
1718 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 8, AUGUST 2001

Boundary Filter Optimization for Segmentation-Based
Subband Coding
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Abstract—This paper presents boundary optimization tech-
niques for the nonexpansive decomposition of arbitrary-length
signals with multirate filterbanks. Both biorthogonal and parau-
nitary filterbanks are considered. The paper shows how matching
moments and orthonormality can be imposed as additional condi-
tions during the boundary filter optimization process. It provides
direct solutions to the problem of finding good boundary filters
for the following cases: a) biorthogonal boundary filters with
exactly matching moments and b) orthonormal boundary filters
with almost matching moments. With the proposed methods, nu-
merical optimization is only needed if orthonormality and exactly
matching moments are demanded. The proposed direct solutions
are applicable to systems with a large number of subbands and/or
very long filter impulse responses. Design examples show that the
methods allow the design of boundary filters with good frequency
selectivity.

Index Terms—Boundary filters, filterbanks, multirate signal
processing, subband coding.

I. INTRODUCTION

M ULTIRATE filterbanks are widely used in audio and
image compression. On the encoder side, the signals

are decomposed into subband signals that are then quantized,
further compressed in a lossless manner, and stored or trans-
mitted. The decoder reverses the lossless coding stage, feeds
the quantized subband samples into a synthesis filterbank, and
reconstructs an approximation of the original input signal. To
keep the number of subband samples as low as possible critical
subsampling is employed. Well-known applications are the
MPEG audio standard [1] and wavelet-based image coding
techniques such as JPEG-2000 [2].

While filterbanks are usually designed to process ongoing
signals, it is also of significant interest to use them for the
processing of finite-length signals, which occur for example
in segmentation-based audio and in image coding. Segmenta-
tion-based audio coders divide an input signal into finite-length
blocks and encode each block separately [3]–[5]. This strategy
allows one to easily adapt the bit allocation to different signal
segments and to directly access parts of the encoded bitstream.
In addition, by segmenting audio signals directly in front
of attacks, the problem of pre-echoes can be avoided [5].
Processing finite-length segments of a signal with multirate
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filterbanks, however, requires some additional steps to ensure
a nonexpansive decomposition where the total number of
subband samples produced from a segment is equal to the
number of input samples in that segment.

We assume a filterbank analysis with a uniform, critically
sampled -channel filterbank. The length of the input signal
is denoted as . The aim is to limit the total number of sub-
band samples to while being able to perfectly reconstruct the
input signal from the subband samples. Several techniques to
achieve this goal have been presented in the literature [5]–[17].
The oldest and simplest method to process finite-length sig-
nals is circular convolution [6], where finite-length signals are
periodically extended prior filterbank analysis. If is an in-
teger multiple of , the obtained subband signals are periodic
with period , and only subband signals of length
need to be stored to enable exact reconstruction of the input
signal. Because the left-hand side of a signal gets connected
to the right-hand one, severe coding artifacts may occur when
the signal properties are significantly different on both sides. A
method with better properties is symmetric reflection, which has
been studied by several authors [5], [7]–[10]. In this method, the
finite-length signal is first symmetrically extended at its bound-
aries and then periodically extended, resulting in a signal with
period or , depending on the type of symmetry used
for the extension. For certain constellations of, , extension
symmetries, and in conjunction with linear-phase filters, sym-
metries in the subbands that allow us to achieve nonexpansive
transforms can be obtained. An overview of permissible con-
stellations is given in [10]. Finally, the use of boundary filters
has been proposed in [11]–[18]. Using boundary filters means
that the original filters of the filterbank are replaced by special
filters at the boundaries of the signal that ensure that all of the
information on a length- input signal is contained in a total
number of subband samples. Interestingly, the above-men-
tioned methods of circular convolution and symmetric reflection
can be interpreted as special forms of boundary filtering. How-
ever, boundary filters are not restricted to these cases. They can
be applied to both nonlinear and linear-phase filterbanks with
no restriction on the signal length.

