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University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract

Based on a new framework for the description of
N transparent motions we categorize different types of
transparent-motion patterns. Confidence measures for the
presence of all these classes of patterns are defined in
terms of the ranks of the generalized structure tensor. To
resolve the correspondence between the ranks of the ten-
sors and the motion patterns, we introduce the projective
plane as a new way of describing motion patterns. Trans-
parent motions can occur in video sequences and are rele-
vant for problems in human and computer vision. We show
a few examples for how our framework can be applied to
describe the perception of multiple-motion patterns and
predict a new illusion.

1. Introduction

Many problems in computer vision rely on motion es-
timation, but standard motion models fail in case of trans-
parent motions. Transparent motions are additive super-
positions of moving patterns and occur due to reflections,
semi-transparencies, and occlusions. Different approaches
for the estimation of motion vectors for the case of multiple
transparent motions are known [7, 3, 4, 8]. The non-linear
transparent-motions equations introduced by Shizawa and
Mase [7] have been solved for an arbitrary number of mo-
tions [5]. However, the problem of motion estimation is
always linked to the problem of motion detection. This is
because the assumptions under which the motion param-
eters can be estimated correctly are rarely fulfilled in real
dynamic scenes. Therefore, a correct decision on what lo-
cal or global motion model to use is often more important
and difficult to obtain than the estimation of the motion pa-
rameters. As we shall see, the strength of our approach lies
not only in providing new solutions for the motion param-
eters, but also confidence measures for different classes of
motion patterns.

The purpose of our paper can be understood by analogy
with the case of only one motion. Obviously, in case of no
image structure, no motion can be determined. In case of
1D spatial structure (e.g. straight edges) the motion is still
not defined. This is known as the aperture problem and is
either solved by not estimating motion at 1D patterns or, in
most cases, by estimating only a component of the motion
vector that is orthogonal to the orientation of the 1D spa-
tial pattern. For more than one motion, we encounter many
more situations that are similar to the aperture problem in
the sense that not all motion parameters can be estimated.
This generalized aperture problem is therefore more com-
plex and has, to our knowledge, not been addressed before.

Motion selectivity is a key feature of biological visual
processing and has been studied by recordings of neural
responses and by psychophysical experiments. Human ob-
servers are able to see and distinguish multiple transparent
motions. A special case is that of overlaid 1D motions,
i.e., the case of moving straight patterns. Of particular
interest is how human observers resolve the ambiguities
that are inherent in these type of patterns [1] and how vi-
sual neurons respond to such patterns [6]. This paper will
provide a framework for the analysis of these motion pat-
terns, such that, for example, the motion of two overlaid
1D patterns (e.g. two gratings) can be distinguished from
the motion of one 2D pattern. These patterns remain equiv-
alent within traditional theories of only one motion. To ac-
complish this, first we establish a correspondence between
moving patterns and subsets of the projective plane. This
is done such that 2D moving patterns correspond to points
and 1D moving structures correspond to lines of the projec-
tive plane. This correspondence is then used to show that
different moving patterns correspond to different ranks of
the generalized structure tensorJN , see Table 1.

2. The generalized structure tensor

Our approach is based on the framework for estimating
multiple motions as introduced in [5] that we will briefly
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1D 1D+1D 1D+1D+1D 2D 2D+1D 2D+1D+1D 2D+2D 2D+2D+1D 2D+2D+2D
J1 1 2 3 2 3 3 3 3 3
J2 1 2 3 3 4 5 5 6 6
J3 1 2 3 4 5 6 7 8 9

Table 1. Different motion patterns (table columns) and the ranks of the generalized structure tensors
for 1, 2, and 3 motions (table rows). The intrinsic dimension is equal to the rank of J1. This table
summarizes our results by showing the correspondence between the different motion patterns and
the tensor-ranks that can, in turn, be used to estimate the confidence for a particular pattern, i.e.
a proper motion model. Observe that the rank of JN induces a natural order of complexity for
patterns consisting of N additive layers.

