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ABSTRACT

A novel framework for single and multiple motion estima-
tion is presented. It is based on a generalized structure ten-
sor that contains blurred products of directional derivatives.
The order of differentiation increases with the number of
motions but more general linear filters can be used instead
of derivatives. From the general framework, a hierarchical
algorithm for motion estimation is derived and its perfor-
mance is demonstrated on a synthetic sequence.

1. INTRODUCTION

Multiple motions can occur in computer-vision applica-
tions, e.g., in case of semi-transparencies, and also in med-
ical imaging, when different layers of tissue move differ-
ently.

We consider image sequences defined by intensity
f(x, y, t). The classical constant brightness constraint for
the motion vectorv = (vx, vy) is

vxfx + vyfy + ft = 0 (1)

Under the hypothesis thatv is approximately constant,
the method of total least squares applied to Eq. 1 allows for
computing the motion vector by an eigenvalue analysis of
the structure tensorJ = ω ∗ (∇fT∇f), where∇f is the
gradient andω a convolution kernel - see [1] for a review.

However, it has been shown [2] that the eigenvalue anal-
ysis can be replaced by estimates ofv based on the minors
of J, i.e., the following vectors

vi = (M3i,−M2i)/M1i (2)

i = 1, 2, 3, are all equal to the motion vectorv. The num-
bersMij are the determinants of the matrices obtained from
J by eliminating the row4 − i and the column4 − j, e.g.,
M11 = (ω ∗ fx

2)(ω ∗ fy
2)− (ω ∗ (fxfy))2, i.e.,Mij are the

minors ofJ.
Here we extend the methods based on the minors ofJ to

the case of multiple motions. An overview of the problem of
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multiple motions has been given in [3] and robust methods
for multiple motions have been proposed. To our knowl-
edge, the problem of two motions has been first solved in
[4, 5] by the use of spatio-temporal Gabor filters, imple-
mented in the frequency domain, and fourth-order moments
derived from these filters. The resulting six-dimensional
eigensystem has been used to estimate themixed motion
parameters[4]. A three-dimensional eigensystem was then
used to separate the motion vectors. The main difference
to our approach is that we do not need to solve such eigen-
systems. A further consequence is that we can extend our
approach to more than two motions and that we obtain a
higher resolution. A recent analysis of the spectral proper-
ties of multiple motions can be found in [6]. Others have
introduced the useful and intuitive notions of ’nulling fil-
ters’ and ’layers’ [7, 8]. Their approach is more general in
that it treats the separation of motions into layers, but is also
limited to the use of a discrete set of possible motions and a
probabilistic procedure for finding the most likely motions
out of the set. We can conclude, that simple analytical solu-
tions for multiple motions have not been proposed.

2. EIGENVECTORS AND MINORS

Motion estimation is often treated as an optimization prob-
lem, e.g. by using least-squares methods. The optimization
problem then leads to an eigenvalue problem, for example
in the case of the tensor-based methods mentioned above.

Fact 1. If a matrix has a single zero eigenvalue, the corre-
sponding eigenvector can be evaluated in terms of the mi-
nors of that matrix.

Proof. Let A be a matrix of orderm andX an eigenvector
of A with zero eigenvalue, i.e.,AXT = 0. If we denote
the rows ofA by Ai, we can writeAiXT = 0, which
means that the rows ofA are orthogonal toX. The rows
of A are linearly dependent sincedet(A) = 0, in con-
sequence, a vector orthogonal tom − 1 independent rows
will also be orthogonal to the remaining one. Now we note
that det(A1, . . . ,Am−1,A1) = 0, which is the same as
A1MT

1 = 0, where the componentsM1j of M1 are the mi-
nors ofA computed by skipping the last row. Therefore,
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X andM1 are aligned to each other. We can now skip the
other rowsm+1−i to show thatX ∝ Mi for i = 1, . . . ,m,
which concludes the proof.

Due to the above proof, we can easily relate the result
in Eq. 2 to previous methods that use the eigenvectors ofJ
[1]. However, for single motions, the method based on the
minors has been shown to be faster and more accurate [2].

As we will show, the use of minors for the estimation of
motion parameters combined with the algebraic separation
of motion vectors provides finite low-complexity algorithms
for the estimation of up tofour motions. This is impossi-
ble with eigenvalue analysis because a finite algorithm for
eigenvalue analysis is unknown (the estimation of only two
motions is equivalent to finding the roots of polynomials of
degreesix).

3. THEORY OF SINGLE AND MULTIPLE
MOTIONS

The optical flow can be estimated from the output of linear
filters by convolving Eq. 1 with a smooth functiong to arrive
at [9]

(α(v)f) ∗ g = f ∗ (α(v)g) = 0 (3)

whereα(v) = vx
∂
∂x + vy

∂
∂y + ∂

∂t is the derivative operator
along the directionV = (vx, vy, 1).

