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Fig. 4. (a) Decimation. (b) Filtering and decimation.

Substituting (35) into (34), one obtains
H A (cj(w/aa)) =./ay, |w] <7, m > 1. 37)
r=1

This relation can be satisfied if the filtefn] is the ideal low-pass filter
having the frequency response defined over the basdbédnd = by

. Vaoe '™, <
A (ef“) = ao (38)
0, otherwise
where the phase resporngr) should satisfy the constraint
ZH <i,> =27k, |w| < 7, m > 1, kinteger (39)
g
r=1

IV. CONCLUSION

A filter bank implementation of the discrete time wavelet transform,
DTWT[m, n] has been developed. A closed-form expression for t
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Boundary Filters for Size-Limited Paraunitary Filter
Banks with Maximum Coding Gain and Ideal DC Behavior

Alfred Mertins

Abstract—This paper presents boundary optimization techniques for
the processing of arbitrary-length signals with paraunitary multirate filter
banks. The boundary filters are designed to maximize the coding gain while
providing an ideal dc behavior where all filters except the low-pass filters
have zero mean. Moreover, solutions are presented that have similar fre-
quency responses as the original subband filters. The proposed methods
give direct solutions to the problem of finding the optimal boundary fil-
ters with maximum coding gain and do not require numerical optimization.
Thus, they are even applicable to systems with a large number of subbands
and/or very long filter impulse responses.

Index Terms—Boundary filters, filter banks, multirate signal processing,
subband coding.

|. INTRODUCTION

Multirate filter banks are usually designed to process ongoing sig-
nals, but it is also of significant interest to use them for the processing
of finite-length signals. Applications include segmentation-based audio
[1]-[4] and region-based [shape adaptive (SA)] image coding [5], [6].
From a compression point of view, it is desirable to carry out a filter
bank analysis of a finite-length signal in a nonexpansive way. This
means that the total number of subband samples produced from a time-
limited signal should be equal to the number of samples of the signal.
Achieving this goal with filter banks, however, requires some addi-
tional steps, because the filter impulse responses are overlapping and
the transient behavior at the signal boundaries must be taken into ac-
count.

Various techniques have been proposed to process finite-length

raignals, including circular convolution [7], symmetric reflection [3],

discrete time Fourier transform of the DTW, ] viewed as a se- [81-[11], and the use of boundary filters [12]-{21]. This paper concen-

guence im first was derived. Next, an expression for the frequency-d

{rates on boundary filters and presents novel methods to optimize them

main outputs of the filter bank structure of Fig. 1 defined by the digitdfith regard to the coding gain. Using boundary filters means that the

filters a[n] andb[r], was obtained. By equating both expressions, t

filter a[n] emerged as an ideal low-pass filter and the filter] as a

bandpass filter obtained by time-reversing and complex conjugatift

the sampled mother wavele{nT").
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up to a certain degree. The work in [21] also states conditions under _heg(z) hyy (1) Ry, (0)
which both matching moments and paraunitaryness can be obtained hug, (2) e, (1) By, (0)
and introduces a design method that yields orthogonality and almost ho(3) ho(2) ho(1) ho(0)
matching moments without the need of numerical optimization. The ha(3) hi(2) ha(l) he(0)
optimality criterion in [21] is related to the one in [15] and [16] and
is different from the maximization of the coding gain considered in ho(3) ho(2) ho(1) ho(0)
this paper. In [20], a solution to the paraunitary two-channel case was h(3) ha(2) (1) h1(0)
proposed, which first optimizes the boundary filters and then applies Pro(3) ro(2) R (1)
a Householder transform to obtain zero-mean high-pass filters. Dueto | b (3) hry (2) By (1)
the Householder step, the final filters are no longer optimal.

