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Abstract

In this paper, an edge-based wavelet transform is proposed for image compression. In the

encoder, first the dominant edges of an image are detected and coded as side information.

Then, the wavelet transform (WT) is carried out in such a way that no filtering over

previously detected edges is performed. Compression examples show that the edge-based

WT achieves good reproduction of sharp edges - even at very low bit rates. Because of the

additional side information, the PSNR is typically slightly lower than for standard wavelet

coders. On the other hand, the picture quality scale, an objective quality measure that

better reflects the subjective impression, shows superior results for the proposed coder.
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1 Introduction

The discrete wavelet transform (DWT) is known to be one of the most efficient tools for image

compression [1]. The principle of this transform is to hierarchically decompose a signal into a

multiresolution pyramid, where the signal is split into a coarse approximation and some detail

information at each resolution level [2]. The approximation will be further decomposed in

the next stage. The attractiveness of the DWT results from the fact that it provides very good

compaction properties for many classes of natural images while the implementation cost is low.

Each lossy compression scheme shows its typical artifacts when coding is performed at very

low bit rates. For the DWT, the main artifacts are “blurring” and “ringing”. Blurring results

from neglecting most of the high-frequency details of the image and cannot be avoided at very

low bit rates. However, one can try to allocate bits in such a way that the produced blurring is

not very annoying to human observers. Ringing is related to the Gibbs phenomenon and occurs

in the vicinity of sharp edges. The amount of ringing depends on the wavelets in use and also

on the bit allocation. However, at extremely low rates, ringing usually cannot be avoided.

The idea behind the coding technique presented in this work is to overcome the ringing problem

by separating images at positions where sharp edges are located. The DWT is then carried out

in such a way that no filtering over sharp edges is performed. This type of transform will be

called the edge-based DWT throughout this paper. The approach includes, but is not limited to

so-called shape adaptive wavelet transforms, where images are partitioned into a set of regions

and each region is transformed separately. The proposed algorithm is related to the work in [3],

but the way of considering edges and the way of processing finite-length signals are entirely

different.

The basic requirement for the edge-based WT is the ability to perform support preservative

subband decompositions of finite-length signals. Various techniques for this purpose are known

in the literature [4–13], but most of them are not suitable for the edge-based transform, because

they only allow the processing of even-length signals. Due to the open structure of edges that

may occur at any position and do not necessarily surround closed regions, special requirements

on the wavelet transform arise. Especially, it is required to carry out wavelet transforms with
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arbitrarily located wavelets on arbitrary-length intervals that allow perfect reconstruction in the

absence of quantization and that do not introduce redundancy. Suitable schemes providing

PR can be found in [6, 8, 11]. However, as will be outlined in Section 3, they suffer from the

drawback that the energies of the boundary analysis and synthesis filters may differ significantly

from the energies of the original filters. This means, the propagation of quantization errors from

a subband to the output depends on the position of the errors within the subband. On the analysis

side, the spatially varying energies of the analysis filters result in spatially varying variances of

the subband signals (even for a stationary input process). This makes an optimal bit allocation

difficult. Moreover, white quantization noise being introduced in the subbands may appear

as highly correlated noise at the output. This problem has recently been addressed in [14],

where general solutions for the optimization of the boundary filters and the equalization of

their energies have been presented. However, the optimization approach presented in this paper

differs from the one in [14] in the parameterization and requires a lower number of operations

for the implementation.

The paper is organized as follows. Section 2 presents the general idea of the proposed coder. In

Section 3, the boundary processing scheme is presented, and in Section 4, further implementa-

tion details are given. In Section 5, the coding performance of different schemes is evaluated,

and in Section 6, coding examples are presented. Finally, Section 7 gives a brief conclusion.

