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Abstract

In this paper, a new method for robust image recovery from noisy transmission based on soft-

bits and Markov random field modeling is proposed. The method aims to exploit the residual

redundancy present in the symbols produced by a source encoder together with knowledge about

the statistical properties of natural images. The soft-bit information required for reconstruction

may either be extracted directly at the output of a noisy communication channel or at the output

of a soft channel decoder (if channel codes are used). In the latter case the proposed algorithm

may also be used in conjunction with iterative channel decoding, resulting in joint source-channel

turbo decoding. Examples will be presented for the case where no channel codes are employed.

The results obtained indicate that the proposed method yields very good performance even under

extremely noisy conditions.
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I. INTRODUCTION

Classical communication systems use separate units for source compression, error pro-

tection, transmission over noisy channels, and error concealment. In recent years, however,

combined source-channel coding techniques and soft-bit decoding algorithms have proven to

yield better performance in many practical situations than the conventional designs [1–12].

An often used approach is unequal error protection where more important information

is protected through stronger channel codes, typically realized in form of rate compatible

punctured convolutional codes [5, 12, 13]. Given a fixed amount of added redundancy, the

influence of channel errors on the perceptual quality can then be minimized through a proper

assignment of redundancy.

In addition to channel codes, post processing error concealment methods have become

part of most decoders for noisy environments and channels with erasures [14–18]. This

is especially the case in video communications, where information from previous frames

together with motion vectors is used to conceal erroneous macroblocks in current frames.

Techniques applicable to block-wise transmission of single images estimate the content of

missing or damaged blocks from adjacent blocks using smoothness constraints or Bayesian

approaches [16–18]. Bayesian image restoration was introduced by Geman and Geman in

[19], who applied Markov random field theory and the Markov-Gibbs correspondence for

describing the a priori information on images in order to obtain maximum a posteriori

(MAP) image estimates. Their method and many of the follow-up methods are suitable for

general image restoration applications and not only for error concealment in image/video

transmission.

Fingscheidt and Vary used soft bits and residual codeword redundancies for error con-

cealment of speech signals [2]. Based on 0th or 1st order Markov models for the transmitted

symbols they derived mean squares (MS) and maximum a posteriori (MAP) estimators for

the speech waveform. Their methods were quite effective, although they did not include

channel codes. The concept of [2] was extended by Kliewer and Görtz in [4] to two dimen-

sions. They collected data about the transition probabilities from the neighboring symbols

(pixels) to the actual symbol and used this information as a priori information during the
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decoding process. The data was collected either from the transmitted image itself or from a

large set of representative images. Only the latter strategy proved to be suitable in practice,

because otherwise the transition probabilities would have to be transmitted as side infor-

mation. Another method based on hidden Markov mesh models was proposed in [9]. Other

approaches for error concealment using soft-bit information consider vector quantization of

the source [6–8]. In [5] Kliewer and Görtz extended their work and combined the soft-bit

based concealment technique with channel coding, resulting in a decoder structure that is

similar to structures for decoding concatenated channel codes.

In this paper, we combine the soft-bit decoding technique of [4, 5] with source modeling

based on Markov random fields (MRF’s). The decoding procedure is iterative and mainly

similar to the one used in image restoration [19]. However, other than in classical image

restoration, we obtain the required transition probabilities directly from the available soft-

bits and not from the observed image pixels. The iteration affects only the estimated a

priori knowledge. Similar to [5], the proposed decoder can be combined with channel codes,

resulting in joint source-channel turbo decoding. To demonstrate the decoder properties,

experimental results are presented for the case without channel codes, where the entire

concealment process relies on residual symbol redundancies and proper source modeling.

The paper is organized as follows. In Section II the transmission model is introduced,

and Section III presents the different decoding principles. Section IV then describes the

MRF model, and Section V presents results for the proposed decoding techniques. Finally,

Section VI gives some conclusions.

II. THE TRANSMISSION MODEL

We consider a general transmission model in which the elements Xi,j, i = 0, . . . , M − 1,

j = 0, . . . , N − 1 of an M × N matrix X are transmitted through a noisy channel. The

elements Xi,j may, for example, represent the quantized pixels of an image or the quantized

subband samples of the wavelet transform of an image. More general, they may also be the

indices describing codebook entries of a vector quantizer.

The symbols Xi,j are assumed to be taken from an alphabet of 2B possible symbols and
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can thus be represented with B bits. With xi,j(m), m = 0, 1, . . . , B − 1 being the actual

bits representing Xi,j we can form the code vectors

xi,j = [xi,j(0), xi,j(1), . . . , xi,j(B − 1)]T .

