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ABSTRACT

In this paper, we derive explicit expressions for the eigenval-

ues of the frame operator for cosine-modulated filter banks.
The filter banks may be critically sampled or oversampled by
an integer factor. The analysis of low-delay, biorthogonal fil-
ter banks shows that prototypes solely designed to minimize
the stopband energy may lead to wide open frames and thus
to an undesirable numerical behavior. Because the computa-
tional cost of determining the frame bounds with the proposed
method is very low, we can directly use the bounds during pro-
totype optimization and obtain prototypes with minimum stop-
band energy under the condition of fixed frame bounds.

1. INTRODUCTION

Biorthogonal, low-delay, cosine-modulated filter banks have
been studied in [1-7]. Such designs are attractive, because they
allow to choose the overall system delay independent of the
lengths of the filters involved. A collection of general PR con-
ditions for critical sampling can be found in [6]. Design meth-
ods for FIR oversampled filter banks were considered in [5, 8].

The quality criterion commonly used in the design of both
paraunitary and biorthogonal filter banks is the minimization
of the stopband energy of the prototype [4-7]. However, for
biorthogonal filter banks good properties of a prototype (flat
passband, high stopband attenuation) do not necessarily trans-
late into good properties of the modulated filters. In this paper,
we will study this phenomenon using frame analysis, which
is a powerful tool to assess the properties of filter banks and
transforms [8-12]. Based on the general methods proposed
in [10] for determining frame bounds through an eigen-analysis
of a frequency-dependent matrix, known as the frame opera-
tor, we derive new expressions for the frame bounds which are
very easy and efficient to compute. In particular, we will de-
rive explicit expressions for the eigenvalues of the frame op-
erator. For the special case of critically sampled filter banks
we will present an even more efficient method that finds the
bounds directly from Fourier transforms of the autocorrela-
tion sequences of the prototype’s polyphase components. Be-
cause the computational cost of determining the frame bounds
with the proposed method is very low, we can directly use the
bounds during prototype optimization and obtain prototypes
with minimum stopband energy under the condition of fixed
frame bounds.

Notation: Matrices and vectors are printed in boldface. I
and Jas denote the M x M identity and counter identity ma-
trices, respectively. The term diag [-] denotes the formation of
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Fig. 1. M-band analysis and synthesis filter banks with sampling
rate ratio V.

a diagonal matrix. ||-| means the Euclidean norm of a vector.
Z is the set of all integers, and R is the set of all real numbers.
The asterisk * denotes convolution.

2. COSINE-MODULATED FILTER BANKS

We consider cosine-modulated filter banks where the analysis
and synthesis filters are derived from the same prototype p(n).
Fig. 1 shows the filter bank in direct form where hx(n) and
gr(n), k = 0,..., M — 1 denote the impulse responses of the
analysis and synthesis filters, respectively. M is the number
of channels, and N is the ratio between the sampling rate at
the input and in the subbands. M may be even or odd, but the
oversampling factor L = M/N is supposed to be an integer.
The filters hx(n) and g (n) are derived as [5]

hi(n) = Zz p(n) e k(n), ge(n) = Jz p(n) czx(n) (1)

with

c1p(n)=y/Z cos [ (k+ ) (n— 2) + (~1)*r/4],

cz,k(n)s\/—%cos [ (k+3)(n- %) - (—1)"“7r/_4] .

D is the overall delay of the analysis/synthesis system and is
assumed to be of the form D = 2sM + 2M — 1 where s is an
integer.

The analysis and synthesis polyphase matrices for the above
filter bank, denoted as E(X)(z) and RX)(2), respectively, can
be expressed as [5]

PO(ZzL)
Z_1P1(22L)

E®(z) = %Cl .0

2= CL=D Py, (52E)
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R®(2) = L[z~ L DIy Par_1(2*F) N,
2 CL=D N Pop_5(2*F) I, ... @
ey INPo(2*E)IN]) CF

where the superscript (&) indicates the oversampling factor.
C: and C2 in (3) and (4) are M x 2M cosine modulation ma-
trices given by

[Cilin = c1,k(n), (Coliarm—1-n = c2k(n)  (5)

with k = 0,1,...,M —landn = 0,1,...,2M — 1. The
matrices P (2%~) are defined as

Py (2*")=diag[Pin (—2°%), Pent1(=2°F),
o, Ponan-1(-2*9)), k=0,1,...,2L-1

RO

where P;(z)=Y, p(2¢M+j)z¢. With R%)(z) and E)(2)

the perfect reconstruction condition on the filter bank can be

formulated as RV (2)EW)(z) = 272°L~2L~! [, which fi-

nally leads to the following PR conditions on the prototype

for L times oversampled, biorthogonal, cosine-modulated fil-

ter banks [5]:

2L-1 :
Z Poen(z) Pom—1-k—en(2) = L27°, %)
£=0 k=0,....,N-1

3. DEFINITION OF FRAMES

Lethgm,k=0,1,..., M—1, m € Z be vectors containing the
filter coefficients hx(mM — n) and let = be a vector containing
the input samples x(n). Assuming that z € ¢2(Z) the following
inequality can be stated: '

M-1 =)

AlzlIP< Y YT Uz hem)?<Bllz|? Va € £2(2) (8)

k=0 m=-o0

with some A,B € R. If A > 0 and B < oo the values A
and B are called frame bounds and the set hi,n is called a
frame for £2(Z). The frame bounds themselves can be seen as
indicators of the numerical properties of the filter bank. They
have proven to be a useful tool for characterizing the properties
of filter banks [8—12] and have especially been used to analyze
oversampled filter banks, including cosine-modulated ones [8].
If the set hi,m constitutes a frame then there exists a cor-
responding PR synthesis filter bank with filters g, ,,, that also
constitutes a frame with frame bounds A’ and B’ such that

o

M-1
AP 3 Uz gim)*<B llzi® vV € £(2).
k=0 m=-—o00 (9)

In the special case that A = B = 1 the frame is called
a tight frame. Then the filter bank is paraunitary, the vec-
tors ki, form an orthonormal basis for £2(Z), and the in-
equality (8) simply reduces to Parseval’s identity |lz|® =
SMIYE . @, hi,m)|’. In general, the smaller the ratios
B/A and B’ /A’ the better the numerical properties of the filter
bank will be. If B/A and B’/A’ are close to one then the filter
bank can be regarded as being almost paraunitary and Parse-
val’s identity may be used without much error when relating the

energy of the subband signals to the energy of the input or out-
put signal of a filter bank [12]. Having almost paraunitary filter
banks is particularly useful in source coding where operational
rate-distortion algorithms are to be applied in the subband do-
main and exact paraunitaryness cannot be achieved because of
other requirements such as linear phase or low delay.

4. COMPUTATION OF FRAME BOUNDS

General algorithms for the computation of frame bounds have

been described in [10,12]. We will follow the method in [10]

and use it to derive explicit formulas for the eigenvalues of the

frame operator for cosine-modulated filter banks. Due to space

limitations we only consider the computation of frame bounds

for even N. However, odd N can be treated in a similar way.
Let Ak (w), k=0,1,..., N — 1 be the eigenvalues of

5(z) = [EP (=" HTEP(2). (10)
The frame bounds A and B are then given by [8]
A= ess inf Ax(w),
w€[0,2m), k=0,1,...,N—-1 11)
B= €ss sup A (w). (

w€[0,27), k=0,1,...,N-1

Inserting (3) and (4) into (10) and rewriting the expression ob-
tained using the property

T _ IM+(—1)"J-M 0
CiCi= [ 0 Iy — (—I)SJM] (12)
yields
1 2L-1
S(x) =1 D Pe(z")Pe(*")+
2
1 «— 1 -
+(__1)s _L_ EzL 1 ZlPL—l—l(z 2L)JNP£(z2L)
=
1 «— -1— -
_(_1)5 _Z Z ZL 1 2lP2L—1—£(z 2L)JNPL+[(252L).
£=0

(13)
Because the matrices Py(2%%) are diagonal, it turns out that
S(z) has non-zero elements on its diagonal and anti diagonal
only. Using this fact, we can reduce the task of computing the
eigenvalues of S(e?) to the task of determining the eigenval-
ues of the 2 x 2 matrices

Sk(e™) = [s;it’f,Ei‘(de)fw)Si.&’iv[,;__ﬁ(_e:(?fw) > (149
fork=0,1,..., % — 1 with
Sur) = 1 S Praan(=575) Praan (=) (19
&,k (2 I 2 k+eN{—2 ke+eN(—2
and
s L—1 ‘
(-1 D en(—2%E)

S;c,N—l—k(z)= 7

~

X Penyn—-1-k(—22L)
L-1
_1 s —1 —2r
—% P —gnk(—272)
£=0
X P soyn+N—1-k(—2°F).

(16)
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The eigenvalues of S (e’“) can then be explicitly expressed as

Ak;g_,_k(w):% (Sk,k(ej“’) + Sn-1-k,n-1-k(e"))
+3 [(Skk(e’) — SN_1-k,v—1-k(e7))*+
+4ISkn-1-k(e)P) 2
, ) an
The required terms Sk x(e’“) and Sy n.;_x(e’) can be
computed in a fast way as the discrete-time Fourier transforms
of sequences sk x(n) and s} n_;_x(n) that are obtained as

2L-1

Skk(n) = % E dr+en(—n) * dryen(n) (18)
£=0

and

s L-1
(‘z) Y 6(n+L—1-2¢)

s;c,N—l—k(n)=
*¢(L 1- ;)N+lc(—n) * PeN+N-1-k(N)
Z dn+L~1-20)

*¢(2L 1- E)N+k(“‘n) dL+oyN+N-1-k(n)

(19)

In practice, an FFT algorithm and zero padding can be used
to compute S x(e?) and Si y_;_x(e’) from six(n) and
Sk, nv—1-k(n) on a fine frequency grid.