summarize here. Suppose that an image sequencef is the
overlaid superposition ofN image layersg1, . . . , gN mov-
ing with constant but different velocitiesv1, . . . ,vN re-
spectively:

f(x, t) =
N∑

n=1

gn(x− tvn) (1)

In such ideal case, it is known [5] thatf and the velocities
are constrained by ∑

I

fIcI = 0 (2)

whereI = (i1, . . . , iN ) is an ordered sequence with com-
ponents in{x, y, t}, fI represents theN th-order partial
derivative off with respect to the components ofI, the
mixed motion parameterscI are the symmetric function of
the coordinates ofV n = vn + et, for n = 1, . . . , N, and
et is the time axis.

The generalized structure tensor is defined by

JN = ω ∗
[
(fI)(fI)T

]
(3)

whereω is a convolution kernel. In such an ideal setup,
the vectorcN = (cI) is a null eigenvector ofJN and,
in practice, estimated as the eigenvector associated to the
smallest eigenvalue. The velocities are recovered fromcN

by the method described in [5], which is analytical for up
to four motion layers. Obviously, the mixed-motion pa-
rameters can be computed only if the null eigenvalue is
non-degenerated. For a single motion, the degeneracy of
the null eigenvalue ofJ1 is known to be equivalent to the
aperture problem. In what follows, we will show thatgen-
eralized aperture problemsare equivalent to the degener-
acy of the eigenvalues ofJN and are thus reflected in the
ranks ofJN .

3. The projective plane

The projective plane is the set of all directions in the
three-dimensional Euclidean space. These directions can

be represented by non-null vectors but this representa-
tion is not unique since two collinear vectors represent the
same direction. The representation can be made unique
by choosing to represent directions by vectors having their
last non-null component always equal to 1. A subset of
these vectors have their last component equal to zero. The
points represented by such vectors are called ideal points
and the set of all ideal points is the ideal line. Therefore,
we can think of the projective plane as the union of the
planeξt = 1 and the ideal line, whereξxex + ξyey + ξtet

are points of the three-dimensional Euclidean space.

3.1. Relevant properties of the projective plane

We now summarize the properties of the projective
plane that will be useful for the analysis of moving pat-
terns:

• Dimension reduction: lines and points of the projec-
tive plane correspond to planes and lines through the
origin of the three-dimensional space respectively;

• Duality: each linè of the projective plane is associ-
ated to a dual pointV by the corresponding orthog-
onality of planes and lines in the three-dimensional
Euclidean space and vice-versa;

• No parallelism: any two lines of the projective plane
do intersect;

• Two projective lines intersect at an ideal point if and
only if their dual points andet are aligned.

3.2. Representation of multiple motions in the pro-
jective plane

It is well known that if a spatio-temporal signalf is
the superposition of moving layers, its Fourier transform is
the superposition of Dirac planes through the origin of the
Fourier space. The normal to each of these planes carries
the motion vector of the respective layer. In this section,
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these results will be interpreted in terms of the projective
plane.

For this reason we introduce the following projective
transform. LetF be the Fourier transform off (the trans-
form, of course, would apply to any function). We define a
projective transformof F by

PF (P ) =
∫

`P

|F (ξ, ξt)| dξdξt (4)

where P is a point of the projective space and`P =
{λP ;λ ∈ R} is the line directed byP . This transform
enables us to associate to each moving pattern a line or a
point in the projective plane and simplifies the geometric
reasoning.

To illustrate the usefulness of the framework, we show
how to geometrically determine the velocity of one 2D
moving pattern: the moving pattern is mapped to a plane in
the Fourier domain, where it is further projected onto the
projective plane resulting in a Dirac line. The velocity is
picked by applying the duality, here denoted withD, to the
Dirac line. The process is schematically shown below:

moving pattern
F
�� plane

P
�� line

D
�� velocity.

In the case of a 1D-pattern, e.g. a spatial grating, that is,
g(x) = g̃(a·x), its Fourier transform reduces to a line, and
its projective transform to a point. The duality operation
will give us the set of admissible velocities for the grating
which is a line in the projective plane:

moving grating
F
�� line

P
�� point

D
��

admissible

velocities
.

