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ABSTRACT multiple motions has been given in [3] and robust methods
for multiple motions have been proposed. To our knowl-

A novel framework for single and multiple motion estima- : . .
S . . edge, the problem of two motions has been first solved in
tion is presented. It is based on a generalized structure ten-

sor that contains blurred products of directional derivatives. Eﬁ r?‘g z%nt?ﬁ l:,fe of r?pa'(tjlo-r;erir;]porr?clj ?at;tcr)]r flrléerfhmr]r?li't
The order of differentiation increases with the number of Tor e € frequency domain, and fourth-orger moments

motions but more general linear filters can be used insteadd.e”vewI from these filters. The resulting six-dimensional

L . . eigensystem has been used to estimatentheed motion
of derivatives. From the general framework, a hierarchical arameterd4]. A three-dimensional eigensystem was then
algorithm for motion estimation is derived and its perfor- P ' gensy

: . used to separate the motion vectors. The main difference
mance is demonstrated on a synthetic sequence. . .
to our approach is that we do not need to solve such eigen-
systems. A further consequence is that we can extend our
1. INTRODUCTION approach to more than two motions and that we obtain a
higher resolution. A recent analysis of the spectral proper-
Multiple motions can occur in computer-vision applica- ties of multiple motions can be found in [6]. Others have
tions, e.g., in case of semi-transparencies, and also in mediytroduced the useful and intuitive notions of 'nulling fil-
ical imaging, when different layers of tissue move differ- (15’ and 'layers’ [7, 8]. Their approach is more general in
ently. that it treats the separation of motions into layers, but is also
We consider image sequences defined by intensityjimited to the use of a discrete set of possible motions and a
f(z,y,1). The classical constant brightness constraint for propabilistic procedure for finding the most likely motions
the motion vector = (v, vy) is out of the set. We can conclude, that simple analytical solu-
tions for multiple motions have not been proposed.
Vg fo +oyfy + [t =0 (1)

Under the hypothesis thatis approximately constant, 2. EIGENVECTORS AND MINORS
the method of total least squares applied to Eq. 1 allows for o o
computing the motion vector by an eigenvalue analysis of Motion estimation is often treated as an optimization prob-
the structure tensod = w * (VfTVf), whereVf is the lem, e.g. by using least-squares methods. The optimization

gradient andv a convolution kernel - see [1] for a review. ~ Problem then leads to an eigenvalue problem, for example
However, it has been shown [2] that the eigenvalue anal-in the case of the tensor-based methods mentioned above.

ysis can be replaced by estimatesvdfased on the minors

; i Fact 1. If a matrix has a single zero eigenvalue, the corre-
of J, i.e., the following vectors

sponding eigenvector can be evaluated in terms of the mi-

nors of that matrix.
v; = (Ms;, —Ma;) /My, (2)

) , Proof. Let A be a matrix of ordem andX an eigenvector
1=1,2,3, are all equal_to the motion vegtm The_num- of A with zero eigenvalue, i.eAX” = 0. If we denote
bersM;; are the determinants of the matrices obtained from the rows of A by A;, we can writeA; X7 = 0, which

J by eliminatirzlg the rowt — i and the c;ol.umnt —J:€9.  means that the rows ok are orthogonal t&X. The rows
My = (wx fo")(w* f,") — (W (fafy))" 1., Mj; arethe ¢ A are finearly dependent sinagt(A) = 0, in con-

minors ofJ. _ sequence, a vector orthogonalito— 1 independent rows
Here we extend the methods based on the minalstof i 5150 be orthogonal to the remaining one. Now we note

the case of multiple motions. An overview of the problem of thatdet(A+, ..., Am_1,A;) = 0, which is the same as

T .
C.M. is affiliated with the University of Amazonas, Brazil and is sup- A1Mj = 0, where the Compo_nenMU of M, are the mi-
ported by the DAAD under A/99/22641. nors of A computed by skipping the last row. Therefore,
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X andM; are aligned to each other. We can now skip the Fact 2. Let L be a space-invariant linear operator with

other rowsn+1—ito showthaiX o« M, fori =1,...,m, kernelg that isn-times differentiable. Theh(f) is alson-

which concludes the proof. O times differentiable and the concatenated derivativB(gf)
. is zero:

