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ABSTRACT

Audio event detection has been an active field of research in recent
years. However, most of the proposed methods, if not all, analyze
and detect complete events and little attention has been paid for early
detection. In this paper, we present a system which enables early au-
dio event detection in continuous audio recordings in which an event
can be reliably recognized when only a partial duration is observed.
Our evaluation on the ITC-Irst database, one of the standard database
of the CLEAR 2006 evaluation, shows that: on one hand, the pro-
posed system outperforms the best baseline system by 16% and 8%
in terms of detection error rate and detection accuracy respectively;
on the other hand, even partial events are enough to achieve the per-
formance that is obtainable when the whole events are observed.

Index Terms— Early detection, audio event detection, online
detection, regression forests

1. INTRODUCTION

Recognizing audio events from audio streams arises in a variety
of applications ranging from ambient intelligence [1, 2] to surveil-
lance [3,4]. A temporal event has a duration, and by early detection,
as in [5], we mean to detect the event as soon as possible, after it
starts but before it ends. This idea is illustrated in Fig. 1. In many
situations, the reliable early detection of the target events is crucial,
because without it, the intended application would fail. As in the ex-
ample from [5], when one wants to build a robot that interacts with
humans, reliable and rapid event detection is a key requirement so
that the robot can make appropriate responses in a timely manner.
Otherwise, the responses would be out of synchronization. For an-
other application in which a camera surveillance system is guided
by audio event detection [4], the system needs to detect the events
and take actions as fast as possible. Directing the cameras after the
events are already completed may be too late, as the objects already
moved. In general, the earliness of detection without scarification of
the accuracy is always preferable.

Despite the importance of early detection, little attention has
been paid. Recently, a few works were explicitly proposed in
other fields (e.g. computer vision [5, 6]). Past research in au-
dio event detection can be roughly classified into two approaches:
detection-by-classification [2, 7] and HMM-based joint classifica-
tion/segmentation [8, 9]. Nevertheless, they were interested in de-
tecting complete events and no reports on the perspective of early
detection has been found. Furthermore, from analysis in [5], the
detectors based on these methods are usually trained to recognize
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Fig. 1. Can we even detect a laugh event before it finishes? (a)
waveform and (b) spectrogram.

complete events only and they require observing the entire event for
a reliable decision. Consequently, using them for online early detec-
tion, which requires the ability to recognize a partial event, would
result in unreliable decisions. The reason is that reliable early detec-
tion requires a monotonically growing detection scoring function [5]
that is not easy to obtain with a simple solution based on these meth-
ods.

Although the structured output SVM framework [5] can be
adapted for early audio event detection, we alternatively propose a
learning formulation with decision forests framework [10]. Moti-
vated by the works of Phan et al. [11,12], in which the joint event de-
tection/segmentation is posed as a regression problem and resolved
with random regression forests, we re-formulate the joint problem
to accommodate sequential data for early detection. We simulate
an audio stream as sequential superframe-by-superframe data arrival
and detect the events correctly when their partial durations are ob-
served. We further prove the monotonicity of the detection scoring
function derived from our formulation. The proposed system also
obtains the temporal extents of the detected events and provides an
efficient event tracking mechanism as joint results. Compared to the
structured output SVM framework [5], our formulation based on de-
cision forests offers numerous advantages. First, it is unnecessary
to augment the training process with partial events which exponen-
tially grows the size of the training data. Second, our system does
not perform quadratic temporal scale search for detection. Last but
not least, the monotonicity of the scoring function in [5] may be no
longer valid for periodic events, which is common for audio events,
but it is not the case in our formulation.

The experimental results on the ITC-Irst database shows that
while the proposed system inherits the state-of-the-art performance,
it always makes faster detection on all target event categories without
losing the detection accuracy. In comparison with the common com-
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Fig. 2. The onset displacement ds and the offset displacement de of
a superframe at the time t to the event onset ts and offset te.

peting methods (which can only run in offline mode), the proposed
system significantly outperforms all of them in terms of detection
error rate and detection accuracy.