2 The Edge-Based Wavelet Transform

The general principle of the edge-based DWT is shown in Figure 1. In both directions, filtering

is interrupted in front of an edge and is continued behind the edge, so that no filtering over sharp

edges is performed. The edge information is then forwarded to the next resolution level. In

order to avoid the introduction of redundancy, and in order to maximally exploit the correlation

between pixels, the following requirements shall be formulated:

(i) The decomposition scheme must be support preservative and must allow perfect recon-

struction.
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(ii) The edge-based and the standard DWT of an image should differ only in the vicinity of

edges. This ensures that the horizontal/vertical filtering introduces a minimum amount of

discontinuity in the vertical/horizontal direction.

Since edges may occur at any position in an image, strategies are required for handling the

decomposition process in any possible situation, and also strategies for decomposing the edge

information and for passing it on to lower resolution levels are needed. The proposed scheme

is based on the definition of edges between the pixels, rather than on the pixels. This results in

a simple decomposition scheme for the edges, which is uniquely defined once the global align-

ment of the wavelets to the image and the sequence of the horizontal and vertical decomposition

are fixed.

For the discussion of the filtering and edge decomposition process, we focus on the horizontal

decomposition, which is carried out prior to the vertical one. Since we need to distinguish

between segments that start or stop at even or odd positions, let us say that the pixel in the

upper left corner of an image is at position (0,0). We will consider the example of an8 � 8

image in Figure 2. The first two rows in Figure 2(a) do not contain edges, so that they are

decomposed into four lowpass and four highpass coefficients as usual. The first segment in

the third row has length two. It is decomposed into one lowpass and one highpass coefficient.

Consequently, the edge in theL andH images in Figure 2(b) occurs after the first pixel of

row three. The first segment of the fifth row in Figure 2(a) has length three. This segment,

which starts at an even position, is decomposed into two lowpass and one highpass coefficient.

Thus, the edge in theL band in Figure 2(b) occurs after the second pixel, whereas it occurs in

theH band after the first pixel. Now the second segment of row five has to be split into two

lowpass and three highpass coefficients. This shows that, although both segments are of odd

length, they have to be processed in different ways. Proceeding in this manner for the last three

rows leads to the two sub-images shown in Figure 2(b). After decomposing the two sub-images

in the vertical direction, one gets the four sub-images depicted in Figure 2(c) together with

the corresponding edge information. The lowest band can now be further decomposed in the

same way the original image in Figure 2(a) has been processed. Note that the edge information

proceeds to the subbands in such a way that no gaps are introduced. Edges that completely
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surround closed regions in the original will also be found as closed contours in the sub-images.

In the example in Figure 2, two pixels occurred which deserve special attention. These are the

pixels marked with a circle and with a square, which form horizontal segments of length one

that cannot be decomposed into lowpass and highpass components. For the pixel marked with

the circle, the processing is simple, because it naturally falls into the lowpass band (see Figure

2(b)). All we do here is to scale the pixel with the DC amplification of the analysis lowpass, so

that a DC input signal will lead to the same DC value in the low-frequency band for any segment

length. The pixel marked with the square has a lowpass characteristic, but it falls into the high-

frequency band. This means, it has completely different statistical properties as the surrounding

highpass coefficients in the right sub-image in Figure 2(b). If this pixel would be treated like a

normal highpass coefficient during the next vertical filtering, its (potentially) high energy would

smear out on several pixels after subband decomposition. In order to avoid this problem, the

single pixel will be marked as a “single”, and the vertical filtering will be stopped in front of

this pixel and will be continued behind the pixel. Note that the same problem occurred in the

region-based coding scheme proposed in [15], and the name “single” has been adapted from

there.

In the reconstruction stage we have to strictly follow the decomposition procedure backwards,

which means that we have to perform the vertical synthesis prior to the horizontal one. The

reason is that the edge-based wavelet decomposition is not separable. This can be seen from

Figure 2(a) under the assumption that the vertical decomposition is carried out first. In this case,

the two marked pixels would not cause any problem and would not lead to singles.