We summarize the main points below:

• The projective transform ofF is the superposition of
Dirac lines in the projective plane (in case of 2D pat-
terns);

• The dual point to each Dirac line in the projective
plane is the velocity of the respective layer;

• For a 1D pattern, its Dirac line in the projective plane
further reduces to a Dirac point. In this case any ad-
missible velocity for the grating is a point of the line
dual to the Dirac point in the projective plane;

• Dirac lines intersect at an ideal point if and only if
their corresponding spatial velocities are collinear;

• A Dirac line supported by the ideal line corresponds
to a static pattern.

As a further example, we show how to determine theco-
herent motionof superimposed gratings (plaids) [1]: the
set of admissible velocities for each layer is a line, the in-
tersection of these two lines is the only admissible velocity
for both layers, that is, the coherent velocity for the plaid.
Further examples will be given in Section 4.

3.3. The patterns in the projective plane and the
rank of JN

Up to now we have derived a correspondence between
different motion patterns and subsets of the projective
plane (points and lines). The problem of determining the
rank of JN is equivalent to the problem of finding the
largest number of independent null-eigenvectors. In this
framework, it is a matter of choosing the right points in the
support of Dirac lines in the projective plane. We give the
detail in the appendix. Table 1 summarizes the correspon-
dence between motion patterns and the ranks ofJ1,J2 and
J3.

4. Applications to some perceptual phenom-
ena

For the case of only one motion, the aperture problem
has a high significance for the visual perception of motion.
As argued before, the motion of a 1D pattern is ambiguous
from a theoretical point of view, and so are the percepts in
the sense that they depend on the motion of the so-called
terminators, i.e. the ends of the 1D patterns.

Similar effects appear with superimposed gratings that
can induce motion percepts that are different from the di-
rections orthogonal to the individual gratings. For exam-
ple, two gratings, one moving down and to the left, the
other one moving down and to the right, are perceived as a
single pattern moving downwards under most experimen-
tal conditions - see Fig. 2. On the other hand, three mov-
ing gratings can give rise to three mutually exclusive per-
cepts [1].

We are now going to explain these phenomena using
our theoretical framework presented above. We will also
show that our framework predicts an illusion for the super-
position of a grating with a random dot field and then give
some experimental data for this illusion.

4.1. Two 1D transparent moving gratings

In the projective plane, two moving gratings correspond
to the{line, line} case. According to the theory, the per-
ceived motion should correspond to the intersection point
U of the two lines and indeed it does - see Fig. 1.

4.2. Three 1D transparent moving gratings

In the case of three moving gratings, a percept of one
coherent pattern only arises when all three lines intersect
in the same point. This is, for example, the case for the
configuration shown in Fig. 2. On the other hand, a con-
figuration as shown in Fig. 3 has no unique percept: human
observers see the three 1D patterns as moving individually
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(a) (b) (c) (d) (e) (f)

Figure 1. If two gratings of different orientations - as shown in (a) and (b) - are moved in the
directions shown in (c), the plaid pattern shown in (d) is seen as moving in the direction indicated
in (f) which corresponds to the only coherent velocity that is defined by the intersection of the lines
as shown in (e).

(a) (b) (c) (d) (e) (f)

Figure 2. Coherent motion of three superimposed gratings. To the superposition of two gratings
(a) a third grating shown in (b) is added. The physical motions of the three gratings are as shown
in (c) and the lines of admissible velocities for each grating in (e). The percept is that of a coherent
pattern as shown in (d) moving in the direction indicated by the arrow in (f). The coherent percept
of one motion corresponds to the intersection of the lines in only one point.

or see combinations of one 1D pattern and a 2D plaid pat-
tern.