In view of a BPSK transmission of xi,j(m), we assume bipolar bits, i.e. xi,j(m) ∈ {−1, +1}.
The bits xi,j(m) are considered to be sequentially transmitted across an additive white

Gaussian noise (AWGN) channel with two-sided noise power spectral density N0/2. The

received samples, denoted as yi,j(m), can then be written as

yi,j(m) = xi,j(m) + ni,j(m) (1)

where ni,j(m) are zero-mean, statistically independent Gaussian random variables with vari-

ance σ2
n. Because of xi,j(m) ∈ {−1, +1} the energy Eb used to transmit one bit is equal to

one, and the often used Eb/N0 ratio becomes Eb/N0 = 1/(2σ2
n).

III. DECODING PRINCIPLES

In this section we will look at three different decoding principles. These are hard decoding,

MAP soft decoding, and non-linear MS estimation based on soft bit information. Hard

decoding is mainly used as a reference.

A. Hard decoding

A hard decoder will simply carry out a threshold detection of the individual received bits

using the rule

ŷi,j(m) =

⎧⎨
⎩

+1 if yi,j(m) ≥ 0

−1 if yi,j(m) < 0.
(2)

The final bit-wise decisions x̂i,j(m) will simply be set to x̂i,j(m) := ŷi,j(m). The codeword

x̂i,j = [x̂i,j(0), x̂i,j(1), . . . . . . , x̂i,j(B − 1)]T

then corresponds to an estimate X̂i,j for the transmitted symbol Xi,j.
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B. Soft bits and reliability

The concept of soft bits is to forward the probabilities with which the various hard

decisions are correct or incorrect to the decoding algorithm, instead of making final hard

decisions straight away. The required probabilities can be computed from the instantaneous

bit error rate of hard decoding given by [1]

Pe(i, j,m) =
1

1 + exp(L(m) · yi,j(m))
(3)

with L(m) being the log-likelihood ratio

L(m) = ln
P (xi,j(m) = +1|yi,j(m))

P (xi,j(m) = −1|yi,j(m))
. (4)

For the case of BPSK in Gaussian noise considered in this paper, the log-likelihood ratio is

given by L(m) = 4Eb/N0, so that the instantaneous bit error rate becomes

Pe(i, j,m) =
1

1 + exp(4|yi,j(m)|Eb/N0)
. (5)

According to (5), the instantaneous bit error rate is low when |yi,j(m)| (i.e. the magnitude

of the received value) is large, and it tends to 0.5 for |yi,j(m)| → 0. The expected value of

Pe(i, j,m) is the bit error rate of BPSK as e.g. derived in [20]. The values Pe(i, j,m) can

be seen as bit reliability information that is attached to the hard decisions ŷi,j(m) and can

be used by more sophisticated decoders to obtain better quality than that provided through

hard decoding.

C. Maximum a posteriori decoding

Among all 2B possible code vectors (symbols) a MAP detector decides for the one with

the largest a posteriori probability. With x̃0, x̃1, . . . , x̃2B−1 denoting the 2B hypotheses (i.e.

the vectors of possible bit combinations) and

ŷi,j = [ŷi,j(0), ŷi,j(1), . . . , ŷi,j(B − 1)]T

being the vector of hard decoded bits the decision rule can be written as

x̂i,j = x̃K with K = arg
2B−1
max
k=0

P (x̃k|ŷi,j). (6)
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Using the Bayes rule the required a posteriori probabilities can be expressed as

P (x̃k|ŷi,j) = C · P (ŷi,j|x̃k) P (x̃k) (7)

where P (x̃k) is the a priori probability of vector x̃k, and P (ŷi,j|x̃k) is the transition probabil-

ity for receiving ŷi,j after x̃k has been sent. C is a normalization constant that ensures that

the integral over P (x̃k|ŷi,j) is one. Assuming statistically independent data bits and noise

samples, the transition probabilities P (ŷi,j|x̃k) can be written as products of the bit-wise

transition probabilities P (ŷi,j(m)|x̃k(m)) for m = 0, 1, . . . , B − 1. This yields

P (ŷi,j|x̃k) =
B−1∏
m=0

P (ŷi,j(m)|x̃k(m)). (8)

The transition probabilities P (ŷi,j(m)|x̃k(m)) are found from the instantaneous bit error

rate as follows:

P (ŷi,j(m)|x̃k(m))=

⎧⎨
⎩

1−Pe(i, j,m) if x̃k(m)= ŷi,j(m),

Pe(i, j,m) if x̃k(m) �= ŷi,j(m).
(9)

The advantage of the rule (6) with the probabilities according to (7) over hard decoding

becomes obvious when the largest transition probabilities for two ore more hypotheses are

in the same range. Then the hypothesis with the highest a priori probability will be favored

by the decoder, because this will most likely be the correct one.