In [11], [12], and [18] methods for the design of boundary fil-
ters are presented, but no direct solutions for their optimization
are provided. In [14] and [17], numerical optimization has been
employed. The work in [13] and [15] presents straightforward
design methods for orthonormal boundary filters. However, de-
sirable features such as matching moments are not included.
The term “matching moments” means that the boundary filters
match the moments of the stationary filters up to a certain de-
gree. In [16], conditions for biorthogonal boundary filters with
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Fig. 1. Example of size-limited analysis and synthesis matrices for two-band decompositions withN = 8 and length-4 filters: (a) and (b) MatricesHHH with
different alignments relative to the input signal. (c) and (d) Synthesis matricesGGG corresponding toHHH as in (a) and (b), respectively.

vanishing moments were formulated for the two-channel case,
but no direct solution was given. In [19], boundary filters for
paraunitary filterbanks with ideal dc behavior and maximum
coding gain were designed. However, no higher moments and
no biorthogonal filterbanks were considered.

This paper presents novel solutions to the problem of
optimizing the boundary filters for nonexpansive-channel
subband transforms. It shows how matching moments and
orthonormality can be imposed as additional conditions during
the boundary filter optimization process. Direct solutions are
provided for the following cases: a) biorthogonal boundary
filters with exactly matching moments and b) orthonormal
boundary filters with almost matching moments. The solutions
also include the simple cases where no moment conditions are
imposed. The direct solutions are applicable to systems with
a large number of subbands and/or very long filter impulse
responses. The only case for which no straightforward solution
is provided is the one where both orthonormality and exactly
matching moments are demanded.

The paper is organized as follows. In Section II, the frame-
work for the construction and manipulation of boundary filters
is given. Section III shows how desired moment properties can
be incorporated into the boundary filter construction. It also ad-
dresses the existence of solutions that yield both orthonormality
and matching moments and states a test that allows us to check
whether or not both properties can be simultaneously achieved.
Methods for optimizing the boundary filters are presented in
Section IV. Section V presents examples, and Section VI gives
some conclusions.

II. FRAMEWORK FOR THE CONSTRUCTION

OF BOUNDARY FILTERS

This section gives a matrix notation for the description of
filterbank decompositions of finite-length signals and outlines

the framework for the construction of boundary filters. We start
by writing the subband decomposition of a signal as

(1)

where the vector contains the input sequence . can be
considered to be a length-segment of an audio signal or a row
or column of an image. is an matrix that describes
the convolution of the input signal with the analysis filters and
the downsampling operation. The vectorfinally contains the
subband samples.

There are many ways to define the structure ofand, thus,
the structure of the transform matrix. Throughout this paper,
we assume that the center part of, which is computed with the
original filter impulse responses, has the form

The definition of at the boundaries depends on the signal
length and the filter alignment used and will be specified as
needed. Fig. 1(a) and (b) gives two examples of analysis ma-
trices . As the examples show, the matrix rows in the center
parts of contain the time-shifted analysis impulse responses
in reversed order. In the upper left and the lower right corners
of the matrices, one finds the boundary filters whose impulse
responses are different from the ones used in steady state. With
respect to their position (left or right) these filters are denoted
as . Note that the two ex-
amples consider the same signal length but use different filter
alignments.

The synthesis operation can be written as

(2)

with . The columns of contain the synthesis filter
impulse responses. Fig. 1(c) and (d) shows examples of the
structure of .
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The filter operations can be divided into three parts, namely,
the processing of the left and right boundaries with boundary
filters and the processing of the interior of the signal with the
original filters. Correspondingly, the matrices can be partitioned
as follows:

(3)

where and contain the boundary filters for the left-hand
side, and and contain the ones for the right-hand side.
The actual number of boundary filters and, thus, the number of
rows of and depends on the number of subbands and the
lengths of the filters.

