
Design of Redundant FIR Precoders for Arbitrary Channel Lengths
based on an MMSE Criterion

Alfred Mertins
University of Wollongong

School of Electrical, Computer, and Telecommunications Engineering
Wollongong, NSW 2522, Australia

Abstract—In this paper, the joint design of transmitter and re-
ceiver for multichannel data transmission over dispersive chan-
nels is considered. In particular, the practically important case
where the transmitter consists of FIR filters and the channel im-
pulse response has arbitrary length is addressed. The design crite-
rion is the minimization of the mean squared error at the receiver
output under the constraint of a fixed transmit power. The pro-
posed algorithm allows a straightforward transmitter design and
yields (in general) a near-optimal solution for the transmit filters.
Under certain conditions, the exact solution for the optimal trans-
mitter is obtained.

I. I NTRODUCTION

It is well known that redundancy introduced in the trans-
mitter of a communication system may allow to overcome se-
rious intersymbol interference (ISI) problems due to highly
dispersive channels. The process of shaping the transmit sig-
nal and/or introducing redundancy based on the knowledge of
the channel is also known as precoding. Various strategies
have been followed in the design of precoders. Classical tech-
niques such as Thomlinson-Harashima precoding use modulo
arithmetic to manipulate the stream of transmit symbols [1,2].
More recently studied linear techniques use a joint design of
the transmit and receive filters. We are interested in the second
category. Prominent examples of redundant transmission tech-
niques that are somewhat matched to the channel are DMT and
OFDM where a guard interval in form of a cyclic prefix is in-
troduced [3,4]. With DMT and OFDM, ISI can be completely
avoided if the channel is FIR and the length of the prefix is
equal or larger than the channel order. Apart from (possibly
applied) adaptive loading in the transmitter the only adapta-
tion of the transmitter to the channel is the choice of the length
of the prefix. Better performance than with DMT or OFDM
can be expected when the transmitter and receiver impulse re-
sponses are entirely adapted to the channel. In recent years
this joint design problem has attracted numerous researchers,
as it has the potential to yield very high throughput through
dispersive channels without the need of costly algorithms such
as maximum likelihood sequence estimation with the Viterbi
algorithm.

Salz [5] provided a first solution to the joint filter design
problem, but it required the filters to have support within the
first Nyquist zone[−1/2T, 1/2T ]. Yang and Roy proposed
an algorithm for the design of precoders that use excess band-
width to introduce redundancy [6]. However, their method re-

quired an iteration to find the optimum solution. Xia studied
the existence of redundant precoders that allow a perfect in-
version of FIR channels with FIR receivers [7]. The effects of
noise were not considered. Scaglione et al. provided direct so-
lutions to the joint design problem for the case of block trans-
forms where the channel order does not exceed the length of an
introduced guard interval of zeros [8,9]. The optimality criteria
considered are the the zero forcing (ZF) and MMSE criteria [8]
and the maximization of mutual information [9]. Because the
length of the guard interval in the block transforms of [8, 9] is
equal to the length of the cyclic prefix in DMT and OFDM, the
same delay and bandwidth efficiency problems occur as with
DMT or OFDM when the channel impulse response becomes
long. Li and Ding provided a direct solution to the problem of
minimizing the MSE under the power constraint which allows
arbitrary channel lengths [10]. However, the practical use of
their exact solution is somewhat restricted, because it turns out
that both the ideal transmit and receive filters are generally IIR
filters.

In this paper, we are interested in the design of precoders
where the transmit filters are FIR and the channel may have ar-
bitrary length. Note that this configuration is of significant in-
terest for practical applications, because real channel impulse
responses may become extremely long and the use of suffi-
ciently long guard intervals, as required for DMT, OFDM, or
the method in [8], may be prohibitive due to delay constraints.
The proposed design method considers the optimal receive fil-
ters for given transmit filters and channel, but during transmit-
ter optimization it uses an approximation for simplifying the
objective function. ForL ≤ N − M , whereL is the channel
order,M is the number of subchannels, andN is the upsam-
pling factor in the transmitter, the algorithm yields the exact
optimum solutions of [8], and forL > N −M it leads to near
optimum solutions.