D. Mean-squares estimation

Given the a posteriori probabilities for the various hypotheses x̃k the MS symbol estimate

can be found as [21]

X̂i,j =
2B−1∑
k=0

X̃k P (x̃k|ŷi,j) (10)

where X̃k is the symbol corresponding to code vector x̃k. This type of estimation is especially

useful when the symbols Xi,j are numerical values. Then X̂i,j is the estimated numerical

value for Xi,j with minimum mean-squared error. Minimizing this error is then equivalent

to maximizing the signal-to-noise ratio for the reconstructed image.
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E. Higher order a priori knowledge

Equations (6) and (10) contain only zero-order a priori knowledge about the code vectors.

However, the a priori knowledge can be easily extended to higher order by taking the

neighboring symbols into account. Then P (x̃k|ŷi,j) in (6) or (10) needs to be replaced by

P (x̃k|ŷi,j, Nŷi,j
) where Nŷi,j

is the neighborhood of ŷi,j. The Bayes rule then formally yields

P (x̃k|ŷi,j, Nŷi,j
) = C · P (ŷi,j|x̃k, Nŷi,j

) P (x̃k|Nŷi,j
).

Because for the AWGN channel P (ŷi,j|x̃k, Nŷi,j
) is independent of Nŷi,j

we finally obtain

the expression

P (x̃k|ŷi,j, Nŷi,j
) = C · P (ŷi,j|x̃k) P (x̃k|Nŷi,j

) (11)

that replaces (7). Methods for describing P (x̃k|Nŷi,j
) will be discussed in the next section.

IV. MARKOV RANDOM FIELD MODELING OF A PRIORI KNOWLEDGE

In this paper, we model the a priori knowledge about the symbols via Markov random

fields using the well-known Markov-Gibbs correspondence. For this we consider a neighbor-

hood system of the eight nearest neighbors. An advantage of this approach over the one in

[4] is that no transition probabilities need to be stored or transmitted. The same random

filed model can be used for all images. For details on Markov random field theory the reader

is referred to the work by Geman and Geman [19] or the books [22, 23] on MRF’s. In the

following we will describe their use in a straight forward manner.

Expressing the statistical properties of MRF’s directly in form of conditional probabilities

can be quite difficult. Fortunately, due to the Markov-Gibbs equivalence established in

the Hemmersley-Clifford theorem [24], any MRF can be completely described via a Gibbs

distribution. This means that a probability P (x) for an element of a Markov random field

can be written as

P (x) = Z−1 e−
1
T

U(x). (12)

Herein, U(x) is called an energy function, T is referred to as the temperature, and Z is

known as the partition function. The energy function can be written as a sum over so-called
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potential functions VC(x) for all cliques belonging to the neighborhood of x:

U(x) =
∑

C
VC(x). (13)

Various neighborhood systems Nx of a site x can be defined. However, a neighborhood

system must obey the following required properties:

(i) x /∈ Nx; this means that x does not belong to its own neighborhood;

(ii) xi ∈ Nxj
↔ xj ∈ Nxi

; this means that if xi is in the neighborhood of xj then xj is in

the neighborhood of xi, and vice versa.

An example for a neighborhood system of eight neighbors and the associated cliques is shown

in Fig. 1. The first clique consists of single sites. The second type of clique consists of x and

its horizontal neighbors. The third type includes x and its vertical neighbors, and so on.

The partition function Z is used for normalization. For a discrete random variable x it

is given by

Z =
∑

x
e−

1
T

U(x). (14)

The multiplication with Z−1 in (12) simply ensures that the probabilities for all possible

choices for x sum up to one.

The choice of the potential function is crucial, because it describes the properties of

the Markov random field. Many potential functions suitable for different types of images

and applications have been proposed in the literature. An overview of some of the most

commonly used ones for pair-wise cliques is given in Table I.

To see the differences between the various potential functions we consider a simple exam-

ple where a pixel x lies in the range 0, . . . , 127, having four neighbors given by 35, 45, 65, 100.

