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) STRACT . .
In this paper, new methods for the design of integer-

modulated filter banks are presented. The novelty lies in the
design of the modulation vectors, which are not restricted to
certain structures like dyadic symmetry. In addition, an ef-—
ficient implementation based on Householder factorizations
is presented. In all cases considered, both the filter proto-
type and the modulation sequences are composed of inte-
gers while maintaining perfect reconstruction for arbitrary
input signals.

1. INTRODUCTION

In modulated filter banks, all analysis and synthesis filters
are modulated versions of a single prototype. Such sys-
tems are widely used in signal processing applications, be-
cause they allow very efficient implementations based on
polyphase filtering and a modulating transform. Both per-
fect reconstruction [1, 2, 3] and near perfect reconstruction
[4] schemes are known. :

When a perfect reconstruction (PR) filter bank is to be im-
plemented on a processor with finite-precision arithmetic,
the prototype and modulating sequences usually have to be
quantized and the PR property gets lost. It is therefore of
significant interest to have filter banks that allow PR with
finite precision arithmetic. This means that both the pro-
totype and the modulation sequences should be composed
of integers. Different design methods for integer coefficient
prototypes can be found in [5, 6]. Completely integer mod-

. ulated PR filter banks have been presented in [7] where the
integer modulation sequences are designed on the basis of
the dyadic symmetry principle [8]. However, the design in
[7] is restricted to filter-lengths L = 2M, where M is the
number of bands.

In this paper, a new approach to the design of integer-
modulated filter banks is presented where the modulating
sequences are not restricted to dyadic symmetry. This al-
lows better approximation of the ideal cosine functions
when integer sequences are desired and PR has to be main-
tained. Furthermore, no restriction on the filter length is im-
posed.
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2. COSINE-MODULATED FILTER BANKS

In cosine-modulated filter banks the analysis and synthesis
filters, denoted as hx(n) and gx(n), k = 0,...,M — 1 are
derived from FIR prototypes via cosine modulation. Various
modulation schemes and filter design strategies have been
proposed in the literature. Examples are critically subsam-
pled filter banks based on linear-phase prototypes, biorthog-
onal filter banks with low reconstruction delay, and over-
sampled filter banks.

In this work, we consider critical subsampling, an even
number of bands, M, and usage of the same prototype fil-
ter for both analysis and synthesis. A suitable modulation
scheme for this case is [3, 9, 10]

T 1

hi(n) = 2p(n) cos [M (k + -2-) (n - g) + ¢k} M

gx(n) = 2p(n) cos [% (k + %) (n - —123) - m] @)

withn = 0,...,L -1,k =0,....M —1and ¢ =
(~1)%m /4. The parameter L denotes the length of the pro-
totype, and D is the overall delay of the analysis-synthesis
system.

To outline the perfect reconstruction (PR) conditions we use
the polyphase notation. The analysis polyphase matrix can
be written as [10]

Po(zz)
E(z)=T 3
(Z) 1 { 2_1P1(22) jl y ( )
where
[Ti)k; = 2cos[ff (k+3)(G~%) +e],
k=0,....M -1, 7=0,...,2M -1,
4)
and
Py(z*) = diag[Po(~2%),...,Pu-1(-2%)],
Py(2*) = diag [PM(_Z2)7”-:P2M—1(-22)] .
(5)
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The terms P;(z) denote the type-1 polyphase components
of the prototype, given by

Pi(z) = Zep(2£M+j) 27t j=0,...,2M—1. (6)
For the synthesis polyphase matrix we get accordingly
R(z) = [271Q1(2%), Qu()] T3, )

where

[Talij = 2cos [ (k+1) (2M —1-5 — 2) — 4],

k=0,...,M—1, j=0,...,2M —1,
(8
and
QO(zz) = diag [PM—l(_Z2)1"'7P0(_z2)] ]
Ql(zz) = diag [PZM—I(_zz)a"'yPM(—zz)] .
)

Although the delay can be chosen independently of the fil-
ter length and the number of channels, we here assume (for
the sake of brevity) the most common form of delay, given
by D = 2sM + 2M — 1 with s being an integer. The PR
conditions for the prototype can then easily be derived by
inserting (3) and (7) into the polyphase-domain PR condi-
tions given by