For the analysis and synthesis operations, in partitioned form,
we get

(4)

where the vectors are the corresponding partitions of.
If the perfect reconstruction (PR) condition

is satisfied, the submatrices satisfy , where
denotes the Kronecker symbol, and matricesare identity
matrices of appropriate sizes. Terms of the form describe
projections (not necessarily orthogonal ones) onto the column
space of . Clearly, if we want to replace one of the matrices

by a new (better) matrix , we also need to replace
the corresponding analysis partition by a new matrix

, where both matrices have to satisfy and
. Hence, we see that both and must have

the same column space, which has important consequences
regarding the choice of . It means that the columns of

can be written as linear combinations of those of.
With invertible, quadratic matrices , the linear combinations
can be expressed as . For the analysis side, it
means that . Using the above-mentioned fact that

, it is easy to see that the modified matrices
satisfy .

The modified analysis and synthesis equations may be written
as

(5)

with

(6)

for . The matrix is chosen as , which
means that only the boundary filters are to be manipulated. The
optimization of the boundary filters reduces to the optimization
of and , where all invertible matrices and satisfy
the PR constraints. However, if we have a paraunitary filterbank
and paraunitaryness is to be maintained, we have to restrict
and to be orthogonal.

For extremely short segments, the boundary filters for the left
and right boundaries merge, and vanishes. In these cases,

we may replace and by a common matrix such that
. Then, for each signal length and required filter

alignment, a dedicated matrix has to be implemented. The
optimization of the matrices can be carried out in the same
way as the optimization of .

Initial solutions for the matrices , , , and that
guarantee PR can be found via the Gram–Schmidt procedure,
as shown in [11]. To give a brief outline of this method, we con-
sider a filterbank analysis described as , where con-
tains the subband samples that are to be computed. The rows
of contain nontruncated, time-shifted, and flipped versions
of the analysis filters’ impulse responses. Note thatis rect-
angular in general and that the length of the input signalis
larger than the length of. The next step is to truncate to an

matrix. Fig. 2 illustrates the truncation for a two-band
decomposition and different cases of interest. The extension to
the -band case is straightforward. Given the truncated matrix,
the method in [11] can be applied to design the required subma-
trices and . The matrices and still contain the
original impulse responses. The design method can be applied
to both paraunitary and biorthogonal filterbanks. The result of
the Gram–Schmidt procedure is somewhat arbitrary, and one
cannot expect to design boundary filters with good properties
this way; therefore, further optimization is needed. In the next
two sections, methods for carrying out the optimization will be
presented.

III. I MPOSINGMOMENT CONDITIONS

One often aims at designing the analysis filters in a filterbank
(or the wavelets used for a wavelet expansion) in such a way that
they have a large number of vanishing moments because this en-
sures good energy compaction properties for low-order polyno-
mial signals and other low-frequency signals. In the following,
we assume that the analysis filters in a given filterbank
have a certain number of vanishing moments, and we look at the
impact of boundary processing on the moment properties.

When applying a filterbank to a finite-length signal by using
boundary filters, the problem that the boundary filters will usu-
ally not satisfy any moment conditions occurs, even if the orig-
inal filters do. In the following, we will derive a method that
enables us to partly match the moments of the boundary filters
to the ones of the original filters in the filterbank. Our free de-
sign parameters are the elements of the matricesand so
that we need to find restrictions on these matrices that guarantee
the desired moment properties.

A. Matching Moments

We formulate the requirements of matching moments as

(7)

with

(8)

, , where denotes the number of con-
ditions. The vectors contain the actual filterbank responses
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Fig. 2. Truncation ofFFF forM = 2 bands. (a) and (b) Even-length signals of length six. (c) and (d) Odd-length signals of length five.

to polynomial input signals , and the vectors contain the
desired responses. Altogether, we may write

(9)

Example of the Choice of : To give an example of
the choice of , we consider a two-channel filterbank,
a dc signal , and a vector defined
as . Assuming that

and , the desired response
will typically be defined as .

