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ABSTRACT

We first review theoretical results for the problem of estimating single and multiple transparent motions. ForN motions
we obtain aM×M generalized structure tensorJN with M = 3 for one,M = 6 for two, andM = 10 for three motions.
The analysis of motion patterns is based on the ranks ofJN and is thus not only conceptual but provides computable
confidence measures for the different types of motions. To resolve the correspondence between the ranks of the tensors
and the motion patterns, we introduce the projective plane as a new way of describing motion patterns. In the projective
plane, intrinsically 2D spatial patterns (e.g. corners and line ends) that move correspond to points that represent the only
admissible velocity, and 1D spatial patterns (e.g. straight edges) that move correspond to lines that represent, as a set
of points, the set of admissible velocities. We then show a few examples for how the projective plane can be used to
generate novel motion patterns and explain the perception of these patterns. We believe that our results will be useful
for designing new stimuli for visual psychophysics and neuroscience and thereby contribute to the understanding of the
dynamical properties of human vision.

1. INTRODUCTION

Transparent motions are additive or multiplicative superpositions of moving patterns and occur due to reflections, semi-
transparencies, and occlusions. Many problems in computer vision rely on motion estimation, but standard motion
models fail in case of transparent motions. In the case of see-through displays, a theory of overlaid motions is also
relevant for vision science in the traditional domain of modeling perception with the scope of optimizing displays. The
perception of transparent motions has been studied as such. As an early result, it has been reported that when the number
of moving layers is increased beyond two, subjects are no longer able to perceive all the patterns simultaneously.1, 2 An
overview on the perception of transparency can be found in [3].

Several approaches for the estimation of motion vectors for the case of multiple transparent motions are known.4–7

The non-linear transparent-motions equations introduced by Shizawa and Mase4 have been solved for an arbitrary number
of motions.8 However, the problem of motion estimation is always linked to the problem of motion detection. This is
because the assumptions under which the motion parameters can be estimated correctly are rarely fulfilled in real dynamic
scenes. Therefore, a correct decision on what local or global motion model to use is often more important and difficult
to obtain than the estimation of the motion parameters. As we shall see, the strength of our approach lies not only in
providing new solutions for the motion parameters, but also confidence measures for different classes of motion patterns.

The purpose of our paper can be understood by analogy with the case of only one motion. Obviously, in case of no
image structure, no motion can be determined. In case of 1D spatial structure (e.g. straight edges) the motion is still not
defined. This is known as the aperture problem and is either solved by not estimating motion at 1D patterns or, in most
cases, by estimating only a component of the motion vector that is orthogonal to the orientation of the 1D spatial pattern.
For more than one motion, we encounter many more situations that are similar to the aperture problem in the sense that
not all motion parameters can be estimated. This generalized aperture problem is therefore more complex and has, to our
knowledge, only be addressed briefly in [9, 10].
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c©2004 Society of Photo-Optical Instrumentation Engineers. This paper will be published in the Proceedings
of SPIE (see above) and is made available as an electronic preprint with permission of SPIE. One print or
electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple
locations via electronic or other means, duplication of any material in this paper for a fee or for commercial
purposes, or modification of the content of the paper are prohibited.



A          2

1D 1D+1D 1D+1D+1D 2D 2D+1D 2D+1D+1D 2D+2D 2D+2D+1D 2D+2D+2D

J1 1 2 3 2 3 3 3 3 3

J2 1 2 3 3 4 5 5 6 6

J3 1 2 3 4 5 6 7 8 9

Table 1. Different motion patterns (table columns) and the ranks of the generalized structure tensors for 1, 2, and 3 motions (table
rows). The intrinsic dimension is equal to the rank ofJ1. This table summarizes our results by showing the correspondence between
the different motion patterns and the tensor-ranks that can, in turn, be used to estimate the confidence for a particular pattern, i.e. a
proper motion model. Observe that the rank ofJN induces a natural order of complexity for patterns consisting ofN additive layers.