The right equality of the above equation is the same as

vxf ∗ gx + vyf ∗ gy + f ∗ gt = 0, (4)

which has to be true for any kernelg. We can then look
for a pair of such kernels that make the above equation well
posed and solve Eq. 4 forv.

So far, f was supposed differentiable. It is possible,
however, to show that Eq. 4 is still valid even iff is not
differentiable. Note that

f ∗ g(x, t) =
∫

f(y − vτ)g(x− y, t− τ) dydτ

is differentiable. With the change of variablesz = y −
vτ, s = t− τ , we find

f ∗ g(x, t) =
∫

f(z)g(x− tv − z + sv, s) dzds.

By differentiation under the integral sign, it is easy to see
thatf ∗ g satisfies Eq. 4.

Now suppose thatf is the additive superposition ofn
motions with velocityvi = (vix, viy), i.e.,1

f(x, t) = f1(x− v1t) + · · ·+ fn(x− vnt) (5)

The following fact extends the above method to the case
of multiple motions.

1The case of multiplicative motions can be treated in an analogous way
by first taking the logarithm off .

Fact 2. Let L be a space-invariant linear operator with
kernelg that isn-times differentiable. ThenL(f) is alson-
times differentiable and the concatenated derivative ofL(f)
is zero:

α(v1) · · ·α(vn)L(f) = 0 (6)

Proof. From the linearity and spatial invariance ofL, we
can writeL(f) = f1∗g+f2∗g+· · ·+fn∗g. By the previous
discussion for one motion, we know thatα(vi)(fi ∗ g) = 0
and in consequenceα(v1) · · ·α(vn)(fi ∗ g) = 0, for i =
1, . . . , n, which concludes the proof.

The above result is of much interest since it shows that
for any space invariant linear operator the motion param-
eters forf andL(f) are the same. In the particular case,
where the linear operatorL is the identity and the imagef is
n−times differentiable, Eq. 6 becomesα(v1) · · ·α(vn)f =
0, which was introduced in [5] for the estimation of the
mixed motion parameters off that are the coordinates of
α(v1) · · ·α(vn) in the canonical basis for differential oper-
ators.

We will now show how to estimate the multiple-motion
parameters. First, we expand Eq. 6 to∑

I

cIf ∗ gI = 0 (7)

whereI = (i1, i2, . . . , in) are ordered sequences with el-
ementsij ∈ {x, y, t} andgI are linear kernels obtained as
partial derivatives ofg with respect to the elements inI. The
mixed motion parameterscI are homogeneous symmetric
functions of the coordinates of the motion vectors.

Eq. 7 is valid for any filterg. Therefore, in order to esti-
mate the motion parameters, we can look for a set of filters
{gk}k=1,...,` that makes the linear system of equations∑

I

cIf ∗ gk,I = 0 (8)

well posed for the variablescI .
In what follows we will use simple algebraic arguments,

but one can arrive at the same conclusions with classical
total least square reasoning. Eq. 8 can be rewritten as

LV = 0 (9)

whereL = (f ∗ gk,I) andV = (cI)T . After multiplying
Eq. 9 byLT to obtain am × m system of equations, we
perform a weighted integration along a small neighborhood
of the point in question, i.e. a convolution with a kernel
ω(x), ∫

L(x)T L(x)V(x)ω(x) dx = 0 (10)

to make the system well posed. Since we are supposing that
the motion vectors are locally constant, we can takeV out
of the integral and obtain

JnV = 0 (11)
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where

Jn =
∫

L(x)T L(x)ω(x) dx (12)

We callJn thegeneralized structure tensor forn motions.
Eq. 11 shows that the mixed motion parameters inV will
form an eigenvector related to the zero eigenvalue ofJn

and therefore can be computed from its minors as shown
in Section 2. More precisely, we have up tom = ord(Jn)
different estimates for the mixed motion parameters given
by

Vi ∝ (Mim,−Mim−1, . . . , (−1)mMi1), (13)

whereMij , i = 1, . . . ,m are the minors ofJn.

3.1. Separation of the motion vectors

Now, we show how to recover the motion vectors
v1, . . . ,vn from their mixed coefficientscI in V. In order
to accomplish this, we remember thatcI are homogeneous
symmetric functions of degree less thann of the coordinates
of the motion vectors . This observation is the basis for our
solution, that we obtain by interpretingvi as complex num-
bers, that isvi = vix + jviy, wherej2 = −1. In this case,
the motion vectors will be the roots of a complex polyno-
mial Qn(z) whose coefficients are functions of(cI):

Qn(z) = zn −An−1z
n−1 + · · ·+ (−1)nA0 (14)

To compute the coefficients, we just note thatAi are
homogeneous symmetric functions of degreen − i of
v1, ...,vn. For example, the coefficients ofQn(z) for two
and three motions are:

• Two motions:A1 = cxt +jcyt andA0 = cxx−cyy +
jcxy.

• Three motions:A2 = cxtt+jcytt, A1 = cxxt−cyyt+
jcxyt andA0 = cxxx − cxyy + j(cxxy − cyyy)

For more motions, the coefficients ofQn(z) can be evalu-
ated in analogy.