This means that we aim at designing boundary lowpass and
highpass filters with the same mean values as and ,
respectively. In other words, the zero-order moments of the
boundary filters are supposed to match the ones of the original
filters. Following this idea, the desired responses for
can be defined according to the properties of and
so that the boundary filters match the moment conditions of the
original ones up to degree.

Given and , the matrices can be described (param-
eterized) as

with
(10)

where contains a basis for the nullspace of such that
. Matrix is the pseudo inverse of , and

is an arbitrary matrix of appropriate size. If the number of con-
ditions is small enough to ensure that , the re-
quirements (9) are fulfilled exactly. Provided that the nullspace
contains more than just the null vector, the elements ofmay
be understood as free design parameters, which can be chosen
to optimize according to other criteria. If is so large that

, then (9) will be approximated in the least squares
sense, and there will be no further free design parameters for
optimization.

B. Increasing the Number of Free Design Parameters

Equation (9) is quite restrictive in the sense that the responses
of all filters to the given input signals have to be specified. To
have greater design freedom, we may want to specify only a few
of these responses. For example, one might want the moments
of some bandpass or highpass filters to vanish while imposing
no restrictions on the moments of the lowpass filters. This can
be achieved by deleting certain rows of (9). For the specified
responses, this yields parameterizations of the form

(11)

where contains the corresponding rows of defined
in (10). For the nonspecified responses, we may freely choose
the elements of matrices . Interleaving and

then yields .

C. Orthonormality and Vanishing Moments

We now look at the problem of finding matrices that sat-
isfy both the moment conditions (9) and the orthonormality con-
straints

(12)

Such matrices are energy preserving so that (9) and (12) can
only be satisfied simultaneously if the actual responses, and
the desired ones have equal energies: .
If this condition is not satisfieda priori and orthonormality is
desired, one must either change the requirementsor prescale
the boundary filters to meet the energy constraints.

If solutions to the problem (9) subject to (12) exist, then one
of them is given by , where

is the singular value decomposition (SVD) of . The
matrices , computed this way are the solutions to
the subspace rotation (Procrustes) problems

minimize s.t.

where denotes the Frobenius norm [20]. If
, then the conditions are satisfied exactly. The

measure with from above can
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be used as a test to find out whether or not both (9) and (12)
can be satisfied simultaneously.

Clearly, with an increasing number of conditions on, the
solution space decreases, and it might be impossible to sat-
isfy both (9) and (12). For the simple case and

, however, orthogonal matrices generally exist
as long as . Finding the optimal matrices
with respect to a given criterion and subject to (9) and (12) is
yet another problem that generally requires numerical optimiza-
tion. However, a method that allows the moment conditions to
be satisfied approximately (with sufficiently high precision for
practical purposes) while yielding a direct solution to the opti-
mization problem will be presented in Section IV-E.

IV. OBJECTIVE FUNCTION AND BOUNDARY FILTER

OPTIMIZATION

We assume that a filterbank has been chosen for a given appli-
cation (e.g., audio or image coding) because of its good proper-
ties. When applying the filterbank to a finite-length input signal,
the boundary filters should have similar properties as the filters
used in steady state. If this is the case, the same bit allocation
can be used at the boundaries and in the interior of the signal,
which is quite desirable from a practical point of view. If the
filter energies vary significantly in the boundary regions, a tem-
poral adjustment of the bit allocation (or spatial adjustment in
the 2-D case) is needed to avoid effects like spatially varying
noise when reconstructing the signal from its quantized subband
coefficients. Adjusting the bit allocation to avoid such effects
has been proposed in [21]. In this paper, we design boundary
filters in such a way that their properties become most similar
to those of the original filters so that an adjustment of the bit
allocation can be avoided.