2. RANDOM REGRESSION FORESTS FOR EVENT
ONSET AND OFFSET ESTIMATION

2.1. Training

The construction of the regression forests for a target event cate-
gory is supervised, following the common decision forests frame-
work [10]. The isolated events in training data are divided into in-
terleaved superframes [11] (the description of a superframe will be
entailed in Section 4.1) to obtain the set of annotated superframes
S = {(xi,di)}. A superframe is represented by x ∈ RM where M
is the dimensionality. d = (ds, de) ∈ R2

+ denotes the displacement
vector (in superframes) of the superframe to the event onset ts and
offset te inclusive, as illustrated in Fig. 2. The onset displacement
ds and offset displacement de are computed as

ds = t− ts, (1)
de = te − t. (2)

In order to construct a tree of the regression forest F , a subset
of superframes is randomly sampled from S. Starting from the root,
at a split node ` a set of binary tests tf,τ defined in (3) is generated.

tf,τ (x) =

{
1, if xf > τ
0, otherwise. (3)

Here, xf denotes the value of x at the random selected feature chan-
nel f ∈ {1, . . . ,M}. The variable τ is a random threshold generated
in the range of xf . An optimal test is then adopted from the test set
to split the superframe set S` at the split node ` into two sets S right

`

and S left
` :

S right
` ={(x,d) ∈ S`

∣∣tf,τ (x) = 1}, (4)

S left
` ={(x,d) ∈ S`

∣∣tf,τ (x) = 0}. (5)

S right
` and S left

` are subsequently sent to the right and the left child
nodes, respectively. The adoption criteria is to minimize the dis-
placement uncertainty U :

U =
∑∥∥d left

i − d̄ left
∥∥2
2

+
∑∥∥d right

i − d̄ right
∥∥2
2
. (6)

Here, d̄ denotes the mean displacement vector of the corresponding
superframe set indicated by the superscript. By this, the superframes
are clustered by both their features and their relative positions to
event onsets and offsets.

The splitting process is recursively repeated until the maximum
depth Dmax is reached or a minimum number of superframes Nmin

is remained. Then a leaf node will be created. The displacement
vectors of the remaining superframes at the leaf node are modeled
and stored as a two-dimensional Gaussian distributionN (d

∣∣d̄,Γ):

N (d
∣∣d̄,Γ) =

1

2π
√

det(Γ)
exp

(
− 1

2
(d− d̄)TΓ−1(d− d̄)

)
. (7)

where d̄ = (d̄s, d̄e) and Γ =

(
Γs 0
0 Γe

)
are, respectively, the

mean and the covariance matrix of the displacement vectors. How-
ever, for simplicity we do not consider covariance between onset and
offset displacements. That is, N (d|d̄,Γ) is equivalent to two uni-
variate Gaussian distributionsNs(d|d̄s,Γs) andNe(d|d̄e,Γe):

Ns(d
∣∣d̄s,Γs) =

1√
2πΓs

exp
(
− (d− d̄s)2

2Γs

)
, (8)

Ne(d
∣∣d̄e,Γe) =

1√
2πΓe

exp
(
− (d− d̄e)2

2Γe

)
. (9)

The above algorithm is repeated to grow all the trees in the forest F .