II. MIMO D ESCRIPTION OFPRECODERS

A block diagram of a redundant precoder is given in Fig. 1.
The input streamd(m) is split intoM parallel streams which
are then upsampled by a factor ofN ≥ M and fed into theM
transmit filtersgk(n), k = 0, 1, . . . ,M−1. The channel is de-
scribed by its impulse responsec(n) and an additive, stationary
noise processη(n). The receive signal is filtered with the anal-
ysis filtershk(n), k = 0, 1, . . . ,M−1 and subsampled byN to
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Fig. 1. Redundant precoder.

yield the parallel output datâdk(m). Finally, a parallel/serial
conversion yields the output sequenced̂(n).

For the analysis of precoders it is advantageous to decom-
pose the filters into their polyphase components and to describe
the system as a multiple-input multiple-output (MIMO) system
as depicted in Fig. 2. The input vector to the MIMO system at
time m is given byd(m) = [d0(m), d1(m), . . . , dM−1(m)]T

with dk(m) = d(mM − k). The output process, denoted as
d̂(m), has a similar definition. The transmit filter bank can be
described via itsN ×M polyphase matrix [11]

G(z) =

 G00(z) . . . GM−1,0(z)
...

...
G0,N−1(z) . . . GM−1,N−1(z)

 (1)

whereGk,`(z) is the`th polyphase component of thekth trans-
mit filter, given by

Gk,`(z) =
∑

n

gk(nN + `) z−n. (2)

Alternatively,G(z) may be expressed asG(z) =
∑

n Gnz−n

with [Gn]`,k = gk(nN + `).
The polyphase matrix of the receiver filter bank is given by

H(z) =

 H ′
00(z) . . . H ′

0,N−1(z)
...

...
H ′

M−1,0(z) . . . H ′
M−1,N−1(z)


=

∑
n

Hnz−n

(3)

with

H ′
k,`(z) =

∑
n hk(nN + N − 1− `) z−n,

[Hn]k,` = hk(nN + N − 1− `).
(4)

The channel can be described via the pseudo-circulantN ×
N matrix

C(z) =


C0(z) z−1CN−1(z) . . . z−1C1(z)
C1(z) C0(z) . . . z−1C2(z)

...
...

...
CN−1(z) CN−2(z) . . . C0(z)


(5)

Fig. 2. Redundant precoder in polyphase (MIMO) represen-
tation.

with C`(z) =
∑

n c(nN + `) z−n.
The desired property

d̂(n) = d(n− n0) (6)

is obtained in the noise free case ifH(z) andG(z) are chosen
such that the perfect reconstruction (PR) condition

H(z) C(z) G(z) = z−n0IM×M (7)

holds. Conditions on the channelc(n) and the parametersM
andN under which (7) can be satisfied have been studied in
[7,8].

III. D ESIGN OFMMSE PRECODER

In the following we assume mutually independent, white,
zero-mean data and noise processes with variancesσ2

d andσ2
η,

respectively. The restriction to white processes is introduced to
simplify the notation. The more general case with non-white
data and noise processes can be derived from the presented
algorithm through the introduction of whitening filters.

The aim in the design of MMSE precoders is to find the
transmit and receive filtersG(z) andH(z) such that the over-
all MSE

MSE0 = E

{∥∥∥d̂(n)− d(n− n0)
∥∥∥2

}
is minimized under the condition of a fixed transmit power
P0. Using Parseval’s theorem the MSE can alternatively be
expressed via an integration over the trace of the power spec-
tral density matrixSee(ejω) of the estimation errore(n) =
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d̂(n)− d(n− n0):

MSE0 =
1
2π

∫ π

−π

tr
{
See(ejω)

}
dω. (8)

The definition ofSee(ejω) will be given below.
In this work, to allow for minimal latency time the transmit

polyphase matrix is chosen as a block of sizeN ×M :

G(z) = G0. (9)

The only further restriction imposed onG0 is the power con-
straint

σ2
d tr

{
G0G

H
0

}
= P0. (10)

Thus, unlike in [8] the structure ofG0 is not influenced by the
length of the channel impulse response.

For any arbitrary matrixG0 of appropriate size and a given
channel impulse responsec(n) the optimal MMSE receive fil-
ters can be found in a straightforward manner. In our case the
optimal polyphase matrix of the receive filters becomes

H(z) = z−n0 σ2
d

[
IM×M + σ2

d

σ2
η

GH
0 C̃(z)C(z)G0

]−1

× GH
0 C̃(z)

(11)
whereC̃(z) is the paraconjugate ofC(z) given by

C̃(z) = [C(z)]H , |z| = 1. (12)

In the following we assume that the optimal receive filters ac-
cording to (11) are employed. The power spectral density ma-
trix of the estimation error then becomes1

See(ejω) = σ2
d

[
IM×M +

σ2
d

σ2
η

GH
0 C̃(ejω)C(ejω)G0

]−1

.