A. Objective Function

To explain the motivation behind the proposed method, we
consider a length- vector of subband samples computed as

where is as in Section II and is a stationary input process.
The matrix , whose rows contain time-shifted, nontruncated
versions of the analysis filter impulse responses, describes
the filterbank analysis in steady state. Consequently, the input
vector must be longer than whenever the filter length is
larger than . We now look at a length- part in the center of

, denote it as , and describe its analysis as

where has length . The vector can be written as ,
where describes the truncation so thatcan alternatively be
written as

The aim is to minimize the error measure for given
input statistics through the choice of. This means that we
want to make the subband samples computed from the truncated

Fig. 3. Computation ofwww andvvv from xxx .

signal as close as possible to the ones computed from the
longer signal .

By partitioning the vectors into three parts, according to the
description in Section II, we can formulate objective functions

(13)

where and with
. Fig. 3 gives an illustration of the concept. The

objective functions finally become

tr

(14)

where is the autocorrelation matrix of the process, and
denotes the trace of a matrix. Given , , and , the

aim is to minimize through the choice of , .

B. Unrestricted Optimization

If no restrictions on are imposed, minimizing is
straightforward. The optimal matrix is found to be

(15)

To see this, we replace in (14) with , where is
an arbitrary matrix, and insert according to (15) into the
expression obtained. We get

(16)

Clearly, the minimum of (16) occurs for , which shows
that (15) is the optimum solution to the given problem.

C. Including Moment Conditions

To include moment conditions during the boundary filter op-
timization, we parameterize in the form

, as described in Section III-A. The objective function
(14) then becomes

(17)
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Fig. 4. Frequency responses of boundary analysis filters designed via Gram–Schmidt method. Parameters:M = 16, ELT prototype, 32 boundary filters. Left:
h (n); . . . ; h (n). Right:h (n); . . . ; h (n).

Using the same arguments as above, one can show that the op-
timal parameter matrix is given by

(18)

D. Imposing Orthonormality

For paraunitary filterbanks where we demand that matrices
are orthogonal, the optimal matrices according to (14) can

be found via SVDs [13]. To derive the solution, we consider
to be decomposed into (for example, a Cholesky
decomposition). The optimization problem may then be written
as a set of subspace rotation problems [20]:

minimize

(19)

To solve (19), we compute the SVDs

(20)

and find the final solutions as

(21)

E. Orthonormality and Almost Vanishing Moments

If both orthonormality and matching moments are to be
achieved exactly, numerical optimization may be used. In this
section, we slightly relax the conditions and look for solutions
that maintain orthonormality but satisfy the moment conditions
only approximately.

We assume that the moment conditions are stated in such a
way that an orthonormal solution exists. That is, the problem

is supposed to have a solution with an orthogonal
matrix . We use the objective function (19) and amend it with
the additional moment conditions as follows:

minimize s.t.

(22)

with

(23)

The solutions then becomes

(24)

where and are taken from the SVDs

(25)

V. EXAMPLES

In the first example, we consider a paraunitary, cosine-modu-
lated 16-band filterbank with extended lapped transform (ELT)
prototype according to [22]. In this filterbank, the subband fil-
ters have nonlinear phase so that symmetric reflection tech-
niques cannot be applied, and boundary filters must be used.
The filter length of an ELT is . The filter alignment for pro-
cessing finite-length signals is chosen such that there are
boundary filters on each side of a signal of length , where

is an integer. The vector of subband samples is defined as

The initial boundary filters were designed via the
Gram–Schmidt procedure. The frequency responses of
the boundary filters (left boundary) are depicted in Fig. 4. In
this example, the Gram–Schmidt procedure directly yields
boundary filters with relatively good frequency selectivity.
However, a weakness of the method is that several boundary
filters, in addition to the lowpass ones, have large nonzero
mean. Thus, when processing signals with a large dc component
(for example, in image compression), a significant amount of
the dc component will leak into several bands and may cause
problems with the bit allocation in these bands.