Motion selectivity is a key feature of biological visual processing and has been studied by recordings of neural
responses and by psychophysical experiments. Human observers are able to see and distinguish multiple transparent
motions. A special case is that of overlaid 1D motions, i.e., the case of moving straight patterns. Of particular interest
is how human observers resolve the ambiguities that are inherent in these type of patterns11 and how visual neurons
respond to such patterns.12 This paper provides a framework for the analysis of these motion patterns, such that, for
example, the motion of two overlaid 1D patterns (e.g. two gratings) can be distinguished from the motion of one 2D
pattern. These patterns remain equivalent within traditional theories of only one motion. To accomplish this, first we
establish a correspondence between motion patterns and subsets of the projective plane. This is done such that 2D moving
patterns correspond to points and 1D moving patterns correspond to lines of the projective plane. This correspondence is
then used to show that different motion patterns correspond to different ranks of the generalized structure tensorJN , see
Table 1.

The best way to understand the benefits of our approach is to use the interactive tool that we make available.13

2. THE GENERALIZED STRUCTURE TENSOR

Our approach is based on the framework for estimating multiple motions, as introduced in [8, 14], that we will briefly
summarize here. Suppose that an image sequencef is the overlaid superposition ofN image layersg1, . . . , gN moving
with constant but different velocitiesv1, . . . ,vN respectively:

f(x, t) =
N∑

n=1

gn(x− tvn) (1)

The case of multiplicative overlaid motions can be reduced to the above additive superposition by taking the logarithm.
The effect of multiplicative and additive superpositions can be observed by using our interactive tool.13 In such an ideal
case, it is known8 that image intensityf and the velocities are constrained by∑

I

fIcI = 0 (2)

whereI = (i1, . . . , iN ) is an ordered sequence with components in{x, y, t}, fI represents theN th-order partial deriva-
tive of f with respect to the components ofI, the mixed-motion parameterscI are the symmetric function of the coordi-
nates ofV n = vn + et, for n = 1, . . . , N,, andet is the time axis.

The generalized structure tensor is defined by

JN = ω ∗
[
(fI)(fI)T

]
(3)
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whereω is a convolution kernel. Given the above constraints, the vectorcN = (cI), i.e. the vector with the mixed-
motion parameters as its components, is a null eigenvector ofJN and can be estimated as the eigenvector associated to
the smallest eigenvalue. The velocities are recovered fromcN by using the analytical method described in [8]. Obviously,
the mixed-motion parameters can be computed only if the null eigenvalue is non-degenerated. For a single motion, the
degeneracy of the null eigenvalue ofJ1 is known to be equivalent to the aperture problem. In what follows, we will show
thatgeneralized aperture problemsare equivalent to the degeneracy of the eigenvalues ofJN and are thus reflected in the
ranks ofJN , see Table 1.

3. THE PROJECTIVE PLANE

Table 1 is useful for categorizing basic properties of multidimensional signals. Since motion patterns are of particular
interest for vision science, it is important to obtain an intuitive understanding of such patterns. Traditionally, intuition and
models have been improved by looking at Fourier correspondences. Thereby motion could be visualized as a plane in the
transform domain and multiple motions there correspond to multiple planes. More specifically, the motion of a plaid is
said to be determined by the two lines in the transform domain (that correspond to the two moving gratings), and because
these two lines define a plane, the motion corresponding to that plane will be computed by algorithms and experienced by
vision. However, this plane is not the only way to fit the two lines. It is known that different neurons encode this motion
pattern differently and that the percept can vary depending on the energy distribution along the lines, e.g. it depends on
the spatial frequency of the 1D patterns. For more than two motions, it becomes even harder to understand what overall
motions would result from the superpositions of different moving patterns. We therefore introduce the projective plane
as a mean of better describing overlaid motions.

The projective plane is obtained intuitively by adding to each line of the Euclidean plane an extra point called an
ideal pointand imposing that parallel lines share the same ideal point. The set of ideal points is called the ideal line.
The intuitive concept can be made precise by use of homogeneous coordinates, i.e., each point of the projective plane is
represented by a non-zero vectorP = (X, Y, Z). To make the representation unique it is imposed thatP andQ represent
the same point ifP = λQ. Points with a non-nullZ-coordinate correspond to points of the Euclidean plane by the
projection

x = X/Z, y = Y/Z (4)

while points with a nullZ-coordinate represent the ideal points of the projective plane. By means of the above projection,
a point(x, y) of the Euclidean plane becomes(x, y, 1) in the projective plane.