2.2. Testing

Given a test superframe x, we aim at estimating its displacements
from the onset and offset of a target event using the learned regres-
sion forest F . We input x into a tree Ti of F . At each split node,
the stored binary test is evaluated on x, directing it either to the right
or left child until ending up at a leaf node `i. From (8) and (9), esti-
mates of the onset and offset displacements are obtained in terms of
the Gaussian distributions stored at `i:

pds(d|`i,x) = Ns(d
∣∣d̄`is ,Γ`is ), (10)

pde(d|`i,x) = Ne(d
∣∣d̄`ie ,Γ`ie ). (11)

The posterior probabilites are finally computed by summing up
pds(d|`i,x) and pde(d|`i,x) over all trees of the forest F :

pds(d|x) =
1∣∣F∣∣ ∑

i

Ns(d
∣∣d̄`is ,Γ`is ), (12)

pde(d|x) =
1∣∣F∣∣ ∑

i

Ne(d
∣∣d̄`ie ,Γ`ie ). (13)

Here
∣∣F∣∣ denotes the number of trees of the forest F . The expecta-

tions of pds(d|x) and pde(d|x), respectively, indicate the onset and
offset displacements estimated by the superframe x.

2.3. Inference

In online scenarios, we want to estimate where in time an event starts
and ends in a continuous audio signal. Let t and t′ both denote the
time index. From (12) and (13), an event superframe xt′ at the time
t′ gives estimates of the onset and offset displacements as

pds(d|xt′) =
1∣∣F∣∣ ∑

i

Ns(d
∣∣d̄`is ,Γ`is ), (14)

pde(d|xt′) =
1∣∣F∣∣ ∑

i

Ne(d
∣∣d̄`ie ,Γ`ie ). (15)

From (1) and (2), estimates for the onset and offset positions are
then obtained by placing Nds(d

∣∣d̄`is ,Γ`is ) in (14) at d̄`is backward
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Fig. 3. Estimation for event onset and offset positions: placing the
onset displacement Gaussian backward and the offset displacement
Gaussian forward from t′.

from t′ andNde(d
∣∣d̄`ie ,Γ`ie ) in (15) at d̄`ie forward from t′:

pts(t|xt′) =
1∣∣F∣∣ ∑

i

Ns(t
∣∣t′ − d̄`is ,Γ`is ), (16)

pte(t|xt′) =
1∣∣F∣∣ ∑

i

Ne(t
∣∣t′ + d̄`ie ,Γ

`i
e ). (17)

This step is illustrated in Fig. 3. The estimates by all superframes are
accumulated to yield the confidence scores that the onset and offset
positions of the target event coincide at a time t:

fs(t) =
∑
t′

pts(t|xt′), (18)

fe(t) =
∑
t′

pte(t|xt′). (19)

Ideally, if there exists only one event instance in the signal, its
onset and offset positions can be determined as:

t̂s = arg max
t

fs(t), (20)

t̂e = arg max
t

fe(t). (21)

However, an audio stream typically contains multiple event occur-
rences, one after another, which must be detected sequentially. We
propose an online detection mechanism in the Section 3.3.

3. EARLY AUDIO EVENT DETECTION SYSTEM

3.1. Early audio event detection on audio streams

For early event detection from the audio streams which come in se-
quentially, superframe-by-superframe, we mean to detect the event
as soon as possible before it finished. Fortunately, as can be seen
from (18) and (19), our system accommodates for sequential data
very well. On another hand, our scoring functions show the mono-
tonicity property, i.e. the confidence scores will increase as long as
we observe more superframes. While this property is essential for
reliable early detection [5], it cannot be assured by a naive solution
that simply detects a partial event.

Without loss of generality, let us assume a sequence of super-
frames of length L starting from t0. The sequence contains only one
target event starting at t1 and ending at t2, where t0 < t1, t2 < L.
Furthermore, let maxtcur (fs) denote the maximum onset confi-
dence score accumulated up to the time tcur , where t0 ≤ tcur < L
and fs is given in (18). We have

maxtcur (fs) = max
( tcur∑
t′=t0

pts(t|xt′)
)
. (22)
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Fig. 4. When both accumulating fs and fe reach the threshold, the
target event is considered detected.