Due to the above proof, we can easily relate the result a(v)--a(va)L(f) =0 ©6)

in Eq. 2 to previous methods that use the eigenvectods of

[1]. However, for single motions, the method based on the Proof. From the linearity and spatial invariance bf we

minors has been shown to be faster and more accurate [2]. CaNWriteL(f) = fixg+ fa*g+- - -+ fxg. By the previous
As we will show, the use of minors for the estimation of discussion for one motion, we know thatv;)(f; x g) = 0

motion parameters combined with the algebraic separationand in consequence(vy) - --a(vy)(fi * g) = 0, fori =

of motion vectors provides finite low-complexity algorithms 1. - - -, n, Which concludes the proof. O

for the estimation of up téour motions. This is impossi- The above result is of much interest since it shows that

b!e with eigenvalu_e gnalysis because a_finit_e algorithm for for any space invariant linear operator the motion param-
eigenvalue analysis is unknown (the estimation of only two eters forf and L(f) are the same. In the particular case,

motions is equivalent to finding the roots of polynomials of where the linear operatdris the identity and the imaggis

degreesiy. n—times differentiable, Eq. 6 becomeév,) - - - a(v,,) f =
0, which was introduced in [5] for the estimation of the
3. THEORY OF SINGLE AND MULTIPLE mixed motion parameters of that are the coordinates of
MOTIONS a(vy) - - a(v,) in the canonical basis for differential oper-
ators.

The optical flow can be estimated from the output of linear We will now show how to estimate the multiple-motion
filtg]s by convolving Eqg. 1 with a smooth functigrio arrive parameters. First, we expand Eq. 6 to
at

(a(v)f) * g = f *(a(v)g) =0 3) > crfxgr=0 )
wherea(v) = v, £ + v, £ + & is the derivative operator !
along the directioV = (v, vy, 1). wherel = (i1,149,...,1,) are ordered sequences with el-

The right equality of the above equation is the same as €mentsi; € {z,y,1} andg; are linear kemnels obtained as
partial derivatives of with respect to the elementsin The

Vi f * g + vy f x gy + [ 29 =0, (4) mixed motion parameters; are homogeneous symmetric
functions of the coordinates of the motion vectors.

Eq. 7 is valid for any filtey. Therefore, in order to esti-
mate the motion parameters, we can look for a set of filters
{9k }x=1,... 0 that makes the linear system of equations

which has to be true for any kerngl We can then look
for a pair of such kernels that make the above equation well
posed and solve Eq. 4 for.

So far, f was supposed differentiable. It is possible,

however, to show that Eq. 4 is still valid even fifis not erf _
) . 1f*ge1 =0 (8)
differentiable. Note that ;

Frglx,t) = /f(y —vr)g(x —y,t — 1) dydr well posed for the variaples[. _ _

In what follows we will use simple algebraic arguments,
is differentiable. With the change of variables= y — but one can arrive at the same conclusions with classical
vr. s —t— 7. we find total least square reasoning. Eq. 8 can be rewritten as

LV =0 9)

frglx,t)= /f(z)g(x —tv —z+ sv,s)dzds.
whereL = (f x gr.;) andV = (c;)T. After multiplying
By differentiation under the integral sign, it is easy to see Ed. 9 byL” to obtain am x m system of equations, we

that f * ¢ satisfies Eq. 4. perform a weighted integration along a small neighborhood
Now suppose thaf is the additive superposition of of the point in question, i.e. a convolution with a kernel
motions with velocityv; = (viz, viy), et w(z),
T —
flat)= filx=vit)+ -+ fa(x—vpt)  (5) /L(m) L(z)V(z)w(z)dz =0 (10)
The following fact extends the above method to the case!© Make the system well posed. Since we are supposing that
of multiple motions. the motion vectors are locally constant, we can takeut

of the integral and obtain

1The case of multiplicative motions can be treated in an analogous way
by first taking the logarithm of . J,V=0 (1D
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where J,, is a symmetric, positive semidefinite matrix. Since
J, = /L(x)TL(a:)w(x) dx (12) the characteristic polynomial(\) = det(J,, — AI) does
not depend on a particular representation of this matrix, the
We callJ,, the generalized structure tensor far motions. same is true for the following numbers, i.e., they are invari-
Eq. 11 shows that the mixed motion parameter¥invill ants ofJ,,:
form an eigenvector related to the zero eigenvalud of
and therefore can be computed from its minors as shown K =det(J,) = AtAz2 -+ Ap
in Section 2. More precisely, we have uprto= ord(J,,) 1
different estimates for the mixed motion parameters given §= E(M“ + Mz -+ M)

by 1 . (15)
Vi ¢ (Mim, ~Mim_1,.., (~1)"My),  (13) = 2 A A A

wherelM;;,i =1,...,m are the minors of ,,. 1 1
H=—tracdJ,,)) = —(M + a4+ -+ Ap)
m m
3.1. Separation of the motion vectors )
) where); indicates to skip\;. 2
Now, we show how to recover the motion vectors With the above measures, the confidence criterion trans-