Some properties of the projective plane are useful for the analysis and synthesis of motion patterns. They can be
understood from the Cartesian representation of a projective line` = {(X, Y, Z);AX + BY + CZ = 0}. We summarize
the main properties below:

• Duality: a line` of equationAX +BY +CZ = 0 is associated to the pointV = (A,B,C) in the projective plane
and vice-versa;

• Dimension reduction: lines and points of the projective plane correspond to planes and lines through the origin of
the three-dimensional space respectively;

• No parallelism: any two lines of the projective plane do intersect;

• Two projective lines intersect at an ideal point if and only if their dual points andet are aligned in the projective
plane.

Next we will apply these properties to the analysis and synthesis of motions patterns.
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3.1. Analysis of multiple motions using the projective plane

A single pattern under rigid motion is described by

f(x, t) = g(x− tv) (5)

wherev is the velocity of the pattern. In the Fourier domain it becomes

F (ξ, ξt) = δ(v · ξ + ξt)G(ξ) (6)

meaning thatF is restricted to a plane through the origin of the Fourier domain. The velocity of the pattern being encoded
by the normal to this plane. Such a plane in the Fourier domain corresponds to a line in the projective plane. The dual
point to this line is precisely the velocity of the grating. To make the above discussion precise we introduce theprojective
representationof f by

Pf (P ) =
1

‖P ‖

∫
|F (sP )| ds (7)

whereP is a vector representing a point in the projective plane. The factor1/‖P ‖ makesPf well defined for projective
points. i.e.,Pf (P ) = Pf (Q) if P andQ are parallel.

To illustrate the usefulness of the framework, we show how to geometrically determine the velocity of one 2D moving
pattern: the moving pattern is mapped to a plane in the Fourier domain, where it is further projected onto the projective
plane resulting in a modulated Dirac line. The velocity is picked by applying the duality, here denoted withD, to the
Dirac line. The process is schematically shown below:

moving pattern
F
�� plane

P
�� line

D
�� velocity.

In the case of a 1D-pattern, e.g. a spatial grating, that is,g(x) = g̃(a · x), its Fourier transform reduces to a line, and its
projective transform to a point. The duality operation will give us the set of admissible velocities for the grating which is
a line in the projective plane:

moving grating
F
�� line

P
�� point

D
��

admissible
velocities

.

We summarize the main points below:

• The projective representation off is the superposition of Dirac lines in the projective plane (in case of 2D patterns);

• The dual point to each Dirac line in the projective plane is the velocity of the respective layer;

• For a 1D pattern, its Dirac line in the projective plane further reduces to a Dirac point. In this case any admissible
velocity for the grating is a point of the line dual to the Dirac point in the projective plane;

• Dirac lines intersect at an ideal point if and only if their corresponding spatial velocities are collinear;

• A Dirac line supported by the ideal line corresponds to a static pattern.

As a further example, we show how to determine thecoherent motionof superimposed gratings (plaids)11: the set of
admissible velocities for each layer is a line, the intersection of these two lines is the only admissible velocity for both
layers, that is, the coherent velocity for the plaid. Further examples will be given in Section 4.

C. M, M. D, I. S,  E. B/IS& T/SPIE E I, S J, USA, J. 19–22, 2004. T .



A          5

(a) (b) (c) (d) (e) (f)

Figure 1. If two gratings of different orientations - as shown in (a) and (b) - are moved in the directions shown in (c), the plaid pattern
shown in (d) is seen as moving in the direction indicated in (f) which corresponds to the only coherent velocity that is defined by the
intersection of the lines as shown in (e).

