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ABSTRACT

This paper presents boundary optimization techniques for
the processing of arbitrary-length signals with paraunitary
multirate filter banks. The boundary filters are designed
to maximize the coding gain while providing an ideal DC
behavior. Thus, all filters except the lowpass filter are de-
signed to have zero mean. The proposed methods give direct
solutions to the problem of finding optimal boundary filters
and do not require numerical optimization.

1. INTRODUCTION

Multirate filter banks are usually designed to process on-
going signals, but it is also of significant interest to use
them for the processing of finite-length signals. Applica-
tions include segmentation-based audio [1-3] and region-
based (shape adaptive) image coding. From a compression
point of view it is desirable to carry out a filter bank anal-
ysis of a finite length signal in a non-expansive way. This
means that the total number of subband samples produced
from a size-limited signal should be equal to the number of
samples of the signal. Achieving this goal with filter banks,
however, requires some additional steps, because the filter
impulse responses are overlapping and the transient behav-
ior at the signal boundaries must be taken into account.

Various techniques have been proposed to process finite-
length signals, including circular convolution, symmetric
reflection, and the use of boundary filters [4-12]. This paper
concentrates on boundary filters and presents novel methods
for their optimization. Using boundary filters means that the
original filters of the filter bank are replaced by special fil-
ters at the boundaries of the signal which ensure that the
entire information on a length-N" input signal is contained
in a total number of N subband samples. Circular convo-
lution and symmetric reflection can also be interpreted as
'special forms of boundary filters. Throughout this paper,
no restrictions on the type of the paraunitary filter bank and
the signal length are imposed. Thus, the proposed methods
are applicable to non-linear phase filter banks and arbitrary
length signals. This is important, as the often used cosine
modulated filter banks have non-linear phase.

The filters in a filter bank are often designed such that
all filters except the lowpass have zero mean. This avoids
leakage of a DC component of the input signal into the other
bands, which might cause problems with the bit allocation.
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When applying a filter bank to a finite-length signal by using
boundary filters, this property usually gets lost in the bound-
ary regions. For biorthogonal filter banks, this problem had
been addressed in [10,11]. In [12] a solution for paraunitary
two-channel filter banks was proposed which first optimizes
the boundary filters to have desirable frequency responses
and then applies a Householder transform to obtain zero-
mean highpass filters. The approach for paraunitary filter
banks presented in this paper considers an arbitrary num-
ber of channels. We derive solutions for the boundary filters
which yield maximum coding gain under the constraint of
an ideal DC behavior. Note that the coding gain has also
been considered in [8,9]. In [8] numerical optimization was
employed to find the boundary filters and no DC constraints
were imposed. In [9] the coding gain was used to'optimize
the bit allocation for given boundary filters and not to op-
timize the filters themselves. In this paper, to control the
DC behavior, a projection technique is used. Optimization
is then carried out in a second step. It is shown that max-
imizing the coding gain through optimizing the boundary
filters results in an eigenvalue problem which has a straight-
forward solution. Thus, in contrast to [8] no numerical op-
timization is required to find the optimal boundary filters.

In addition to maximizing the coding gain, a method
is proposed which allows us to find boundary filters which
have similar frequency responses as the original subband
filters in the filter bank.

2. BOUNDARY FILTERS WITHOUT DC LEAKAGE

This section discusses the filter bank analysis of size-limited
signals and the available degrees of freedom for boundary
filter optimization. We consider an arbitrary signal length

N=KM+s . )
where A/ denotes the number of subbands and /v, s are pos-
itive integers with 0 < s < A{. The filter bank analysis of a
length-IV signal x(n) may be written as

y=Hz (2)
with z = [£(0),z(1),...,x(N — 1)]T and
y = [mo(0)yn—1(0), . yo(K —1),...
sy (K = 1), yo(K), .. ysm (K0T

Variations of the definition for y are straightforward. Given
the definitions for  and y, the N x N matrix H can be
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Figure 1: Example of size-limited analysis matrix H;
A =2, N = 8§, length-4 filters.

set up to describe the filter bank analysis. Fig. | shows an
example.
The matrix H may be partitioned as

H = [HT\HIH]) ®

where the center part contains the original impulse re-
sponses of the analysis filters, while the upper and lower
parts contain boundary filters. Using this partitioning, the
analysis equation (2) can be re-written as

g, = Hux, k=123, @)

sothaty = [yT,yl,yI]7. Similarly, the synthesis opera-
tion can be written as

3
&= Gy, (5)
k=1

where G, are the corresponding partitions of the synthesis
matrix G, such that & = GYy. Perfect reconstruction (PR)
is given if GH = I. In particular, if the size-limited filter
bank is unitary, we have PR with G = H”. To design a
matrix H which satisfies HTH = I , the Gram-Schmidt
procedure can be used as described in [5,6]. The drawback
of this method is that it does not automatically yield bound-
ary filters with good properties. Thus, further optimization
is required.