The position corresponding to maxtcur (fs) is the estimated event
onset up to tcur . Firstly, it is easy to show the strictly monotonicity
property of maxtcur (fs), i.e. maxtcur (fs) < maxtcur+1(fs), on
event duration as below

maxtcur (fs) = max
( tcur∑
t′=t0

pts(t|xt′)
)

< max
( tcur∑
t′=t0

pts(t|xt′) + pts(t|xtcur+1)
)

= max
( tcur+1∑
t′=t0

pts(t|xt′)
)

= maxtcur+1(fs). (23)

Inspecting in different disjoint segments of [t0, L), we have

maxtcur (fs) = maxtcur+1(fs) = 0, t0 ≤ tcur < t1, (24)
maxtcur (fs) < maxtcur+1(fs), t1 ≤ tcur ≤ t2, (25)
maxtcur (fs) = maxtcur+1(fs) = maxte(fs), t2 < tcur < L.

(26)

The proof for the offset scoring function fe can be obtained likewise.
It can be interpreted that the more we know about the target event,
the more we gain in terms of our prediction confidence.

Now, the question is how many superframes we need to detect
an event reliably? To address this question, we need to determine
a threshold for the confidence scores. For simplicity, we employ a
common threshold for both onset and offset confidence scores fs
and fe. Due to the fact that the scores are noisy, yet their peaks
are dominant above the noise floor [11], the threshold just needs
to be right above the noise floor for reliable detection. As soon as
both accumulating scores reach the threshold, the event is considered
detected as illustrated in Fig. 4. We determine the threshold by cross
validation as described in Section 4.

3.2. Handling multi-class event categories

Our regression forests are specific for a target event category. In
general, it is common that multiple event types are targeted. Out
of Y event categories of interest, we trained a regression forest Fy
for each category y ∈ {1, . . . ,Y}. Due to the fact that the regres-
sion forests were trained with class-specific data, it is necessary to
provide them with class-specific data to make proper estimates. We
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Fig. 5. The multi-class audio event detection system.

perform a superframe-wise classification step before regression. The
architecture of the multi-class event detection system is illustrated in
Fig. 5. The superframes are firstly passed to the binary classifier
Mbg which filters out the background and only allows event super-
frames passing through. Subsequently, these event superframes are
classified as one of the event categories of interest by the multi-class
classifier Mev . Finally, a superframe recognized as class y is in-
putted to the regression forest Fy for estimation.

We trained the classifiers Mbg and Mev with random forest clas-
sification [13] which is computationally efficient for large data sets.
More importantly, we take advantage of its probability support to
further improve the system performance. An event superframe is
weighted by its recognition confidence outputed by Mev . As a re-
sult, (18) and (19) are re-written as:

fs(t) =
∑
t′

δŷt′ ,y · p(ŷt′ = y) · pts(t|xt′), (27)

fe(t) =
∑
t′

δŷt′ ,y · p(ŷt′ = y) · pte(t|xt′). (28)

Here, ŷt′ denotes the predicted label of xt′ and δ is Kronecker delta
function. p(ŷt′ = y) is the probability that the predicted class label
ŷt′ equals y. By weighting, a superframe recognized with higher
confidence will reasonably contribute more into the estimation.

3.3. Event detection in action

Early event detection requires realtime processing, and therefore,
target events, if they occur more than once, must be detected sequen-
tially. We propose a detection mechanism as follows. The detector
keeps two confidence scoring sequences, one for onset estimation
and the other for offset estimation, centered at the current time index.
Due to high variation in event durations, we set the size of the scor-
ing sequences to twice the maximum length of the training events.
The detector reads from a data stream and continuously monitors
the occurrence of a target event. As a superframe arrives, its esti-
mation is accumulated to the confidence scores. As long as we find
a pair of maximum confidence scores above the detection threshold
in chronological order, the maximum onset score at a position in the
past and the maximum offset score in the future relative to the cur-
rent time index, a target event is considered detected. Moreover, if
a target event is detected, its temporal extent is determined as the
interval starting from the estimated onset position and ending at the
estimated offset position. Furthermore, due to the monotonicity of
the scoring functions, during the event interval, both scoring peaks
remain above the threshold. This provides an automatic mechanism

to track the event. The event is recognized as complete when the
position with the offset scoring peaks passes the current time index.
After that, the process restarts to detect the upcoming target event.
Thus, at any time, the detector needs to detect at most one target
event.