This paper shows how boundary filters with maximum coding gairig- 1. Example of size-limited analysis mat#ik. A/ = 2, N = 8, length-4
can be designed in a straightforward manner and without the need&i's:
numerical optimization. No restrictions on the type of the paraunitary
filter bank, the number of channels, and the signal length are imposadd
Thus, the proposed methods are applicable to nonlinear phase filter i
banks and signals of arbitrary length. This is important, as the often y=1[90(0), .. yar1(0), ooy o (B = 1), ..
used cosine modulated filter banks have nonlinear phase. The design v ym— (K = 1), yo(K), ..., yomr (K)]". 4)
can either be carried out without further constraints or under the con- _ B B .
straint of an ideal dc behavior. To control the dc behavior, a projectic§1'ven the deflnlt_lons for andy, theA'_ X N matan can be set up
technique is used. Optimization is then carried out in a second Stgkglescrlbe the filter t_)._':mk analysis. Fig. 1 gives an exampl édr a
It is shown that maximizing the coding gain through optimizing th 0-band dgcomp03|t|0n of .a.length-8 signal.
boundary filters results in an eigenvalue problem, which has a straight-The matrixH may be partitioned as
forward solution. In addition to maximizing the coding gain, a method H=[HH]H]" (5)
is proposed that allows us to find boundary filters that have similar
frequency responses as the original subband filters in the filter baM#)ere the center part contains the original impulse responses of the
Note that the coding gain has also been considered in [17] and [22alysis filters, while the upper and lower parts contain boundary fil-
In [17], numerical optimization was employed to find the boundarigrs. Using this partitioning, the analysis equation (2) can be rewritten
filters and no dc constraints were imposed. The use of numerical o@f
mization practically limits the method to systems with a small number
of subbands and short filter impulse responses, because the number of
unknown parameters rapidly increases with the number of bands T Y Y TS . :
the filter lengths. The proposed method does not suffer from such Iiw\%?:g?yas_ v 92, 9] . Similarly, the synthesis operation can be
tations. In [22], the coding gain was used to optimize the bit allocation
for given boundary filters and not to optimize the filters themselves. 3

This paper is organized as follows. In Section I, the framework for &= Z Gy, @)
the construction of boundary filters is given and a method to avoid dc k=1
leakage is presented. Methods for optimizing the boundary filters asereG. are the corresponding partitions of the synthesis magrix
presented in Section II. Section IV presents design examples, and Sg@:h that: = Gy. Perfect reconstruction (PR) is givenGiH = I.

yk:Hk’wa k=1,2,3 (6)

tion V gives some conclusions. In particular, if the size-limited filter bank is unitary, we have PR with
G =H".
Il. THE CONSTRUCTION OFBOUNDARY FILTERS To design a matrix? that satisfiesH” H = I, the Gram—Schmidt

. L . . . o ) rocedure can be used [13], [14]. In this method, in a first step, one
This section first gives a brief outline of size-limited filter banks an ets up an appropriately sized matfi which describes a filter bank
the constructio_n of bqundary filters via the Gram—Schmidt prqcedur alysis with the given analysis filters. In a second step, this matrix

followed by a discussion of the degrees of freedom being available Qhincated to sizeV x N Finally, the rows of the truncated matrix
filter optimization when no further restrictions are imposed. Finally, Ao orthogonalized with the Gram—Schmidt procedure to yield an or-
method to ensure ideal dc behavior is introduced, and the remaim[ﬂgnormal matrixi satisfyingHTH — TI. Fig. 2 shows an example
degrees of freedom for further optimization are discussed. of F and its truncation. The orthogonalization of the truncated matrix
yields the matrix depicted in Fig. 1. The extension to thé-channel

A. Construction of Basic Size-Limited Filter Banks case is straightforward. Note that for a paraunitary filter bank, the non-
We consider an arbitrary signal lengthand describe it as truncated rows of" are mutually orthogonal and orthogonal to the trun-
cated ones.
N=KM+s (1)

B. Degrees of Freedom

whereM denotes the number of subbands @@nds satisfy k' € Z We assume that the PR conditi®@H = HG = I is satisfied with
and0 < s < M, s € Z. The filter bank analysis of a lengthN-signal G = H’. The submatrices then satistf. G = I, wherel;, are

x(n) may then be written as identity matrices of appropriate size. Terms of the fa@nH . de-
scribe orthogonal projections onto the column space&af During
y=Hz (2) optimization, the aim is to replace the matridds and H; by new,
better matriced; and H. Clearly, we then also have to replace the
with corresponding synthesis partitio6§ andGs by new ones and have

to ensure thall .G, = I, andG,H, = G, H. This makes clear
x=[2(0), (1), ..., o(N = 1)]" (3) thatbothH; andH; must have the same row space and that the rows
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ho(3) (o () ho(l) ho(0) Ill. BOUNDARY FILTER OPTIMIZATION

h1(3)ih1(2) ha(1) he(0) A. Unconstrained Maximization of the Coding Gain
ho(3) ho(2) ho(1) ho(0) We interpret the subband decomposition according to (8) as a uni-
hi(3) h1(2) hi(1) h1(0) i tary transform that map¥ input values intaV transform coefficients.

ho(3) ho(2) ho(1) ho(0 Under the assumption of a high bit rate and uncorrelated quantization
. errors, the coding gain may then be expressed as [23], [24]
ho(1) i ho(0) No1

ha(3) hi(2) Bi(1) R (0) G=o; [[(eip™/" (11)
£=0

Fig. 2. Analysis matrid” and its truncation} = 2, N = 8, length-4filters.  wheres?, are the variances of the subband samples computed via (8).