Fig. 5 shows the frequency responses of the boundary fil-
ters designed with the biorthogonal method proposed in Sec-
tion IV-C. The filters were parameterized according to (9) to
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Fig. 5. Frequency responses of biorthogonal boundary analysis filters designed with the algorithm in Section IV-C. Parameters as in Fig. 4; one vanishing moment.
Left: h (n); . . . ; h (n). Right:h (n); . . . ; h (n).

Fig. 6. Frequency responses of boundary synthesis filters, corresponding to the analysis in Fig. 5. Left:g (n); . . . ; g (n). Right:g (n); . . . ; g (n).

Fig. 7. Frequency responses of orthogonal boundary analysis filters designed with the algorithm in Section IV-E. Parameters as in Fig. 4; near-idealdc behavior.
Left: h (n); . . . ; h (n). Right:h (n); . . . ; h (n).

have one matching moment. During optimization, a white noise
input process was considered. The plots in Fig. 5 show that the

resulting filters have ideal behavior for dc signals and good fre-
quency selectivity.



MERTINS: BOUNDARY FILTER OPTIMIZATION FOR SEGMENTATION-BASED SUBBAND CODING 1725

Fig. 8. Frequency responses of orthogonal boundary analysis filters with near-perfect dc behavior. Parameters:M = 64, ELT prototype, 128 boundary filters.
Left: h (n); . . . ; h (n). Right:h (n); . . . ; h (n).

Fig. 9. Frequency responses of biorthogonal boundary filters with one matching moment, designed with the algorithm in Section IV-C. (a) Analysis filters for
left-hand side. (b) Analysis filters for right-hand side. (c) Synthesis filters for left-hand side. (d) Synthesis filters for right-hand side.

Since the filter optimization considers only the analysis side,
it is not guaranteed that the synthesis boundary filters, although
providing perfect reconstruction, are frequency selective and
behave as desired. To demonstrate that the synthesis boundary
filters have good properties, their frequency responses are de-

picted in Fig. 6. These filters, however, do not have vanishing
moments.

Boundary filters for the given filterbank example were also
designed with the unrestricted and the orthonormal methods
outlined in Sections IV-B and D. The results, however, do not
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differ much from the ones obtained with the Gram–Schmidt
method and are not plotted explicitly. Essentially, both of these
methods result in dc leakage into several bands.

Finally, orthogonal boundary filters with almost perfect dc
behavior were designed. For this, the required dc responses
had to be prescaled to meet the energy of the given dc responses

. The optimization was then carried out as described in Sec-
tion IV-E. The obtained lowpass boundary filters were finally
scaled to meet the desired dc responses exactly. Therefore, the
lowpass boundary filters’ energies are not equal to one. They are
0.7746 for the analysis and 1/0.7746 for the corresponding syn-
thesis filters. All other filters have unit energy. The frequency
responses of the optimized analysis filters are depicted in Fig. 7.
The maximum dc amplification of the nonlowpass bands is on
the order of and can be regarded as practically ideal.
Since the solution is orthogonal, the frequency responses of the
synthesis filters are the same as for the analysis ones, apart from
scaling of the lowpass filters.

To show that larger problems can be tackled with the pro-
posed methods, boundary filters for a 64-channel filterbank
were designed. Again, an ELT was used. The frequency
responses of orthogonal boundary filters with near perfect
dc behavior are depicted in Fig. 8. The maximum dc ampli-
fication of nonlowpass bands is in the order of and,
thus, practically ideal. As before, the energies of the analysis
lowpass filters are 0.7746 due to scaling. Boundary filters
with comparable frequency responses were obtained with the
biorthogonal method from Section IV-C under the constraint
of an ideal dc behavior.