4.3. Entrainment effect for 2D patterns over 1D
patterns

A spatial field of dots superimposed on a grating (Fig. 4)
corresponds to the{line, point} case. If the point falls on
the line, the grating should seem to move in coherence
with the random dots. To test this hypothesis, we gener-
ated sinusoidal gratings of frequencyξ = 1/8, orientation
ψ = kπ/4, k = 1, .., 8, and viewing angle size10◦ × 10◦.
These were translated perpendicular to their orientation
(φg = ψ ± π/2) with a velocity ofvg = 1.6◦/s. Mean
brightness of the screen was10 cd/m2. Then, a 2D dot pat-
tern with same brightness distribution was overlaid to the
grating and translated with directionφr = φg ± π/4 and
velocityvr = vg/

√
2, so that one component of the motion

vector always coincided in the grating and the moving dot
pattern. 15 of these stimuli were presented to 7 human sub-
jects for 1.6 seconds. After presentation of each stimulus,
subjects had to rotate an arrow to indicate the direction of

the grating they had perceived. The deviation of subjects’
responses from the true direction of the grating is given in
Fig. 5(a). If the dot pattern had exerted no influence on the
percept for the grating at all, a single peak at0◦ could be
expected. Analogously, a single peak at45◦ would indicate
that subjects always perceived a single coherent pattern.

The shape of an aperture through which a grating can
be seen can also strongly influence motion perception. To
compare the strength of this so-called barberpole illusion
with that of the effect described above, we constructed
stimuli as above, but covered by an aperture perpendicu-
lar to the orientation of the grating. Nevertheless, results
in Fig. 5(b) are qualitatively similar to those in Fig. 5(a).

5. Discussion

We have presented a way of categorizing transparent-
motion patterns in terms of the ranks of the generalized
structure tensors. Based on these results, the confidence for
a particular pattern can be evaluated computationally by
either determining the rankJN or by using the minors of
the structure tensors [5]. For example, we can discriminate
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(a) (b) (c) (d) (e) (f)

Figure 3. Incoherent motion of three superimposed gratings. The sub-figures are according to
those in Fig. 2. However, the directions of motions are now changed such that the lines of motion
in the projective plane do not intersect in a single point (e). This makes the motions undefined and
causes the percept to change dramatically such that a coherent motion is not perceived. Observers
can see either of the single motions indicated in (f).

(a) (b) (c)

Figure 4. Stimulus generation for the 2D-over-1D entrainment (a). Admissible velocities for the
grating (line) and for the 2D stimulus (point) are perceived as single motion (c).

the case of two superimposed 1D patterns (moving plaid)
and a 2D pattern moving in the direction of the coherent
motion of the plaid pattern.

Our results can be seen as an extension of the concept of
intrinsic dimension[9, 2]. In the current framework, the in-
trinsic dimension corresponds to the rank ofJ1. As shown
in Table 1, by introducing the generalized structure tensor,
we can further differentiate the signal classes of a given
(integer) intrinsic dimension. In some sense, we thereby
define fractional intrinsic dimensions.

Although motion estimation is a key component of
many computer-vision and image processing systems, the
motion models are often too simple and fail with realistic
data. Our results provide (i) new means for increasing the
complexity of the motion models and (ii) measures for de-
termining the confidence for a particular model. We should
note that the framework can be applied to make explicit the
correspondence between the ranks ofJN , for anN larger
than 3, and the different moving patterns.

We have also shown how our results can be used to de-
scribe some phenomena in biological vision. In particu-
lar, the concept of the projective plane proved useful for
describing and visualizing different visual percepts. Fur-

thermore, we predicted new illusionary percepts that are
in accordance with the ambiguities that one would expect
from the theory.

6. Appendix: The rank of JN

From the discussion in Section 3.2, we have seen that
the set of admissible velocities of a moving layerg is the
dual space to the support ofPG. This dual set is called
the phase spacefor the velocities ofg. In what follows,
we will suppose that no pair of layers formingf moves
with collinear velocities and none of the layers is static.
This means that the lines supporting two non-degenerated
Dirac lines always intercept at a finite (non-ideal) point.