The matrix is to be truncated to the part surrounded by the dashed box. Thus, optimizing the boundary filters to yield maximum coding gain
turns out to be equivalent to minimizing the products of the diagonal

of H,, can be written as linear combinations of thosekbf. With ~ elements of

quadratic matrice¥ ., these linear combinations can be expressed as _ Tyl L

H, = U.H, for the analysis an@, = G,U; "' for the synthesis Rowor = UrlRos Hi U k=13 (12)

side. The modified analysis and synthesis equations then become The matricesR., ., are the autocorrelation matrices of the subband
samplesvi., generated from an input processwith autocorrelation

vi =Hyx =U,Hyz, matrix R..... Minimizing the product of the diagonal elements is accom-
. 3. 3 . plished by the Karhunen—Loéve transforms (KLTs) of the procagses
r= Z Grvp = Z GiU, v () Inother words, the rows of the optimal matridés, & = 1, 3 are the
k=1 k=1 transposed eigenvectors of
with U, = I. Since we are interested in maintaining orthogonality Ry, = H.R,,HT. (13)

during optimization, the matricd, must satisi/, ' = Uut.
The eigenvalue problem is easily solved and no numerical optimization
C. Avoiding DC Leakage is required to find the optimal boundary filters.

The boundary filters designed with the Gram—Schmidt procedureNOte that the K_LT n_ot only maximizes the codi_ng gain; it_also mini-
will usually suffer from dc leakage into all subbands, because all truff'2€s the approximation error W_h_en reconstructlon' Is carried ogt'from
cated impulse responses typically have nonzero mean and the desi éHbset of the tran_sform coefiicients [23]. For this, the coefﬁm_ents
filters are found as linear combinations of the truncated ones. In the fi >ed for reconstruction have to be the ones that are computed with the
lowing, we derive restrictions on the matrices andU ; to avoid dc eigenvectors that correspond to the largest eigenvalues.
leakage. For the reason of simplicity, we only look at the left bounda
and thus al/,. We first generate a basis vector that represents a
signal in the row space df;. Then we use the Gram—Schmidt proce- T0 obtain boundary filters with maximum coding gain under the
dure to completd? ; . The remaining optimization steps are carried ou#€r0-mean constrain, we use the parameterization (10). Again, the key
in such a way that we have control over the dc component of an ing@tthe solution is the KLT. We partitiofl ; as
signal. 7
Let H, be a matrix that contains a basis for the row spac# of H, = {HJ 14)

Typically, H; can be generated by taking the upper part of the trun- . ) . . )
cated matrixF. It does not need to be an orthogonal matrix, but @nd, following the same ideas as in Section llI-A, we find the rows of

must have maximum rank, so that its rows span the entire subspHFeOptimal matriXd’; to be the transposed eigenvectors of the matrix
of left boundary ;fi_Iters. Further, let be a lengthh vector of ones: R = H.R HZ

t =[1,1,...,1]". We now compute the orthogonal projectiontof e v

onto the row space off ;

QE: Maximizing the Coding Gain Under the Zero-Mean Constraint

C. Approximating the Frequency Responses of the Original Filters

t:=Hi [Hiﬂf "' Hit. ©) The previous two subsections have shown how the coding gain can
) ) . 7 be maximized through the choice of boundary filters. The described de-
The first row of the matrid , is then chosen as . All further rows of  qjon methods, although optimal, usually do not lead to boundary filters
H, can be found via the Gram-Schmidt procedure, using the rowsiahy have similar frequency responses as the original filters. Assuming
H, as a given basis for the subspaceAlyp question. Note that one of H‘E)tal number of.;, boundary filters and an AR(1) input process, we
rows of H, will not be needed, becauge has been included, which 5y expect the optimal boundary filters to be bandpass filters vjth
already is a linear combination of the rows Bt The inverse in (9) jtterent passbands in the frequency ranger|0This s justified by the
always exists becaud¢, andH have the same row space alld iS ¢4t that the direct application of the KLT to such a process results in a
orthogonal. _ _ similar behavior. Thus, the frequency rangedPwill be divided into
The matrixH, constructed with the above algorithm has the propr, phands at the boundaries, instead of haviighands like the orig-
erty that allits rows, except the first one, have zero mean. This propegty filters. To convert the boundary filters into new ones with similar

