high orders.
Therefore, although the dimensionality of the BoP feature
space grows fast with increasing orders, computation and
storage can be very efficient due to the sparseness.

4. CONCLUSIONS

We introduced in this paper the idea of bag-of-audio-phrases
descriptor to represent audio events. An audio phrase is de-
fined as a sequence of multiple words. By using phrases
instead of isolated words, we are able to capture temporal
structure information of the events. We also proposed to
employ classification models to discriminatively learn a com-
pact codebook to cope with the high dimensionality induced
by high-order audio phrases. The empirical results on the
Freiburg-106 show that recognition with the discriminative
codebook achieves much better performance compared to
conventional clustering-based codebook. Furthermore, using
bag-of-audio-phrases descriptors, our recognition systems
outperform all baselines and the state-of-the-art results in
terms of the f-score measure.
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