To obtain the frame bounds for the synthesis filters we may
carry out a similar derivation as for the analysis side, based
on the eigenvalues of T'(e’*) = R (7)[RE) (7)), For
even N, as considered here, this yields A’ = Aand B’ = B.

with
: n
if 7% € Z,

20
otherwise. (20)

Frame Bounds for Critical Sampling. Analyzing the product

k(W)A 24k (w) with L = 1 and thus with N = M under
consideration of (15), (16) and (7) yields
/\k(w)/\M/2+k(w) =1 Vw. (21)

This interesting relationship immediately implies that
AB=1 (22)

for critically sampled PR cosine-modulated filter banks. Equa-
tion (21) is also the key to further simplification of the compu-
tation of the frame bounds. From (21), (17), and (15) (for z =
e’ and under consideration of Py(—e™ %)) Py (- eJ 2w)) =
| Pi(e?@+™)|2) it follows that

with
Ax(@) = 3 [P )+ Pran( @)
+|PM_1_;.-,(e"’-(z""-""))|2 + |P2M—1—-k(ej(2u+”))|2]'
For further simplification we define
Lw) = Ax (“’;“) (25)

which is the discrete-time Fourier transform of the sequence

@k (m)=3 [Ph(n) * P(=1) + Pas4(n) * Prra(—n)
+ pm-1-k(n) *py-1_k(—n) (26)
‘|"P2Mv1—k(n) *pzM—l—k(—n) .

The frame bounds finally amount to
B=pg++p2-1, A=1/B=p-+/5%2-1 27
with

Ai(w). 28)

M/2-1

8= €ss sup
w€[0,7) k=0,1,...,

5. EXAMPLES

We consider M = 8 channels, a delay of D = 15 taps, filters
of length 48, and critical sampling. Prototypes were designed
to minimize the stopband energy

- [ " |P(E) du 29)

under the constraint (7), using the lifting structure of [13] for
parameterization. The stopband edge frequency for the proto-
types was chosen as ws = w/M. To design biorthogonal filter
banks with controlled frame bounds the constraint B < Bmas
was added during optimization. Due to (22) this implies that
A > 1/Bpas for the case of critical sampling. For the con-
strained optimization the Matlab routine fmincon has been
used.

First we consider a prototype that was designed to minimize
(29) under the PR constraint for critical sampling, without im-
posing frame bounds. The frequency response of the prototype
is shown in Fig. 2(a), and the frequency responses of the re-
sulting analysis filters are depicted in Fig. 2(b). One can see
that the near-ideal frequency response of the prototype does
not translate into near-ideal modulated filters. The first and last
filters, ho(n) and has—1(n), show an undesirable passband be-
havior that is significantly different from that of the prototype.
For this filter bank the stopband energy is ® = 0.06 and the
frame bounds amount to A = 0.31, B = 3.27. This means that
the energy of the input and output signals of the filter bank may
be different from the subband energy by a factor between 0.31
and 3.27, depending on the actual signal. Thus, although the
filter bank constitutes a frame and provides PR it is not well
suited for schemes that rely on the assumption that the sub-
band energy is close to the input/output signal energy. Also,
quantization noise introduced in the subbands may arrive at the
output with an amplification of up to 3.27 (in terms of the noise
power).

We now consider the design of a prototype that minimizes
(29) under the condition B < 1.1 for M = 8, D = 15, and
critical sampling. Fig. 3 shows the frequency responses of the
prototype and the analysis filters for B = 1/A = 1.1. As the
graphs in Fig. 3(b) show, all analysis filters are almost ideally
frequency translated versions of the prototype. The value B =
1.1 indicates a relatively tight frame, so that the assumption of
a near-unitary behavior can be justified in applications such as
signal compression.
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Fig. 2. Frequency responses of 8-channel filter bank, designed to
minimize the stopband energy. (a) prototype; (b) analysis filters.

6. CONCLUSIONS

Explicit expressions for the eigenvalues of the frame operator
for cosine-modulated filter banks have been presented, which
allow an efficient computation of frame bounds directly from
the prototype’s polyphase components. The analysis of low-
delay, biorthogonal filter banks showed that prototypes solely
designed to minimize the stopband energy may lead to wide
open frames and thus to an undesirable numerical behavior. By
incorporating a frame analysis directly into the prototype de-
sign process, however, the numerical properties of the resulting
filter banks can be directly controlled.
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