3 Decomposition of Finite-Length Signals

3.1 Initial Boundary Processing Method

Decomposition schemes that satisfy all the requirements formulated in Section 2 can be found

for even and odd-length linear-phase filters, and also for non-symmetric filters [6,8,11]. For the

reason of conciseness, we concentrate on linear-phase filters here.
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A processing scheme for odd-length biorthogonal linear-phase filters is depicted in Figure 3.

The upper rows show the extended input signal, where the given input samples are shown in

solid boxes. The lowpass and highpass subband samples,cn anddn, respectively, are computed

by taking the inner products of the impulse responses in the displayed positions with the corre-

sponding part of the extended input signal. As we see, in all cases in Figure 3, only the desired

number of lowpass and highpass coefficients occurs and has to be transmitted. Figure 4 shows

a processing scheme for even-length linear-phase filters. As before, only the desired number of

coefficients occurs.

A common description of all possible two-band decompositions is given by

y =H x (1)

The vectorx represents a length-N input signal, which can be considered as an arbitrary-length

segment of a row or column of an image.y contains the subband samples for the segment in

increasing order (e.g.yT = [c0; d0; c1; d1; : : :]). The rows of theN�N matrixH contain the

time-shifted analysis impulse responses in reversed order. In the upper left and the lower right

corner of the quadratic matrixH, one finds the so-called boundary filters, which are needed

for the processing of finite-length signals. Useful boundary filters for odd-length linear-phase

filters can easily be designed by using the reflection scheme described above. For example,

for the situations shown in Figures 3(a) and (b) the corresponding matricesH are depicted in

Figure 5.

3.2 Optimization of Boundary Filters

This section shows how the performance of boundary filters can be improved, regardless of their

construction. In order to achieve a compact description, we first partitiony andH such that

y =

2
4
y1

y2

y3

3
5 ; y

k
=Hk x; (2)

wherey1 andy3 contain the subband samples produced by the boundary filters. Figure 5

illustrates the partitioning. In general, the partitions are taken in such a way thatH2, which
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contains the regular impulse responses, has maximum size. The only exception occurs when a

matrixH1 orH3 degenerates to a single row. In such a case the number of rows is chosen to

be two. Notice that the actual number of boundary filters and thus the number of rows ofH1

andH3 depends on the length of the filters in use.

The boundary filter manipulation may be written in the following matrix form, where the vectors

vk contain the new subband samples:

vk = UkHk x; U 2 = I: (3)

This means that, apart from the boundaries, the signal is processed as usual (indicated by the

identity matrix). In the boundary regions, the impulse responses of the boundary filters are

linearly combined (U 1 andU 3) in order to result in better boundary filters. Clearly, the inverse

operation is required on the synthesis side.

Properties of Standard Boundary Filters. The boundary filters designed by the symmetric

extension method have the important property that a DC input signal results in a DC signal at

the output of the lowpass, while the highpass output is zero. This allows the efficient compres-

sion of very-low frequency signals without annoying artifacts at the image boundaries or at edge

locations where the image is split according to the proposed method. However, continuity of

the DC component is not the only important issue. For example, it turns out that the boundary

analysis and synthesis filters usually have energies that differ from those of the original filters.

This is easily seen by considering the left boundary in Figure 3. The first boundary lowpass

has the impulse responsef2B; 2A;Cg while the normal impulse response in steady state is

fA;B;C;B;Ag. The energies differ by2A2 + 2B2. Since the complete 2-D wavelet decom-

position is carried out by cascading several 1-D decompositions, this effect can accumulate and

result in iterated filters and associated wavelets with energies that may differ significantly from

their nominal value. Both, the analysis and the synthesis bank are affected.

Large differences in the energies of filters belonging to the same subband are critical for the

bit allocation, because quantization errors introduced in the subbands will propagate to the

output with amplifications that are equal to the associated synthesis filter energy. Thus, white
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quantization noise introduced in the subbands may occur at the output as extremely colored

noise when some of the boundary synthesis filters have very high energies. For example, in

a four-band decomposition using the 9-7 filters from [1], the noise amplification factor varies

between0:67 and2:0, while the nominal value is one. The effect occurs in all frequency bands,

and it becomes more dominant when more decomposition levels are used. In a three-level

wavelet decomposition using the same filters, it ranges between0:4 and2:8. The effect occurs

at all edges where the signal is split prior decomposition and also at the frame boundaries. Thus,

it is also present in standard wavelet coders to some extent.