RR)E(z)=2z"2"1 Iy (10)

and considering the fact that [3]

I M
0

0

TIT
241 —Tu

(-1)° 2M 12M+2M[ . an

This yields

Z—S

2M

Pavr—1-(2) Pe(2) + Parsk(2) Par—1—i(2) = (12)
fork=0,..., % — 1. In the special case of a linear-phase
prototype of length L = 2(s + 1) M, eq. (12) can be rewrit-
ten as

Pi(2)Pi(2) + Prai(2)Prsi(z) = 13)

1
m.
The interesting fact is that the PR conditions for the proto-
type are somehow separated from those for the modulation
scheme. Given a prototype P(z) whose polyphase compo-
nents satisfy (12) one can maintain the PR property if T';
and T'; are replaced by other matrices than the ones defined
in (4) and (8), as long as the new matrices jointly satisfy
(11). This separability will be used in the next section in
order to derive integer modulation schemes.

3. INTEGER MODULATION SCHEMES

In this section, we discuss possibilities of replacing the co-
sine matrices T'; and T2 by other matrices U'; and U, that
solely contain integers and satisfy (11) up to a scale factor

e/M:
]. (14)

This problem has also been addressed in [7], where the prin-
ciple of dyadic symmetry was used to design integer matri-
ces. We here outline new design techniques, which are not
restricted to having the symmetry property and allow a bet-
ter match between U; and U, and the ideal cosine-based
matrices Ty and T'5.

Im
0

0

UTU, = (-1)° 2e Iopr + 2¢ [
—JM

It is easily verified that the condition (14) is met by matrices
U, and U of the type

U = Villy+JIum, In—Jun) 1s)
Uy, = (1) Vaolly+JTu, Iy — T
where V' and V'3 are M x M matrices that satisfy
VIV, =ely. (16)

Note that the original cosine matrices may also be expressed
in the form (15). For example, T'; can be written as

T1=VC[IM+JM,IM—JM]. a7
Given T';, the matrix V. can be found as
1
V.= el Iae + Tar, Ine = Tag)T. (18)

The task of designing suitable integer matrices U'; and U,
is equivalent to finding integer matrices V; and V', that
are inverse to one another up to the factor €. In the design
process we may either consider a general approach with two
different matrices V'; and V'3, or we may look at the special
case Vo = V1 = V. We follow the latter one, because here
the same modulation sequences are used on the analysis and
synthesis sides.

We next discuss two methods of designing a matrix V' with
integer entries that is unitary up to a scale factor:

VIV =¢I. 19)

3.1. Design based on Householder Factorizations

Every M x M unitary matrix V', can be decomposed into
a set of M Householder matrices H;

Ve=Hy---H,D, H;=1I-2uul (20)
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where

_ V; + H’U,’H&i
Ui

= SEIlC b diag(£1, ...
[lvi £ lvilesl] °

,£1)  (21)
and v;, e; being the i-th column of V', I, respectively. The
+ signs have to be chosen such that the vectors u; are non-
zero. As described in [11], we can quantize the vectors u;
to obtain an integer implementation based on non-unit norm
vectors 4, obtaining the following realization:

V=Hy---H,D, H;=|w|*I-2ual @2)

The matrix V' obtained this way contains integer elements
and satisfies (19). However, notice that when M increases
the elements in V' tend to become very large, even if the
elements of 4; are of moderate size. Instead of imple-
menting V' directly, it is therefore advantageous to imple-
ment V in the factorized form (22). The multiplication of
a vector  with a matrix H; can then be carried out as
Hz = ||z - 2a;[aT z).

3.2. Design based on Projection Matrices

To design matrix V', we start with a single arbitrary vector
v; that contains integer values. This may be an integer ap-
proximation of one of the columns of V:Cr. A second vector
v that is orthogonal to v; is easily found as v = Zv;
with Z = Jpsdiag[l,-1,...,1,—1]. The two vectors v;
and v will later form two columns of the matrix vT,

The next step is to store v and v, in a matrix A = ['vl, v2)
and to compute the projection matrix

B=1I,-A[ATA] AT (23)

Then, we form a matrix C from a subset of columns of B
and express the vector v3 as

v; = C p;, (24)

where p; is a parameter vector that needs to be found.
Clearly, all linear combinations of the columns of C are
orthogonal to v; and v,. Gathering only a linearly indepen-
dent subset of the columns of B in C has the effect that
the number of unknowns can be reduced. The problem of
finding a vector v3 that solely contains integers and has the
same Zp-norm as v; and v, remains. These conditions are
usually met by a number of integer parameter vectors p;, sO
that one can choose a solution which leads to a close match
between v3 and one of the columns of v/ V7. Then, given
v3, a vector v4 can easily be found as v4 = Zws.