(13)
A similar expression was derived in [10].

The aim is now to find the matrixG0 that minimizes (8) with
See(ejω) according to (13) under the power constraint (10).
Because the problem cannot (in general) be solved directly, we
will provide an approximate solution. To point out the approxi-
mations made, we describe the term̃C(ejω)C(ejω), which has
the form of an energy density matrix, as the Fourier transform
of its associated autocorrelation sequence:

C̃(ejω)C(ejω) =
∑

k
Rcc(k)e−jωk (14)

with
Rcc(k) =

∑
`
CH

` C`+k (15)

where
C(z) =

∑
`
z−` C`. (16)

1Note that this is a straightforward frequency domain extension of the clas-
sical resultRee = [R−1

aa + SHR−1
nnS]−1 for MMSE estimators based on

the linear modelr = Sa + n wherer is the observation,n is noise, anda is
the parameter vector to be estimated.

Thus,See(ejω) can be rewritten as

See(ejω) = σ2
d

[
IM×M

+
σ2

d

σ2
η

GH
0

[∑
k

Rcc(k)e−jωk

]
G0

]−1

.

(17)
The idea for the approximation is to chooseG0 from a sub-

space ofCN,M such that the terms

GH
0 Rcc(k)G0, k 6= 0

become so small that they can be neglected in (17). Note that
GH

0 Rcc(k)G0 for k 6= 0 represents the amount of interblock
interference (IBI) between data stemming from blocksd(n)
andd(n + k) while GH

0 Rcc(0)G0 represents the actual trans-
mission through the channel. To determine a suitable subspace
for the choice ofG0 we employ an iterative procedure based on
the singular value decomposition (svd). We do not explicitly
formulate a basis for the required subspace, and rather con-
sider a projectionP that projects onto the required subspace.
The algorithm is as follows:

Step 1:Let P = IN×N

Step 2:Compute the svd’s

AkΣkBH
k = P HRcc(k)P

for all k 6= 0 for whichRcc(k) 6= 0.

Step 3:Determine the largest singular value fork 6= 0 and de-
note it asσmax. Assuming thatσmax is contained in matrix
ΣK denote the corresponding column ofAK asa.

Step 4:If rank(P ) > M andσmax > 0 set

P := [IN×N − aaH ]P

and go back to Step 2. Otherwise, end the algorithm.

The MSE (8) can now be approximated as

MSE1 = σ2
d tr

{[
IM×M +

σ2
d

σ2
η

GH
0 P HRcc(0)PG0

]−1}
.

(18)
The reason for including the projection matrixP in (18) in-
stead of using a basis approach is that we do not need to impose
restrictions onG0 other than the power constraint (10). Mini-
mizingMSE1 will automatically lead to a matrixG0 that lies
in the subspace onto whichP projects.

Using the relationship

tr

{[
IM×M + ABT

]−1
}

= tr

{[
IN×N + BT A

]−1
}

− (N −M)
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for matricesA andB of sizeM ×N the minimum MSE can
be rewritten as

MSE1 = σ2
d tr

{[
IN×N + σ2

d

σ2
η

P HRcc(0)PG0G
H
0

]−1
}

− (N −M).
(19)

Now we consider the svd[P HRcc(0)P ] = UΛUH , in-
sert it into (19), and rewrite the expression obtained using
the fact that tr{AB} = tr {BA}. With the shorthandQ =
UHG0G

H
0 U this yields

MSE1 = σ2
d tr

{[
IN×N + σ2

d ΛQ
]−1

}
− (N −M). (20)

The power constraint (10) can be reformulated as

σ2
d tr {Q} = P0. (21)

The aim is now to minimize (20) under the constraint (21). As
in [10] and according to Wirtsenhausen’s result [12] the opti-
mal matrixQ can be diagonal, which simplifies our criterion
to

MSE1 =
N∑

i=1

1
1 + σ2

dλiqi
− (N −M), (22)

and the power constraint becomes

σ2
d

N∑
i=1

qi = P0. (23)

Using the Lagrange multiplier technique and taking care of the
fact thatqi ≥ 0 we get

qi = max

{
0,

1
σ2

dλi

[√
σ2

dλi

λ
− 1

]}
, i = 1, . . . , N. (24)