3.2. Synthesis of multiple motions using the projective plane

For the synthesis of motion patterns we use the projective plane as the natural place for the selection of the admissible
velocities. For sinusoidal gratings this works as follow: We select a line in the projective plane

AX + BY + CZ = 0 (8)

by the choice of two pointsP (px, py) andQ(qx, qy). This gives

A = py − qy, B = qx − px, C =
∣∣∣∣px py

qx qy

∣∣∣∣ . (9)

The point dual to this line, represented by(A,B, C), encodes the support of the projective representation of the grating.
Consequently, the sinusoidal grating is defined by

g(x) = sin 2π(Ax + By) (10)

with frequency vector(A,B). For any admissible velocityv, the equation of the moving grating is

f(x, t) = g(x− tv) = sin 2π(Ax + By + Ct). (11)

Note that a moving sinusoidal grating is just a convenient choice since it can be synthesized efficiently through the
trigonometric identities for the sinus function.

In our interactive tool, 2D patterns are synthesized as moving noise patterns. Therefore, we use the projective plane
simply for the selection of the desired velocity. In addition, the variance of the noise pattern can be adjusted.

3.3. The patterns in the projective plane and the rank ofJN

Up to now we have derived a correspondence between different motion patterns and subsets of the projective plane
(points and lines). The problem of determining the rank ofJN is equivalent to the problem of finding the largest number
of independent null-eigenvectors. This task becomes simpler when we look at the projective representation off . We give
the detail in the appendix. Table 1 summarizes the correspondence between motion patterns and the ranks ofJ1,J2 and
J3.

4. APPLICATIONS TO SOME PERCEPTUAL PHENOMENA

For the case of only one motion, the aperture problem has a high significance for the visual perception of motion.15 As
argued before, the motion of a 1D pattern is ambiguous from a theoretical point of view, and so are the percepts in the
sense that they depend on the motion of the so-called terminators, i.e. the ends of the 1D patterns.

Similar effects appear with superimposed gratings that can induce motion percepts that are different from the direc-
tions orthogonal to the individual gratings. For example, two gratings, one moving down and to the left, the other one
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(a) (b) (c) (d) (e) (f)

Figure 2. Coherent motion of three superimposed gratings. To the superposition of two gratings (a) a third grating shown in (b) is
added. The physical motions of the three gratings are as shown in (c) and the lines of admissible velocities for each grating in (e). The
percept is that of a coherent pattern as shown in (d) moving in the direction indicated by the arrow in (f). The coherent percept of one
motion corresponds to the intersection of the lines in only one point.

(a) (b) (c) (d) (e) (f)

Figure 3. Incoherent motion of three superimposed gratings. The individual panels are according to those in Fig. 2. However, the
directions of motions are now changed such that the lines of motion in the projective plane do not intersect in a single point (e). This
makes the motions undefined and causes the percept to change dramatically such that a coherent motion is not perceived. Observers
can see either of the single motions indicated in (f).

moving down and to the right, are perceived as a single pattern moving downwards under most experimental conditions
- see Fig. 2. On the other hand, three moving gratings can give rise to three mutually exclusive percepts.11 We are now
going to explain these phenomena using our theoretical framework presented above. Before, we had used the framework
to also predict a new illusion.10 In the projective plane, the admissible velocities for two moving gratings correspond to
two lines. According to the theory, the perceived motion should correspond to the intersection pointU of the two lines
and indeed it does - see Fig. 1. In the case of three moving gratings, a percept of one coherent pattern only arises when all
three lines intersect in the same point. This is, for example, the case for the configuration shown in Fig. 2. On the other
hand, a configuration as shown in Fig. 3 has no unique percept: human observers see the three 1D patterns as moving
individually or see combinations of one 1D pattern and a 2D plaid pattern.

5. DISCUSSION

We have presented a way of categorizing transparent-motion patterns in terms of the ranks of the generalized structure
tensors. Based on these results, the confidence for a particular pattern can be evaluated computationally by either deter-
mining the rankJN or by using the minors of the structure tensors.8 For example, we can discriminate the case of two
superimposed 1D patterns (moving plaid) and a 2D pattern moving in the direction of the coherent motion of the plaid
pattern.

Our results can be seen as an extension of the concept ofintrinsic dimension.16, 17 In the current framework, the
intrinsic dimension corresponds to the rank ofJ1. As shown in Table 1, by introducing the generalized structure tensor,
we can further differentiate the signal classes of a given (integer) intrinsic dimension. In some sense, we thereby define
fractional intrinsic dimensions.