In the next iteration we define a new matrix A =
[v1,v2,v3,v4], compute a new matrix B according to (23),
form C, design v as vs = C p; and create vg = Zv;. The
procedure can be continued until M vectors vy, ..., v are

found, and V' can finally be formedas V = [vy,...,v]7.
To reduce the search effort, initial guesses P, can be com-
puted as f;, = round(a[CTC]~1CTv$). Here, v¢ is the
column of V' that is to be approximated, and « is a scale
factor that ensures that i){f)k .

4. INTEGER PROTOTYPES

The design of integer prototypes is straightforward for
length-2M filters. In this case, the polyphase filters P;(z)
degenerate to single coefficients, Pj(z) = p(j), and the
condition (13) for the linear-phase case becomes p*(j) +
p?(M +3j) = v, wherey € IN is a scale factor that has to be
introduced if the coefficients are integers. For certain values
of v a number of integer combinations {p(5), p(M +;)} can
be found, and reasonably well prototypes can be designed
(71

A design method for prototypes with L > 2M is described
in [6]. We here list coefficients of some PR integer proto-
types designed with this method that will be used in the de-
sign examples discussed in the next section.

Table 1
Perfect reconstruction prototypes with integer coefficients. (a) and
(b): 4-band linear-phase prototypes; (c) and (d): 8-band linear-
phase prototypes.

n 0 1 2 3 4 S5 6 7 8 9 1011 12 13 14 IS
@-1 00 2 4 6 7 8
(b) -14 -6 7 33 56 96 112 132
©-1-10000 2 2 4466 7 7 8 8
d -6 -4 0 -6 7 0 8 17 24 33 41 48 56 62 66 68

5. DESIGN EXAMPLES

Examples of integer matrices V' for M = 4 and M = 8 are
given in Table 2. The frequency responses of entire integer-
modulated filter banks are depicted in Figure 1. As Fig-
ure 1(b) shows, for M = 4 a good performance can be
obtained with relatively small integers for both the proto-
type and the modulation matrix. For M = 8 (or more) a
high stopband attenuation requires a high precision of the
modulation sequences, as the comparison of Figures 1(a)-
(e) shows. The best performance for M = 8 is given in
Figure 1(e), which depicts the result for an implementation
via Householder building blocks. The vectors u; used to
construct these blocks are listed in Table 3. Their elements
are small integers, allowing an efficient implementation of
the modulation in factorized form. The entries of the entire
matrix V', however, are extremely large (up to 3 x 102%) in
this case. Fortunately, the full precision is not needed if an
integer input signal is to be reconstructed perfectly. A worst
case analysis with the given matrix V' shows that vectors
T containing B bit integers can be reconstructed from their
transform coefficients y = Vz without error if a B + 4
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whereas matrix (d) is designed via Householder factorization.

2 1 1 0

0-1 1-2 5 0 1-1 1-1 1
1 0-2-1
0 2-1-1 1-1 0
-1 2 01 1 0-1-1-1 1 2
(@) -1 1 2 0-1 0 1
35 30 20 7 1-1 0 1 0-2 1
7 -20 30 -35 110 0-2-1-1
30 —7 —35 ~20 -1 1-1 2 0 0 1
-20 35 -7 —30 ©
(b)

Fd
®

°
@

°
a

°
N

O O N O

Table 2
Examples of matrices V. (a) and (b): M = 4; (c) and (d): M = 8. The matrices (a), (b) and (c) are designed via the projection method,

—720 —1080 —1080 —~1080 —~1080 —1080 0 0
—1485 —810 —495 450 450 1395 945 0
—1296 —432 1080 1080 72 —936 —1008 -504