4. EXPERIMENTS

4.1. Experiment setup

Databases. We conduct experiments on the ITC-Irst database [14]
which was recorded in meeting-room environments and do not con-
tain event overlap. The database consists of twelve recording ses-
sions. There are totally 16 semantic event categories with approx-
imately 50 events recorded for most of the categories. In accor-
dance with the CLEAR 2006 challenge [15], we only took into ac-
count twelve classes for evaluation: door knock (kn), door slam (ds),
steps (st), chair moving (cm), spoon cup jingle (cl), paper wrapping
(pw), key jingle (kj), keyboard typing (kt), phone ring (pr), applause
(ap), cough (co), laugh (la). The rest was considered as background.
Many of the events are subtle (e.g. steps, chair moving, and keyboard
typing), making the task more challenging. We used nine recording
sessions for training and three remaining sessions for testing. Only
one channel named TABLE 1 [14] was used.

Features. The audio signals are downsampled to 16 kHz and de-
composed into interleaved 100 ms long superframes with an overlap
of 90 ms. The dense overlap is to ensure a high level of data cor-
relation. The event superframes are labelled with the corresponding
event labels and associated with the displacement vector to the event
onset and offset. The background superframes are labelled with the
class label 0, and no offset vectors are required.

To represent a superframe, we divide it into small 30 ms frames
with Hamming window and 20 ms overlap. We utilize the set of
60 acoustic features suggested by Temko et al. [15] to represent a
small frame. They consist of: (1) 16 log-frequency filter bank pa-
rameters, along with the first and second time derivatives, and (2)
the following set of features: zero-crossing rate, short time energy,
four sub-band energies, spectral flux calculated for each sub-band,
spectral centroid, and spectral bandwidth. In turn, the superframe
consisting of multiple small frames is represented by the empirical
mean and the standard deviation of the frame feature vectors.

Parameters. To train random-forest classifiers Mbg and Mev ,
we conservatively set the number of trees to 300 for both. The re-
gression forests were trained with the random forest regression al-
gorithm from Section 2 with ten random trees each. For a category
y, a randomly sampled subset containing 50% superframes of the
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Fig. 6. Class-specific detection thresholds obtained by cross valida-
tion.

corresponding training set was used to train each random regression
tree of Fy . During training, 20,000 binary tests were generated for
a split node. In addition, we set the maximum depth to Dmax = 12
and minimum number of superframes at leaf nodes to Nmin = 10.

Evaluation metrics. We used three metrics described in [11]
for evaluation: Acoustic Event Error Rate (AEER), AED-ACC, and
AED-ER. The AEER and AED-ACC focus on the detection of event
instances whereas AED-ER focuses more on AE localization where
a good temporal alignment of the detected events is important. Note
that AEER and AED-ER may exceed 100%. Further details of the
metrics can be found in [11].

Baseline systems. We implemented two baseline systems sim-
ilar to the UPC-D and ITC-D1 systems in CLEAR 2006 evalua-
tion [15]:

• SVM: This system is based on detection-by-classification
with SVM classification. The setting is similar to that of the
UPC-D system with one exception: an event hypotheses is
rejected if its length is less than the minimum length of train-
ing events instead of the average length. This small change
results in a significant performance improvement.

• HMM: This system is based on based on automatic speech
recognition (ASR) framework. The employed features and
parameters are the same as for the ITC-D1 system. However,
the data channel we used here is different from the original
system.