is easily kept by choosing 1 as time-frequency resolutions as the original filters, we take linear combi-
1 o nations of the previously constructed boundary filters. In the following,
U, = {0 v, } (10)  we give a straightforward description of the method. The rationale be-

hind it is outlined in the Appendix. .
whereV; is orthogonal. More details on the choicdlof will be given Let L, = vxM with v, € Z, and Ietﬁ,-,,k, i=1,2,....L—-1
in Section 111-B. The same concept can be used for the right boundatignote théth row of H;, = U H,. Let us assume that the rowslf,
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Fig. 3. Frequency responses of left boundary filters. (a) Gram—Schmidt method, (b) Gram—Schmidt method and zero-mean constraint, (c) magigaim codin
under zero-mean constraint, and (d) boundary filters that resemble the frequency responses of the original ELT filters. Note: the signifizmotatehe filters
in (c) and (d) near the normalized frequency 0.5 belong to high-indexed subbands, not to subbands near the low-pass one.

had been ordered according to the corresponding eigenvalligs gf  Forvi > 2, thevy x vy discrete cosine transform (DCT)-Il matrices
orRykyk, depending on the method used. We assume that the first rave possible choices. Completely parameteriZipgs orthogonal ma-
corresponds to the largest and the last one to the smallest eigenvatimes and optimizing the free parameters according to some criteria,
Let Ax be orthogonal matrices of size x v;. The new filters are however, may lead to an improvement over the DCT-Il matrices.
constructed as Consider the case where the boundary filters are constructed in such
L T a way that the dc component of the input signal is concentrated in a
hii1yy,41,k hiimvyvsrn single subband coefficientl . Ht = [v, 0, ..., 0] with some value
: = Ay : i =1,2 M
iLT. the filtersﬂ =1, « Will have equal mean values. All other
Wik filters for i > WI|| have zero mean.
Note that the operation (15) is supposed to turn the narrow-band fil-
tersh;_ , into wide-band oneg;_ , with different time localizations.
whereh » forms theqth row of the final optimized analysis matrix t,q ey filters are not necessarlly ordered according to their time lo-

~. If A is now chosen such that its first column contains a constant,
A’[.
hiuk, k
(15)
H,. calizations. If such an ordering is wanted, it can be carried out in an
The orthogonal matriced,. should be chosen in such a way thagdditional step.
their columns, when interpreted as filter impulse responses, are band-

pass filters that divide the frequency rangeqinto », bands of equal IV. DESIGN EXAMPLES

widths. Fory,, = 2, the matrixA, would typically be
We consider a paraunitary cosine-modulated 32-band filter bank

A — 1 [1 1 16 with extended lapped transform (ELT) prototype according to [25].
k= ﬁ 1 —11" (16) In this filter bank, the subband filters have nonlinear phase, so that
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0.5 Fig. 5. Frequency responses of boundary analysis filters with maximum
coding gain under the zero-mean constraint, designed for a signal length
N = KM + s with M = 32 ands = 28.
§ the designed filters were converted into filters with odypassbands,
% 0.05¢ using the algorithm described in Section I1I-C wit as in (16). The
E frequency responses are depicted in Fig. 3(d). These filters no longer
maximize the coding gain, but they have similar frequency responses
or as the original filters, allowing for the use of the same bit allocation in
the center and at the boundaries of a signal. In this example, the coding
_0.05 . . . L . gain amounts to 7.327 dB, which means that the reduction in coding
() 20 40 ?10 80 100 120

gain due to this manipulation is only marginal. To demonstrate the ef-
fects in the time domain, Fig. 4 depicts the impulse responses contained
in hl 1, hz 1, andhy 1, ks 1, respectively.

We now consider the processing of the right boundary. Boundary
fiers were designed for various signal lengths. It turned out that fre-
guency-selective filters were obtained for Alland not only forV =
K M. To give an example, Fig. 5 shows the frequency responses of
boundary filters with maximum coding gain faf = 32 and N =
symmetric reflection techniques cannot be applied and boundary filtérs\/ + 28, obtained under the zero-mean constraint.
must be used. ELT filters have filter lengti£ and the total number
of boundary filters for the left-hand side turns out tobe= 24/. On
the right-hand side, their number depends on the parametsed to