In a final example, we consider an eight-channel, biorthog-
onal, low-delay, cosine-modulated filterbank with a filter length
of and a system delay of 15 taps. The prototype is
designed to have no dc leakage [23]. The signal lengthis
chosen to be an integer multiple of the number of channels. Be-
cause low-delay filters have most of their energy concentrated
at the beginning of their impulse responses, it turned out to be
advantageous to set up in such a way that different num-
bers of boundary filters are used on both sides. Therefore,
boundary filters were designed for the left-hand side, whereas
only were used on the right-hand side. The boundary filters
for the PR analysis/synthesis system were designed with the al-
gorithm in Section IV-C under the constraint of an ideal dc be-
havior. The frequency responses of the boundary analysis filters
are depicted in Fig. 9(a) and (b). Note that Fig. 9(a) shows the
frequency responses of all boundary filters for the left-hand
side, where three filters always have the same passband. All
analysis filters have good frequency selectivity, and as required,
they have an ideal dc behavior. Fig. 9(c) and (d) depict the fre-
quency responses of the boundary synthesis filters. In addition,
these filters are sufficiently frequency selective.

VI. CONCLUSIONS

In this paper, closed-form solutions for the design of optimal
boundary filters for processing finite-length signals with filter-
banks have been presented. The boundary filters are designed
in such a way that they have the same moments (up to a certain

degree) as the original filters in the filterbank. The proposed
methods ensure a minimum number of subband samples and
are applicable to both paraunitary and biorthogonal filterbanks.
Design examples have been presented for cosine-modulated
filterbanks, as often used in audio compression. It turned
out that the designed boundary filters have a good frequency
selectivity so that good coding properties can be expected.
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[18] C. Herley, J. Kovǎcević, K. Ramchandran, and M. Vetterli, “Tilings of
the time-frequency plane: construction of arbitrary orthogonal bases
and fast tiling algorithms,”IEEE Trans. Signal Processing, vol. 41, pp.
3341–3359, Dec. 1993.

[19] A. Mertins, “Boundary filters for size-limited paraunitary filterbanks
with maximum coding gain and ideal DC behavior,”IEEE Trans. Cir-
cuits Syst. II, vol. 48, pp. 183–188, Feb. 2001.

[20] G. H. Golub and C. F. Van Loan,Matrix Computations, 3rd
ed. Baltimore, MD: John Hopkins Univ. Press, 1996.



MERTINS: BOUNDARY FILTER OPTIMIZATION FOR SEGMENTATION-BASED SUBBAND CODING 1727

[21] V. Nuri and R. H. Bamberger, “Size limited filterbanks for subband
image compression,”IEEE Trans. Image Processing, vol. 4, pp.
1317–1323, Sept. 1995.

[22] H. S. Malvar, “Extended lapped transforms: Fast algorithms and appli-
cations,”IEEE Trans. Signal Processing, vol. 40, pp. 2703–2714, Nov.
1992.

[23] T. Karp and A. Mertins, “Biorthogonal cosine-modulated filterbanks
without DC leakage,” inProc. IEEE Int. Conf. Acoust., Speech, Signal
Process., vol. 3, Seattle, WA, May 1998, pp. 1457–1460.

Alfred Mertins (M’95) received the Dipl.-Ing. de-
gree from the University of Paderborn, Paderborn,
Germany, in 1984 and the Dr.-Ing. degree in elec-
trical engineering and the Dr.-Ing. habil. degree in
telecommunications from the Hamburg University of
Technology, Hamburg, Germany, in 1991 and 1994,
respectively.

From 1986 to 1991, he was with the Hamburg
University of Technology, from 1991 to 1995, with
the Microelectronics Applications Center, Hamburg,
from 1996 to 1997, with the University of Kiel,

Kiel, Germany, and from 1997 to 1998, with the University of Western
Australia, Nedlands, Australia. Since 1998, he has been with the School of
Electrical, Computer and Telecommunications Engineering, University of
Wollongong, Wollongong, Australia. His research interests include digital
signal processing, wavelets and filterbanks, image and video processing, and
digital communications.