4.2. Experimental results

In order to determine the detection threshold for each target event
class, using nine training audio recordings, we conducted 9-fold
leave-one-recording-out cross validation. The confidence scores
were normalized to [0,1]. The threshold search was then performed
on [0,1] with a step size of 0.05. Eventually, the threshold which
yields maximum AED-ACC was adopted. During cross validation,
we notice that it is unnecessary to train the regression forests but
employed the one trained with the whole training data. It turned
out that we only need to train the cross-validating classifiers Mbg

and Mev , which helps to significantly accelerate the cross validation
process. As different event classes vary in their noise-floor char-
acteristics [11], the thresholds are expected to be different. Fig. 6
shows the detection threshold for all target event classes.

Since the proposed algorithm is random, we conducted training
and testing 10 times and report the average performance. However,
the threshold search was performed only once in the first run and the
found thresholds were re-used for the subsequent runs.

The accuracies of the the classifiers Mbg and Mev are reported
on superframe-wise basis. With independent testing, their accura-
cies are 86.99 ± 0.03% and 74.5 ± 0.06%, respectively. If we test
them sequentially, Mbg followed by Mev , the accuracy of the Mev

declines to 70.05 ± 0.07% since the wrong classification of Mbg is
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Fig. 7. Event detection results on different event classes: (a) AEER,
(b) AED-ACC, and (c) AED-ER.

Table 1. AED performance comparison with the baseline systems
on ITC-Irst database.

Our systems SVM HMM

AEER (%) 14.93 ± 0.95 30.82 39.04

AED-ACC (%) 92.43 ± 0.40 83.73 84.35

AED-ER (%) 36.20± 1.49 28.41 36.71

transferred to the next step. It should be emphasized here that only
70.05%, on average, of the truth event superframes which were cor-
rectly recognized really went into the regression forests subsequently
to make estimation. Furthermore, the estimation is also perished by
averagely 29.32% of false-positive superframes.

For the detection task, we report the results for both offline and
online running and we show that the online system offers the same
performance as the offline system, but the events are detected much
earlier and before they are finished. The overall detection results of
the offline system are shown in Table 1. These results are slightly
better than those reported in [11] which can be explained by the
class-specific detection thresholds opposed to their common thresh-
old for all target event categories. Compared to the baseline systems,
our system roughly outperforms SVM by 16% on AEER and outruns
HMM by 8% on AED-ACC. The detection results on different target
event classes are illustrated in Fig. 7.

For online testing, we simulated the event data as sequential ar-
rival. As a new event superframe arrives, we evaluate and record
the performance. In Fig. 8, we show how the online detection per-
formance develops as function of the number of observed event su-
perframes. We also plot the offline performance as the baseline.
Overall, as more superframes are observed, AED-ACC and AED-
ER get better until they reach the offline baselines. It can also be
seen that the online AED-ACC curves always reach the offline AED-
ACC baselines before the maximum length of the events. That is,
the events that can be detected correctly by the system are always
detected before they finish, although the earliness varies for dif-
ferent event types. For example, from the AED-ACC curve of the
class “ap”, about 50% of events are correctly detected when approx-
imately 75 superframes (about 0.75 second) are seen. After that,
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Fig. 8. Online event detection results on different event classes as functions of the number of observed superframes.

the curve goes upward until reaching the offline AED-ACC base-
line off 100% after observing about 200 superframes (equivalent to
2 seconds). Considering that the “ap” events last more than 600 su-
perframes, the online system only needs 30% of the event intervals
to achieve the same detection accuracy as the offline system.

5. CONCLUSIONS

We presented an efficient early audio event detection system for au-
dio streams based on random regression forest framework. Since the
system only needs a partial event to make a decision, it can rapidly,
yet reliably, detect the events coming in sequential order. In the ex-
periments on the real-world recordings of the ITC-Irst database, we
showed that the proposed system can detect the events of all tar-
get event categories at their very early stage without sacrificing the
detection accuracy compared to the offline system which used the
complete events. In addition, it also remains superior compared to
the common approaches which cannot easily be adapted to perform
reliable early detection.
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