3.2. Confidence measures

We have shown how to estimate multiple additive motions
and now we consider the problem of detecting multiple mo-
tions, i.e., we want to quantify the confidence in the assump-
tions that we made.

In the case of one motion, the confidence is high if one
eigenvalue ofJ is small and the other two are significant,
i.e., rank(J) = 2 [1]. This case excludes regions with
aperture problems (two small eigenvalues) and occlusions
etc. (three significant eigenvalues). Withn motions the
confidence is still high if the rank(Jn) = m − 1, where
m = ord(Jn). Since with our new method we do not com-
pute the eigenvalues, we will in the following define confi-
dence measures that do not need them.

Jn is a symmetric, positive semidefinite matrix. Since
the characteristic polynomialp(λ) = det(Jn − λI) does
not depend on a particular representation of this matrix, the
same is true for the following numbers, i.e., they are invari-
ants ofJn:

K = det(Jn) = λ1λ2 · · ·λm

S =
1
m

(M11 + M22 + · · ·+ Mmm)

=
1
m

∑
i

λ1 · · · λ̂i · · ·λm

H =
1
m

trace(Jn) =
1
m

(λ1 + λ2 + · · ·+ λm)

(15)

whereλ̂i indicates to skipλi. 2

With the above measures, the confidence criterion trans-
lates toK = 0 andS 6= 0. Before we can compareK with
S, we need to know how these numbers scale relative to
each other. We found thatK1/m ≤ S1/m−1 ≤ H. This
means that the confidence criterion (K = 0 andS 6= 0)
becomesK1/m � S1/m−1 or, equivalently,K1/m <
εS1/m−1.

4. LOW-COMPLEXITY ALGORITHMS FOR
MULTIPLE MOTIONS

Algorithm 1 Single or multiple motion estimation
1: computeJn according to Eq. 12
2: if K1/m < εS1/m−1 (high confidence)then
3: compute V1, . . . ,Vm from the minors of Jn

(Eq. 13)
4: compute the mixed motion parameters

V = α1V1 + · · ·+ αmVm

5: if n = 1 then
6: v = (Vx, Vy)
7: else
8: v1, . . . ,vn are the roots ofQn(z) in Eq. 14

Our hierarchical algorithm first evaluates the confidence
in one motion and estimates that one motion in case of high
confidence. Otherwise, the confidence for two motions is
evaluated and two motions are estimated. This procedure
can be iterated for up ton motions - see Alg. 1.

5. RESULTS

Simulation results are presented in Fig. 1 for a synthetic se-
quence with one, zero, two, and three motions in the four

2We need not compute the eigenvalues; they are used here only to illus-
trate the invariance ofK, S andH.
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quadrants. The motions resulted from additive superposi-
tion of spatial noise patterns that move in different direc-
tions (see results). We used Alg. 1 and stopped after three
motions. The kernelsgk,I had k = 1 and the convolu-
tion was performed in the Fourier domain with a cutoff fre-
quency of0.3 of the maximum frequency. The convolution
kernelω was Gaussian with sigmas of(2, 2, 1) for (x, y, t)
respectively. Further, we usedαi = M1i/

∑
i=1,..,m M2

1i,
andε = 0.2, 0.3, 0.6 for one, two, and three motions respec-
tively.

We obtained the following mean errorse with stan-
dard deviationsσe given below (in pixels per frame for
the full frame 16) in the format(evx/σevx

, evy/σevy
) for

one motion: (-0.003/ 0.015, -0.004/0.019), two motions:
(0/0.004, 0.001/0.004), (0/0.003, -0.001/0.005), three mo-
tions: (-0.004/ 0.008, 0/0.006), (0/0.007, -0.004/0.008),
(0.008/0.026, 0.008/ 0.021). The precision is high, although
we used rather small kernelsg andω. However, the issue of
optimizing the kernels still needs to be resolved.

Fig. 1. 30 × 30 mid-
dle section of frame
16 of the64×64×32
input sequence (left)
and estimated motion
vectors (below).

6. SUMMARY AND CONCLUSIONS

We have presented a general framework for estimation of
single and multiple motions. The methods we derived are
based on derivatives, with an order that increases with the
number of motions, but can be generalized to the use of
more general linear filters. From the output of these fil-
ters we constructed a generalized structure tensorJn of size
m = (n + 1)(n + 2)/2 for n motions and obtained the
motion vectors from the minors ofJn. In case of multiple
motions, we have shown how to separate the mixed motion
parameters by solving for the roots of a complex polyno-
mial. In addition, we have shown how to detect multiple

motions, i.e., we have derived confidence measures for the
presence of multiple motions.

Our method allows for closed-form solutions for up to
four transparent motions, whereas, in case of two and more
motions, the eigenvalue problem can only be solved approx-
imately by iterative methods. We should also note that our
results were obtained without any additional regularization.

In conclusion, we have presented a novel hybrid method
for single and multiple motion estimation.
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