—-621 738 1305 -—-270 —1278 81 1197 756

1011 —~1238 55 1450 —342 —489 693 924

657 —726 555 30 —1314 1017 -—189 —1512

168 —1204 1120 —1120 504 588 -756 1092

282 ~536 710 —620 1116 -—858 1386 —1092
@

0.1 0.1 0.5

normalized magnitude requoncy response

02 03 04
normalized frequency

(®)

02 0.3
normalized frequency

(@)

0.1 0.2 0.3
normalized frequency

©

X] 0.2 0.3
normalized frequency

@ (e)

Figure 1: Magnitude frequency responses of integer-modulated filter banks. (a) M = 4, P(z) and V from Tables 1(a) and
2(a); (b)) M = 4, P(z) and V from Tables 1(b) and 2(b); (c) M = 8, P(z) and V from Tables 1(c) and 2(c); (d) M = 8§,
P(z) and V from Tables 1(d) and 2(d); (¢) M = 8, P(z) from Table 1(d) and vectors u; from Table 3.

bit representation for the elements of ¥ and all intermediate

results is used.

6. CONCLUSIONS

We have presented two methods for the design of modu-
lation sequences for integer-modulated perfect reconstruc-
tion filter banks. The subspace projection method is well
suited for the design of sequences containing small inte-
gers, while the Householder factorization typically results
in matrices of large integers. However, an implementation
based on Householder building blocks allows to circumvent
the need for high word lengths and results in PR for integer

input signals at a very low cost.

Table 3
Vectors u; for the construction of Householder building blocks.
M= 8; D=1I 8.
w;: 12 -1 2 7 7 -7 2 2
uz: 14 3.9 8 4 4 -3 2
uz: 16 -4 4 4 4 5 4 7
ug: 15 3 2 8 2 1 -5 3
us: 16 4 -1 7 1 -1 -5 4
ug: 17 5 -8 4 2 -5 3 3
ur: 15 3 9 2 5 5 -1 4
ug: 11 10 -3 9 3 7 3 0

7. REFERENCES

[1] H. Malvar, “Extended lapped transforms: Fast algorithms
and applications,” JEEE Trans. Signal Processing, vol. 40,

November 1992.

[21

3

—

4

[l

(5]

(6]

71

(8]

(9

{10]

(1]

T. Ramstad and J. Tanem, “Cosine modulated analysis-
synthesis filter bank with critical sampling and perfect re-
construction,” in Proc. IEEE Int. Conf. Acoust., Speech, Sig-
nal Processing, Toronto, Ont., Canada, pp. 1789-1792, May
1991. .

R. Koilpillai and P. Vaidyanathan, “Cosine-modulated FIR
filter banks satisfying perfect reconstruction,” IEEE Trans.
Signal Processing, vol. 40, pp. 770-783, April 1992.

J. Rothweiler, “Polyphase quadrature filters - a new subband
coding technique,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, pp. 1280-1283, 1983.

T. Karp, A. Mertins, and T. Nguyen, “Efficiently VLSI-
realizable prototype filters for modulated filter banks,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
Munich, Germany, vol. 3, pp. 2445-2448, April 1997.

A. Mertins, “Subspace approach for the design of cosine-
modulated filter banks with linear-phase prototype filter,”
IEEE Trans. Signal Processing, vol. 46, pp. 2812-2818, Oc-
tober 1998.

M. Bi, S. Ong, and Y. Ang, “Integer-modulated FIR filter
banks for image compression,” IEEE Trans. Circ. and Syst.
for Video Technology, vol. 8, pp. 923-927, December 1998.

W. Cham, “development of integer cosine transforms by the
principle of dyadic symmetry,” Proc. Inst. Elect. Eng., Part
I, vol. 136, pp. 276-282, August 1989.

H. Malvar, Signal Processing with Lapped Transforms. Nor-
wood, MA: Artech House, 1992.

P. N. Heller, T. Karp, and T. Q. Nguyen, “A general formu-
lation for modulated filter banks,” IEEE Trans. Signal Pro-
cessing, vol. 47, pp. 986-1002, April 1999.

P. Vaidyanathan, Multirate Systems and Filter Banks. Pren-
tice Hall, 1993.

594