We assume thatλ1, . . . , λM > 0 and thatq1, . . . , qM belong
to theM channels with the highest SNR’s. The Lagrange mul-
tiplier λ can then be computed from (24) and the power con-
straintσ2

d

∑M
i=1 qi = P0. It amounts to

λ =

[ ∑M
i=1(λiσ

2
d)−1/2

P0 +
∑M

i=1(λiσ2
d)−1

]2

. (25)

Given the valuesq1, . . . , qM the required matrixG0 can be
computed as

G0 = UQ1/2. (26)

It turns out that the transmit filters inG0 are the eigenvectors of
[P HRcc(0)P ] multiplied with the square roots of the transmit
power factorsqi for the individual subchannels. However, the
solution (26) is not unique. Equivalent solutions with the same
MSE can be easily derived by multiplying a given matrixG0

with arbitraryM ×M unitary matrices from the right.

The special caseL ≤ N −M :

If the channel orderL is smaller or equal toN − M the
proposed algorithm yields the exact solution for block trans-
forms as derived in [8]. This can be seen from the properties
of the correlation matricesR(k). Because the channel matrix
C(z) reduces toC(z) = C0 + z−1C1 the matricesR(k) are
nonzero only fork = −1, 0, 1. R(0) has rankN whereas
R(−1) andR(1) only have rankL. Thus, the proposed algo-
rithm will lead toP HR(k)P = 0 for k 6= 0 which means that
all IBI will be canceled. The form ofP can be seen from the
fact thatC1 is nonzero only in the firstL rows. Therefore, the
algorithm yields

P =
[

0L×L 0L×(N−L)

0(N−L)×L I(N−L)×(N−L)

]
,

PG0 = G0 =
[

0L×M

G(N−L)×M

]
with some matrixG(N−L)×M . This structure ofG0 corre-
sponds to the leading zero method of [8].

IV. EXAMPLES

The first example considers a configuration where the chan-
nel orderL is considerably smaller than the number of sub-
channels. The chosen parameters areL = 4 andN = 16,
and theEb/N0 ratio at the receiver input is set to30dB. The
channel impulse response isc(n) = [1, 1, 1, 1, 1]. All chan-
nel zeros lie on the unit circle of thez-plane. The frequency
response of the channel is depicted in Fig. 3. A joint transmit-
ter/receiver design according the proposed algorithm has been
carried out forM between12 and16. The obtained SNR’s
at the receiver output are depicted in Fig. 4. One can see that
the highest SNR’s are obtained forM = 12 which is the case
whereL = N − M and no IBI occurs. The SNR’s decrease
gradually with an increasingM . The results forM = 16 (no
redundancy), however, are substantially inferior to the other
ones. This shows that already a minimum amount of redun-
dancy may yield a significant performance enhancement over
the case where no redundancy is introduced.

In a second example we consider a configuration where the
channel order is considerably higher thanN . The parameters
areL = 30, N = 16, andEb/N0 = 30dB. The channel has
been designed with the Remez algorithm to be a lowpass filter
with large ripple. Its frequency response is depicted in Fig. 5.
With N = 16 andL = 30 the IBI amounts to three blocks at
the receiver input. Note that this case cannot be treated with the
algorithm of [8], and the algorithm of [10] would lead to IIR
transmit filters. Further note that to allow for block transmis-
sion without IBI, one would have to increaseN substantially.
However, this would introduce a large delay if an acceptable
ratioM/N was to be maintained. The proposed algorithm, on
the other hand, is able to carry out the joint transmitter/receiver
design. Fig. 6 shows a comparison of the SNR’s obtained with
the proposed algorithm and the simple precoding of [7] using
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Fig. 3. Frequency response of channelc(n) = [1, 1, 1, 1, 1].
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Fig. 4. Signal to noise ratios at receiver outputs. Channel
c(n) = [1, 1, 1, 1, 1]; N = 16; M = 12, 13, . . . , 16;
Eb/N0 = 30dB.

the transmit matrixG0 = [IM×M , 0(N−M)×M ]T . In both
cases the optimal MMSE receivers have been employed. As
one can see, the optimized transmitter yields a significant per-
formance enhancement over the simple one.

V. CONCLUSIONS

A method for the joint design of transmitter and receiver
for data transmission over dispersive channels has been pre-
sented. The proposed method can treat the practically impor-
tant case where the transmitter is FIR and the channel has ar-
bitrary length. This allows for low latency transmission over
dispersive channels. Design examples have confirmed the ef-
fectiveness of the design method.
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