Constraints during Optimization. It is useful to preserve the approximation properties for

size-limited DC signals throughout the optimization. Thus,U 1 andU 3 have to be restricted

in a certain way. In order to derive suitable parameterizations ofU 1 andU 3, we consider the

vector

bk =Hk 1; (4)

where1 stands for a vector of appropriate size containing ones. Thus,bk contains the sum

of the filter coefficients inHk. Note that due to the continuity of the reflection method, all

lowpass filters sum up to the same constant, while all highpass coefficients sum up to zero. This

important property shall be kept throughout the optimization. Thus,Uk has to satisfy

bk = U k bk: (5)

It is easily verified thatUk can be parameterized as

Uk = Ik + P kQk; (6)

whereIk is an identity matrix of appropriate size andQk contains the basis of the nullspace

of bT
k
, such thatQkbk = 0. The matrixP k contains the design parameters, which can be opti-

mized in an unconstrained way. A generalization of this approach that allows to simultaneously

satisfy certain moment conditions has been presented in [14]. However, the preservation of

(5), as guaranteed by (6), turns out to be the most important issue in compression applications.

Moreover, compared to a general matrixUk as in [14], the parameterization (6) provides the
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advantage that efficient implementations ofUk can easily be found by choosing sparse matrices

Q
k

andP k.

The Objective Function. For anyP k the property (4) is satisfied and the elements ofP k can

be used freely as design parameters. The following points are of major importance in a 2-D

shape-adaptive scheme and shall be incorporated in the objective function:

1. The energies of the analysis and synthesis boundary filters should be equal to the energies

of the original filters which are used in the interior.

2. Boundary filters operating on adjacent rows (columns) which start or stop at different

positions should be well aligned in the vertical (horizontal) direction.

An objective function which includes both requirements can be stated as follows:

Ck(P k) = �1C
(1)
k

(P k) + �2C
(2)
k

(P k) + �3 C
(3)
k

(P k) (7)

with C
(1)
k

(P k) =
diag

n
UkHkH

T

k
UT

k

o
� 1

2

C
(2)
k

(P k) =
diag

n
(U�1

k
)TGT

k
GkU

�1
k

o
� 1

2

C
(3)
k

(P k) = Efkvk �wkk
2g

Herein, diagf�g is a vector containing the diagonal elements of a matrix. The first term refers

to the energies of the analysis boundary filters, which should be close to one. The second term

states the same requirement for the synthesis side (Gk are the corresponding partitions of the

synthesis matrixG = H�1). The third term states that the outputvk should be as close as

possible to a desired outputwk, where bothv andw are considered to be generated from the

same stochastic input process. In order to explain this part of the objective function in more

detail, let us consider an infinite-length 1-D stochastic processx1. The vector of subband

samples computed fromx1 can be written asw1 = Fx1, whereF describes the analysis

operation. By defining a matrixCw as a partition of an infinitely sized identity matrix, we can

describe a length-N segment ofw1 asw = Cww1 = CwFx1. On the other hand, we may

write a length-N segment ofx1 asx = Cxx1. Based onxwe can then compute the length-N
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subband vectorv = UHx. By choosingU in such a way thatv becomes as close as possible

to w for a typical input process,x1, the alignment of the boundary filters can be improved.

Partitioningw intow1,w2, andw3 and requiringEfkvk �wkk
2g

!
= min yields the third term

of the objective function. In the experiments discussed below, the processx1 was chosen as an

AR(1) process with correlation coefficient0:95.

The pre-factors�1, �2, and�3 are introduced in order to allow weighting of the different criteria.