describeN in (1). The methods presented in this paper enable the design of orthogonal,
We first look at the left boundary. A first set of boundary filters wagerfect reconstruction boundary filters with ideal dc behavior and max-
designed via the Gram-Schmidt procedure. The frequency responsggim coding gain. The signal lengths can be chosen independent of the
the boundary filters are depicted in Fig. 3(a). As the plot shows, in thigimber of channel of the filter bank. This allows for segmented coding
example, the Gram-Schmidt procedure directly yields boundary filteffere the segmentation can take place at arbitrary points. For example,
with relatively good frequency selectivity. The filters divide the frepy segmenting audio signals direct in front of attacks, the problem of
quency range [Gr] into A/ bands, and there are always two filters withyre_echoes can be avoided. This paper has also proposed a method to
the same passband, but different time localizations. A weakness of f{ig boundary filters that have similar frequency responses as the orig-
method is that several boundary filters, in addition to the two low-pagsy| filters. This allows for the use of the same bit allocation in the
ones, have large nonzero mean. Assuming an AR(1) input process Wigter and at the boundaries of a signal. All methods presented provide

correlation coefficienp = 0.9, the coding gain of these filters is 6.919jrect solutions and need no cost-intensive numerical optimization.
dB. A second set of boundary filters was designed under the zero-mean

constraint, according to the method in Section II-C. Their frequency re-
sponses are depicted in Fig. 3(b). It can be seen that many of these filters
have poor frequency selectivity, and the coding gain is only 6.52 dB. A
third set of boundary filters was designed to maximize the coding galn
for the above mentioned AR(1) process under the zero-mean constral
The frequency responses of the filters are shown in Fig. 3(c). It canl
seen that the  boundary filters have ¥/ disjoint passbands with
good frequency selectivity. The coding gain is 7.337 dB. For compar-
ison, the gain that can be obtained through an unconstrained optimiza-
tion with the method in Section IlI-A amounts to 7.341 dB. Finally,

(b)

Fig. 4. Impulse responses of right boundary filters that resemble the freque
responses of the original filters. (a) Filtershin ; andh; ;. (b) Filters ink; 1
andh;, ;.

V. CONCLUSIONS

APPENDIX

In the following, we outline the rationale behind the boundary filter

nipulation described in Section IlI-C. Consider the construction of
Pers pe(n) as linear combinations of time-shifted versions of a given
er h(n)

v—1

pe(n) := Z ag, ch(n — kM), £=0,...,v—1
k=0

17
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wherewy, ¢ are arbitrary weights. The frequency responses of the filter$15]
pe(n) are
Jwy _ jw jwM

Pe(e’)=H(e’)Ae(e ) 116}

with
. v—1 .
A’y = Z ahgeﬂum.
k=0

If H(e’*) has bandwidthr/M and the filtersd,(e’*) have band-
widths 7 /v, then the filtersP;(e’*) will have bandwidthsr /(v ).
The operation (17), which describes the construction of narrow-banﬁgl
filters p,(n) from time-shifted versions of a wide-band filtefn ), can
be written as

(18) [17]

(18]

(20]

P=A"H. (19)

The rows ofP andH contain the impulse respongesn) andh(n — [21]

kM), respectively, andi contains the coefficients;, . AsSsuming an
orthogonal matrix4, the opposite is achieved with the operation

H = AP. (20)

Equation (20) describes the operation in (15), which is used to tur
narrow-band filters into wide-band ones with different time localiza-
tions.

[22]

[23]
Ta)

[25]
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. INTRODUCTION

Envelope-constrained (EC)filtersdefine aclass oflinearfiniteimpulse
response (FIR) filters whose output in response to a given input pulse
will yield the desired pulse shape to within the preset design tolerance.

Manuscript received December 1999; revised January 2001. This work was
C. Herley, J. Kovéevic, K. Ramchandran, and M. Vetterli, “Tilings of supported in part by the Australian Research Council under a Research Grant

the time-frequency plane: Construction of arbitrary orthogonal basasd in part by the University of Western Sydney, Nepean, Australia, under a

and fast tiling algorithms,TEEE Trans. Signal Processingol. 41, pp.
3341-3359, Dec. 1993.
(14]

Research Grant. This paper was recommended by Associate Editor A. Skodras.
The author is with the School of Quantitative Methods and Mathematical
C. Herley, “Boundary filters for finite-length signals and time-varyingSciences, University of Western Sydney, Kingswood, NSW 2747, Australia

filter banks,”|EEE Trans. Circuits Syst. Iiol. 42, pp. 102-114, Feb. (e-mail: w.zheng@uws.edu.au).

1995.

Publisher Item Identifier S 1057-7130(01)03053-1.

1057-7130/01$10.00 © 2001 IEEE