The mixed-motion parameters vectorscN = c(v1, . . . ,
vN ) can be interpreted as elements of the space of sym-
metric N -tensors (here denoted bySN ). Therefore, if
β = {U ,V ,W } is a basis for the three-dimensional
Euclidean space, the set{c(v1, . . . ,vN ) : V n ∈ β,
for n = 1, . . . , N} is a basis forSN . For example,
{c(u,u), c(u,v), c(u,w), c(v,v), c(v,w), c(w,w)} is
a basis forS2. We will use this relationship between basis
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Figure 5. Data illustrating the entrainment effect of a 2D pattern over a 1D grating. No aperture (a).
Aperture orientation perpendicular to that of the 1D grating (b).
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W

(a)

U

W V

W
~

(b)

Figure 6. Admisible velocities of overlaid-
motions patterns in the projective plane: (a)
two overlaid 1D patterns, U is the coher-
ent velocity, c(u,u), c(u,v), c(u,w), c(v,w)
are independent null-eigenvectors of J2; (b)
same for one 1D pattern and two 2D patterns,
c(u,v,w) and c(u,v, w̃) are independent null-
eigenvectors of J3.

of R3 andSN to construct a maximal number of elements
in the kernel ofJ2 andJ3. By ‘kernel ofJN ’ we denote
the set of vectors that correspond to the zero eigenvalues
of JN .

6.1. The rank ofJ2

For two moving layers, the non-trivial possibilities for
the phase space of the velocities are a{line,line}, {point,
line}, {point, point}.

line, line: Choose a basisβ = {U ,V ,W } of R3 such
thatU is intersection of the two lines, andV andW be-
long to each of these lines, see Fig. 6(a). Now it is clear
thatc(u,u), c(u,v), c(u,w) andc(v,w) are elements in
the kernel ofJ2. Since these vectors are linearly indepen-
dent, we can conclude that rank(J2) ≤ 2.

line, point: ChooseU as the point andV ,W in the line.
The vectorsc(u,v), c(u,w) are null-eigenvectors ofJ2

and therefore rank(J2) ≤ 4.

point, point: ChooseU ,V as the two points andW
freely. The only element in the kernel ofJ2 is c(u,v),
therefore rank(J2) ≤ 5.

We found above bounds to the rank(J2) given two mov-
ing patterns. Since it is possible to reach these bounds,
they are actually tight. Note that two moving patterns do
not produce rank 1 or 3. These ranks are actually produced
by a single moving object. The phase space for the two
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velocities, in this case, is{line, plane} or {point, plane}.
We analyze the first case below, the other is similar.

line, plane: ChooseU ,V as points in the line andW
out of it. The only element that does not belong to the
kernel ofJ2 is c(w,w) and therefore rank(J2) = 1.

6.2. The rank ofJ3

For three moving patterns, the non-trivial possibilities
for the phase spaces of the velocities are a{line, line, line},
{point, line, line}, {point, point, line} and{point, point,
point} which correspond to the values 3, 6, 8 and 9 of the
rank ofJ3. Since the analyses of these cases are very sim-
ilar, we consider only the two last cases.

point, point, line: ChooseU ,V as the points andW in
the line, see Fig. 6(b). In principle it appears that only the
elementc(u,v,w) belongs to the kernel ofJ3. To reveal
another one, note that any two lines intersect in the pro-
jective plane. LetW̃ be the intersection of the given line
with the line determined byU andV . Now, if we assure
thatW does not coincide withW̃ , we find the second in-
dependent symmetric tensor in the kernel ofJ3, that is,
c(u,v, w̃). We conclude that rank(J3) ≤ 8. Since these
are all the possibilities, except maybe for degenerate cases,
the bound8 is tight.

point, point, point: ChooseU ,V ,W as these points.
Only c(u,v,w) belongs to the kernel ofJ3. Hence,
rank(J3) = 9 except for degenerate cases.

Similar to the caseJ2, three moving patterns do not
fill all the possibilities for the rank ofJ3. The gaps are
filled by single or two moving patterns. These correspond
to ranks 1,4 and 2,5,7 respectively. Table 1 summarizes the
possibilities for the ranks ofJN for N = 1, 2, 3.
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