Although motion estimation is a key component of many computer-vision and image processing systems, the motion
models are often too simple and fail with realistic data. Our results provide (i) new means for increasing the complexity
of the motion models and (ii) measures for determining the confidence for a particular model. We should note that the
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framework can be applied to make explicit the correspondence between the ranks ofJN , for anN larger than 3, and the
different motion patterns.

We have also shown how our results can be used to describe some phenomena in biological vision. In particular, the
concept of the projective representation of a motion pattern proved useful for describing and visualizing different visual
percepts.
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Figure 4. Admissible velocities of overlaid-motions patterns in the projective plane: (a) two overlaid 1D patterns,U is the coher-
ent velocity,c(u, u), c(u, v), c(u, w), c(v, w) are independent null-eigenvectors ofJ2; (b) same for one 1D pattern and two 2D
patterns,c(u, v, w) andc(u, v, w̃) are independent null-eigenvectors ofJ3.

APPENDIX A. TRANSPARENT-MOTION PATTERNS AND THE RANK OF JN

From the discussion in Section 3.1, we have seen that the set of admissible velocities of a moving layerg is the dual space
to the support ofPG. This dual set is called thephase spacefor the velocities ofg. In what follows, we will suppose
that no pair of layers formingf moves with collinear velocities and none of the layers is static. This means that the lines
supporting two non-degenerated Dirac lines always intersect at a finite (non-ideal) point.

The mixed-motion parameters vectorscN = c(v1, . . . ,vN ) can be interpreted as elements of the space of symmetric
N -tensors (here denoted bySN ). Therefore, ifβ = {U ,V ,W } is a basis for the three-dimensional Euclidean space, the
set{c(v1, . . . ,vN ) : V n ∈ β, for n = 1, . . . , N} is a basis forSN . For example,{c(u,u), c(u,v), c(u,w), c(v,v),
c(v,w), c(w,w)} for S2. We will use this relationship between basis ofR3 andSN to construct a maximal number
of elements in the kernel ofJ2 andJ3. By ‘kernel of JN ’ we denote the set of vectors that correspond to the zero
eigenvalues ofJN .

A.1. The rank of J2

For two moving layers, the non-trivial possibilities for the phase space of the velocities are a{line,line}, {point, line},
{point, point}. We will analyze the first case below and refer to [10] for further details. Choose a basisβ = {U ,V ,W }
of R3 such thatU is intersection of the two lines, andV andW belong to each of these lines, see Fig. 4(a). Now it
is clear thatc(u,u), c(u,v), c(u,w) andc(v,w) are elements in the kernel ofJ2. Since these vectors are linearly
independent, we can conclude that rank(J2) ≤ 2. Since it is possible to reach this bound, it is actually tight. Note that
two moving patterns do not produce rank 1 or 3. These ranks are actually produced by a single moving object. The phase
space for the two velocities, in this case, is{line, plane} or {point, plane}. We analyze the first case only, the other is
similar: chooseU ,V as points in the line andW out of it. The only element that does not belong to the kernel ofJ2 is
c(w,w) and therefore rank(J2) = 1.

A.2. The rank of J3

For three moving patterns, the non-trivial possibilities for the phase spaces of the velocities are a{line, line, line}, {point,
line, line}, {point, point, line} and{point, point, point} which correspond to the values 3, 6, 8 and 9 of the rank ofJ3.
Since the analyses of these cases are very similar, we consider only one case. ChooseU ,V as the points andW in the
line, see Fig. 4(b). In principle it appears that only the elementc(u,v,w) belongs to the kernel ofJ3. To reveal another
one, note that any two lines intersect in the projective plane. LetW̃ be the intersection of the given line with the line
determined byU andV . Now, if we assure thatW does not coincide with̃W , we find the second independent symmetric
tensor in the kernel ofJ3, that is,c(u,v, w̃). We conclude that rank(J3) ≤ 8. Since these are all the possibilities, except
maybe for degenerate cases, the bound8 is tight.

Similar to the caseJ2, three moving patterns do not fill all the possibilities for the rank ofJ3. The gaps are filled by
single or two moving patterns. These correspond to ranks 1,4 and 2,5,7 respectively. Table 1 summarizes the possibilities
for the ranks ofJN for N = 1, 2, 3.
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