Vi,...,Vp f_rom their mixed coefficients; in V. In order lates tok’ — 0 andS = 0. Before we can compark with
o accompllsh th's’ we remember thatare homoggneous S, we need to know how these numbers scale relative to
symmetric functions of degree less thaof the coordinates each other. We found that/™ < S/m-1 < . This

of the motion vectors . This observation is the basis for our means that the confidence criterioki (= 0 and S = 0)
solution, that we obtain by interpreting as complex num- becomesk!/™ « SY/m-1 o equivalently, K/™ <
bers, that isv; = v;; + jviy, Wherej? = —1. In this case, cgl/m—1 ’ ’

the motion vectors will be the roots of a complex polyno-

mial @, (z) whose coefficients are functions @f):

. o . 4. LOW-COMPLEXITY ALGORITHMS FOR
Qn(z) =2"—Ap_12" T4+ (-1)"4y  (19) MULTIPLE MOTIONS

To compute the coefficients, we just note thht are
homogeneous symmetric functions of degnee- ¢ of
vi, ..., V. FOr example, the coefficients &, (z) for two
and three motions are:

Algorithm 1 Single or multiple motion estimation
1: computeJ,, according to Eq. 12
2. if K'/™ < ¢S'/™=1 (high confidencejhen
e Two motions:A; = ¢, +jcy andAg = cpp —Cyy + 3:  compute Vq,...,V,, from the minors of J,
JCoy- (Eq. 13)
4:  compute the mixed motion parameters
V=ayVi+ - -4+anVnm

e Three motionS:AQ = Cgtt +jcytt, A] = Czwt_cyyt+
jcmyt andAO = Cgxz — Cxyy + ](mey - nyy)

5. if n=1then
For more motions, the coefficients &, (z) can be evalu- 6: v=(V;,V)
ated in analogy. 7. else
8: vi,...,Vy, are the roots of),,(z) in Eq. 14

3.2. Confidence measures

We have shown how to estimate multiple additive motions ~ Our hierarchical algorithm first evaluates the confidence
and now we consider the problem of detecting multiple mo- in one motion and estimates that one motion in case of high
tions, i.e., we want to quantify the confidence in the assump-confidence. Otherwise, the confidence for two motions is
tions that we made. evaluated and two motions are estimated. This procedure
In the case of one motion, the confidence is high if one can be iterated for up te motions - see Alg. 1.

eigenvalue of] is small and the other two are significant,
i.e., ranKJ) = 2 [1]. This case excludes regions with
aperture problems (two small eigenvalues) and occlusions
etc. (three significant eigenvalues). Withmotions the
confidence is still high if the rarfd,,) = m — 1, where

m = ord(J,,). Since with our new method we do not com-

pute the eigenvalues, we will in the following define confi- 2We need not compute the eigenvalues; they are used here only to illus-
dence measures that do not need them. trate the invariance ok, S and H.

5. RESULTS

Simulation results are presented in Fig. 1 for a synthetic se-
quence with one, zero, two, and three motions in the four

C. Mora anp |. Sruke anp E. Barte/IEEE ICIP’01, 11:917-20, ©r. 2001.
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guadrants. The motions resulted from additive superposi-motions, i.e., we have derived confidence measures for the
tion of spatial noise patterns that move in different direc- presence of multiple motions.
tions (see results). We used Alg. 1 and stopped after three

motions. The kernelg, ; hadk = 1 and the convolu-

tion was performed in the Fourier domain with a cutoff fre-
qguency of0.3 of the maximum frequency. The convolution

kernelw was Gaussian with sigmas @, 2, 1) for (z, y, t)
respectively. Further, we used = My/>,_, . M7,

ande = 0.2,0.3, 0.6 for one, two, and three motions respec-

tively.
We obtained the following mean erroeswith stan-

dard deviationss, given below (in pixels per frame for

the full frame 16) in the formate,, /o, ,ev,/0e, ) for

one motion: (-0.003/ 0.015, -0.004/0.019), two motions:
(0/0.004, 0.001/0.004), (0/0.003, -0.001/0.005), three mo-
tions: (-0.004/ 0.008, 0/0.006), (0/0.007, -0.004/0.008),
(0.008/0.026, 0.008/ 0.021). The precision is high, although
we used rather small kerngjsandw. However, the issue of

optimizing the kernels still needs to be resolved.

Fig. 1. 30 x 30 mid-
dle section of frame
16 of the64 x 64 x 32
input sequence (left)
and estimated motion
vectors (below).
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6. SUMMARY AND CONCLUSIONS

We have presented a general framework for estimation of
single and multiple motions. The methods we derived are
based on derivatives, with an order that increases with the
number of motions, but can be generalized to the use of

Our method allows for closed-form solutions for up to

four transparent motions, whereas, in case of two and more
motions, the eigenvalue problem can only be solved approx-
imately by iterative methods. We should also note that our
results were obtained without any additional regularization.

In conclusion, we have presented a novel hybrid method

for single and multiple motion estimation.
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