We now assume that a PR solution for H | is known
(e.g. designed via the Gram-Schmidt method). An opti-
mized analysis can then be written as

vy =UiHpx (6)

with U; and U 3 being unitary matrices and U = I. The
synthesis operation then becomes

3
&= GUjv. 7
k=1

To avoid DC leakage, the matrices U; and U ; need to

be restricted in a certain way. In [11] a direct parameteriza-
tion was proposed, but this parameterization does not yield
orthogonal matrices U.. In [12] the boundary filters were
first optimized and then a Householder transform was ap-
plied which ensured zero-mean highpass boundary filters.
In this paper, we go a different way. We first generate basis
vectors which represent a DC signal in the row spaces of

H, and H 3. Then we use the Gram-Schmidt procedure to
complete H, H3. The remaining optimization steps are
carried out in such a way that we have control over the DC
component of an input signal.

Let H; be a matrix which contains a basis for the row
space of H;. It does not need to be an orthogonal matrix,
but it must have maximum rank, so that its rows span the
entire subspace of left boundary filters. Further, let £ be
a length-N vector of ones: ¢t = [1,1,..., I]T‘ We now
compute the orthogonal projection of ¢ onto the row space
of Hy: )

¢ :=H! B H |"Ht. (8)

The first row of the matrix H ; is then chosen as ir. All
further rows of H; can be found via the Gram-Schmidt
procedure, using the rows of H; as a given basis for the
subspace in question. Note that one of the rows of H; will
not be needed. because £ has been included, which already
is a linear combination of the rows of H;. For more de-
tails on the Gram Schmidt technique, the reader is referred
to [5,6].

The matrix H; constructed with the above algorithm
has the property that all its rows, except the first one. have
zero mean. This property is easily kept by choosing U | as

Ul - 0 Vl (9)
where V| is orthogonal. The same concept can be used for
the right boundary.

3. BOUNDARY FILTER OPTIMIZATION

In this section, we derive solutions for U and U 3. and
thus for the boundary filters, which maximize the coding
gain. Regardless of the actual number of bands, we inter-
pret the subband decomposition according to (6) as a uni-
tary transform that maps N input values into /N transform
coefficients. Under the assumption of a high bit rate and un-
correlated quantization errors the coding gain may then be
expressed as [13, 14]

N-1
G =0’ 1—[ (o2, )"WN (10)

=0

where (7';’.( are the variances of the subband samples com-
puted via (6). Thus, optimizing the boundary filters to yield
maximum coding gain turns out to be equivalent to mini-
mizing the products of the diagonal elements of

R =UHR, HIU], k=13 (1

The matrices R,, ,, are the autocorrelation matrices of the
subband samples vy, generated from an input process x
with autocorrelation matrix J?,,. Minimizing the product
of the diagonal elements is accomplished by the Karhunen-
Loeve transforms (KLT's) of the processes y,. In other
words, the rows of the optimal matrices U ., k = 1,3 are
the transposed eigenvectors of

Rykm = I{/\RIIH;,I (12)
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Zero-Mean Constraint

To obtain boundary filters with maximum coding gain under
the zero-mean constrain, we use the parameterization (9).
Again, the key to the solution is the KLT. We partition H ,

k=13as iT
Hk:[ Ly ] ' (13)

H,

and, following the same ideas as above, we find the rows of
the optimal matrices V. to be the transposed eigenvectors
of

~ ~ ~ T
R, , =H.R, H,.