The a priori probabilities P (x|Nx) produced by the different potential functions are depicted

in Fig. 2. The parameters for these potential functions were chosen such that the MS re-

construction of natural images performs best. As one can see, the Gaussian approach favors

values x that are very close to the mean value of the neighbors. This consequently results

in a very smooth reconstruction that lacks of detail and sharp edges. All other potential

functions favor values in the range where most of the neighbors are, but not necessarily
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the arithmetic mean of the neighbors. Numerous experiments have shown that these func-

tions perform much better on edges than the Gaussian one and that they also give good

performance for both reconstructing images themselves as well as their wavelet transforms.

Like in classical Bayesian, MRF-based image restoration [19] we use an iterative decoding

approach. In other words, the reconstruction algorithm is applied multiple times, until

convergence is achieved and the reconstructed values do not change anymore. However,

contrary to classical image restoration we do not re-compute the transition probabilities

from the original pixels to the observed ones in each iteration step. Instead, we use the

transition probabilities P (ŷi,j(m)|x̃k(m)) derived from the soft-bit information according to

(9).

V. EXPERIMENTAL RESULTS

In the following we consider two experimental settings. In the first one, we transmit

the original pixels of an image in PCM over the channel. In a second setting we consider

the transmission of the coefficients of the wavelet transform of the same image. The image

chosen is the Goldhill grayscale image of size 512 × 512 pixels with 8 bits per pixel (bpp).

Experiments have been carried out for both of the above mentioned scenarios with all

potential functions of Table 1, using properly chosen parameters p, δ, T . The best results

were obtained with the generalized Gaussian approach according to Bouman and Sauer [25].

However, the peak signal-to-noise ratios (PSNR’s) obtained with the other functions (except

the Gaussian one) were not more than 0.5 dB below the one for the generalized Gaussian po-

tential function. Because of the good performance and simplicity of the generalized Gaussian

approach, further experimental results will be presented for this particular potential func-

tion. The normal Gaussian function either oversmoothed the reconstruction for low T or left

significant artifacts for higher T . At low T it also occasionally led to numerical problems,

because the values e−U(x)/T could become extremely small. The PSNR’s obtained with the

Gaussian function were several dB below the other ones.

For modeling the a priori density of the original image with the generalized Gaussian

potential function the parameters T and p were chosen as T = 4 and p = 0.7, and only the
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four nearest neighbors were used. The temperature was kept constant during the iteration.

The Eb/N0 ratio was assumed to be known to the receiver. To speed up the recursive

decoding procedure only sites for which the largest a posteriori probability was below 0.95

were revisited during the next iterations. For an Eb/N0 of 4 dB and above this meant that

75 % of the sites were visited only once.

To demonstrate the convergence of the iterative decoding approach, the PSNR for the

reconstructed image was recorded during the iteration. PCM transmission of the image

across a channel with Eb/N0 = 0 dB was considered. The results for the MS and MAP

estimators are depicted in Fig. 3. The starting point for n = 0 corresponds to hard decoding.

One can see that already a single iteration yields a significant improvement, and only a few

iterations are required for convergence. The figure also shows the advantage of the MS over

the MAP estimator.

In a second experiment for PCM transmission, the Eb/N0 ratio was varied between −2

and 6 dB. Fig. 4 shows the obtained PSNR’s for hard, MAP, and MS decoding. As one can

see, the performance of soft decoding is very good, even for very noisy channels. Again, the

MS decoder yields the best results, whereas hard decoding performs extremely poor.

To demonstrate the performance of the proposed soft decoding method for a scenario

where less residual redundancy among the transmitted bits is present, the image was first

transformed with a three-level wavelet transform based on the 9-7 wavelet of [26] and then

quantized. Symmetric reflection was used at the image boundaries. The wavelet coefficients

were quantized such that the total transmitted bit rate amounts to 0.36 bpp including all

side information on image size, quantization step sizes, and wavelet tree depth. The bit

allocation as well as the wavelet transform and the image were the same as in [4], to enable

comparisons between our MRF-based decoder and the one in [4]. The side information was

assumed to arrive error free at the decoder. The MRF parameters for decoding were chosen

as T = 5 and p = 0.7. For the lowest frequency (LL) band only the four nearest neighbors

were considered, whereas for all other bands a neighborhood of eight neighbors was used.

Each band was decoded separately. To speed up the computation significantly, sites for

which the largest a posteriori probability was above 0.95 for the LL band and above 0.98 for
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the other bands were not revisited. The slight increase in temperature compared to direct

PCM transmission takes care of the fact that the wavelet coefficients have less statistical

bindings than the original pixels of the image.