Frequency Response Approximation

The above described design methods, although optimal,
usually do not lead to boundary filters which have similar
frequency responses as the original filters. Typically, the
design results in narrowband boundary filters with different
passbands in the frequency range [0, 7). By linearly com-
bining previously constructed boundary filters it is possible
to design new ones which have similar time-frequency
resolutions as the original filters. This allows for the use
of the same bit allocation at the boundaries as in the center
of a signal. For a brief explanation, let us assume that the
number of boundary filters is given by L; = v Al where
v is an integer. Let fziTJ‘., i = 1,2,..., Ly — 1 denote
the 7th row of H;, = U,H,. Let us assume that the
rows of U, are ordered according to the corresponding
eigenvalues of R, ,, or Ryky .» depending on the method
used. We assume that the first row corresponds to the
largest eigenvalue. Let A be orthogonal matrices of size
vi. X v;. The new filters are constructed as

-T - T
h(i—l)z/kﬁ—l.k h(i—l)uk+1.k
~T ~T
h’iuk.k hil/k, N3
fori = 1,2,..., M, where ﬁT,‘ forms the ith row of the
final optimized analysis matrix. For v; = 2 we choose
1 1 1
s=g 1 A "

For v, > 2 the v; x v, DCT-II matrices are possible choices.
Note that related methods have been described in [15] for
the design of time-varying filter banks without transition fil-
ters and in [16] for the design of non-uniform filter banks.

4. DESIGN EXAMPLES

We consider a paraunitary, cosine-modulated 32-band filter
bank with ELT prototype according to [17]. In this filter
bank, the subband filters have non-linear phase. ELT filters
have filter length 43/, and the total number of boundary
filters for the left-hand side turns out to be L; = 2A/. On
the right-hand side, their number depends on the parameter
5 used to describe V in (1).

Table 1
Coding gain of left boundary filters for 32-band ELT and
AR(1) process with correlation coefficient p.

p=09 p=10.95
Gram Schmidt 6.919dB | 9.515dB
Optimal, unconstrained 7.341dB | 10.404 dB
Optimal under DC constraint 7.337dB | 10.395 dB
With boundary filter recombination | 7.327 dB | 10.376 dB
ELT for unlimited signal 7.166 dB | 10.011 dB

We consider the left boundary. A first set of boundary
filters was designed via the Gram-Schmidt procedure. The
frequency responses of the left boundary filters are depicted
in Fig. 2. As the plot shows, in this ‘example, the Gram-
Schmidt procedure directly yields boundary filters with rel-
atively good frequency selectivity. The filters divide the fre-
quency range [0, ] into A/ bands, and there are always two
filters with the same passband, but different time localiza-
tions. A weakness of the method is that several boundary
filters, in addition to the two lowpass ones, have large non-
zero mean. A second set of boundary boundary filters was
designed to maximize the coding gain under the zero-mean
constraint. The input process was considered to be an AR(1)
process with correlation coefficient p = 0.9. The frequency
responses of the filters are shown in Fig. 3. These filters
not only maximize the coding gain, they also have good fre-
quency selectivity. It can be seen that the 2A/ boundary
filters have 2/ disjoint passbands. which can be expected
from filters that maximize the coding gain. Finally. the de-
signed filters were converted into filters with only A/ pass-
bands by taking linear combinations of the previously de-
signed filters with A, as in (15). The frequency responses
are depicted in Fig. 4. These filters have similar frequency
responses as the original filters and allow for the use of the
same bit allocation in the center and at the boundaries of a
signal. The results in Table 1 show that the drop in coding
gain due to this manipulation is only marginal. The highest
coding gain is obtained when the filters are not restricted to
have no DC leakage. Note that when using the coding gain
as the optimality criterion without further constraints, filters
with relatively little DC leakage may be found by assuming
a correlation coefficient very close to one. Further note that
the coding gains of all optimized filters are higher than for
the plain ELT for unlimited signals.

5. CONCLUSIONS

The methods presented in this paper enable the design of or-
thogonal, perfect reconstruction boundary filters with ideal
DC behavior and maximum coding gain. All methods pre-
sented provide direct solutions and need no cost intensive
numerical optimization. Thus, they are applicable to sys-
tems with a large number of subbands and/or very long filter
impulse responses. The signal lengths can be chosen inde-
pendent of the number of channel of the filter bank. This
allows for segmented coding where the segmentation can
take place at arbitrary points.
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Figure 2: Frequency responses of left boundary filters de-

signed via Gram-Schmidt method.
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Figure 3: Frequency responses of left boundary filters with

maximum coding gain under the zero-mean constraint.
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Figure 4: Frequency responses of left boundary filters which

resemble the frequency responses of the original filters.
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