Fig. 5 shows the PSNR’s for the various reconstruction methods. The maximum PSNR

for error-free transmission is 27.9 dB. Again, the MS estimation performs best, and the

maximum possible PSNR is almost reached at an Eb/N0 ratio of 6 dB. A comparison with

the results in [4] for a realistic scenario where the transition probabilities were obtained from

a training set shows that the proposed MRF-based decoders are superior for small Eb/N0

ratios and equivalent for higher ones. At an Eb/N0 of -2 dB our MAP decoder is about 1.5

dB better than the one in [4] and the MS decoder is even superior by 2 dB. For an Eb/N0

of 6 dB all decoders except the hard decoder almost reach the maximum achievable PSNR.

Interestingly, at an Eb/N0 of -2 dB our MS decoder is even better than the one in [4] for the

case where the probability model was derived from the transmitted image itself. A reason

for the good performance of the MRF decoder seems to be the fact that the decoding is

carried out iteratively, changing the decoded symbols multiple times until the most likely

combination of decoded symbols is found.

To get a visual impression of the performance of the proposed soft-decoding algorithms,

Figs. 6 and 7 show examples of hard and soft decoded images at an Eb/N0 of 0 dB.

VI. CONCLUSIONS

We have introduced a robust image decoding method that combines MRF modeling of

a priori information about natural images with bit-reliability information extracted at the

channel output. Even on channels with extremely low Eb/N0 ratio the decoder performs

very well. In particular, it significantly outperforms the technique in [4] under extremely

noisy conditions. The proposed decoding method can be combined with channel codes, and

decoding can then be carried out in the same way as the decoding of concatenated channel

codes similar to [5]. While the experiments presented here have been carried out without

channel coding and for subband-wise fixed-length codes, future work on MRF-based soft

decoding will be directed toward decoding of variable length codes in combination with
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channel codes.
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TABLE I: Commonly used potential functions for pair-wise cliques in generalized form where ∆ is

the difference between x and a neighboring pixel and p, δ are free parameters.

Name Potential function VC(∆)

Gauss ∆2

Besag [27] |∆|
Green [28] log cosh(∆/p)

Geman and McClure [29] ∆2

δ2+∆2

Bouman and Sauer [25] |∆|p

Geman and Reynolds [30] |∆|
δ+|∆|

Hebert and Leahy [31] log(δ2 + ∆2)
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Fig. 1:

Eight-pixel neighborhood system and all associated cliques.

Fig. 2:

A priori densities generated with different potential functions for neighborhood

35, 45, 65, 100. Top: smooth functions; bottom non-smooth functions. All densities are

normalized as in (12). The parameters are as follows. Gauss: T = 950; Besag T = 12;

Green: T = 7, p = 3; Geman and McClure: T = 0.4, δ = 10; Bouman and Sauer: T = 3,

p = 0.7; Geman and Reynolds: T = 0.24, δ = 10; Hebert and Leahy T = 2.8, δ2 = 0.7.
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PSNR versus the number of iterations for direct PCM transmission at Eb/N0 = 0 dB.

Fig. 4:

PSNR results for transmission of the original image and different decoding methods as a

function of the Eb/N0 ratio.

Fig. 5:

PSNR results for transmission of wavelet coefficients at 0.36 bpp and different decoding

methods.

Fig. 6:

Examples of decoded images where the original 8 bpp image was transmitted over a channel

with an Eb/N0 of 0 dB. Left: hard decoding; right: MS soft decoding.

Fig. 7:

Examples of decoded images where the DWT coefficients of the image were transmitted at

a rate of 0.36 bpp over a channel with an Eb/N0 of 0 dB. Left: hard decoding; right: MS

soft decoding.
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FIG. 1: Eight-pixel neighborhood system and all associated cliques.
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FIG. 4: PSNR results for transmission of the original image and different decoding methods as a

function of the Eb/N0 ratio.
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FIG. 5: PSNR results for transmission of wavelet coefficients at 0.36 bpp and different decoding

methods.
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FIG. 6: Examples of decoded images where the original 8 bpp image was transmitted over a channel

with an Eb/N0 of 0 dB. Left: hard decoding; right: MS soft decoding.

22



FIG. 7: Examples of decoded images where the DWT coefficients of the image were transmitted

at a rate of 0.36 bpp over a channel with an Eb/N0 of 0 dB. Left: hard decoding; right: MS soft

decoding.
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