For�1 ! 0 all synthesis filters will have an energy close to one, but some of the analysis filters

may have extremely high energies. Accordingly, for�2 ! 0 the analysis filters will almost

perfectly satisfy the requirements, but the behavior of the synthesis side becomes uncontrolled.

Finally, for�3 = 0 the filters may or may not be well aligned. The values�1 = 0:75, �2 = 1, and

�3 = 2 turned out to be a good compromise between the different criteria. The bias�1=�2 = 3=4

has been introduced in order to make convergence to local minima withC
(1)
k

(P k) << C
(2)
k

(P k)

more difficult. The overall result depends on the starting point and the minimum found.

For extremely short segments, the boundary filters for the left and right boundary merge and

H2 vanishes. In these cases, we replace the matricesU 1 andU 3 by a common matrixU , such

thatv = UHx, whereU = I + PQ. Then, for each segment length and starting position

(even or odd), a different matrixUH will be implemented. The optimization of the matrices

U is carried out in the same way as the optimization ofUk.

Optimization Results. Table 1 shows the value of the objective function (7) for various cases

of interest. Segments of length one and two are not included in the table, because they require

a fixed solution that does not offer further design freedom (apart from scaling the highpass).

As we can see in Table 1, optimization allows significant improvement for both odd and even-

length filters. For the 9-7 filters, the only case where an undesirable behavior occurs is for

segments of length three, starting at odd positions. The 6-10 filters generally have some diffi-

culties in cases where a segment starts at an odd position. For both even and odd-length filters,

the noise amplification factor varies between0:98 and1:02 after optimization, provided that the

segment length is larger than three. Thus, it can be regarded as being independent of the loca-

tion. However, if more decomposition levels are used, the factors may slightly vary from their
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nominal value, because in the biorthogonal case, the energy of an upsampled and interpolated

filter is not necessarily equal to the energy of the filter itself. That is,
P
n g

2
0(n) 6=

P
n f

2(n),

wheref(2n) =
P
m g0(n�m)g0(2m), f(2n+ 1) =

P
m g0(n�m)g0(2m+ 1).

In all cases tested, the resulting matricesUk turned out to be well-behaved. This is intuitively

clear, because they transform well-behaved matricesHk into well-behaved matricesUkHk

with almost-orthonormal rows.

4 Implementation Details

In the experiments discussed in the next sections, the edge detection has been carried out using

the Sobel edge detector [16]. In order to reduce the number of gaps within detected edges, the

images were pre-smoothed using a lowpass filter with impulse response(z + 2 + z�1)4=256

in both directions. For input data in the range[0; 255] the sensitivity threshold for accepting

edges was fixed at15. Thus, independent of the image content, only the dominant edges were

detected. In a further edge processing step, only edges consisting of more than eight elements

were considered as important ones, and the others were removed from the edge map. The com-

pression of the edge information was carried out with chain coding [17] followed by arithmetic

coding.

Edge detectors typically search for maxima of local gradients (e.g. the Sobel operator), or they

look for zero crossings of second derivatives (e.g. the Marr-Hildreth detector [18], [17]). One

useful property of the Marr-Hildreth detector is that edges are easily defined between pixels,

as required for the edge-based transform. However, also edge detectors that look for maxima

of local gradients and produce binary edge maps may be used. Then, in a first step, the binary

edge information has to be converted into edge maps where edges are defined between pixels

and still form closed curves.

The filters used in the experiments are the 9-7 filters from [1] and the 6-10 filters from [19],

which are known for their good coding properties [19, 20]. The lossy compression of wavelet

coefficients was based on the embedded wavelet coder proposed in [21] whose performance is
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comparable to the embedded zerotree coder in [22].

The edge-based DWT requires additional complexity for edge detection and the implementa-

tion of optimal boundary processing schemes. The major part of these additional operations

is needed for edge detection. It amounts to 70% of the complexity of a standard DWT. The

number of additional operations for optimal boundary processing depends on the number of

edges. For the cameraman image it amounts to 20% of the complexity of a standard DWT.

Thus, the edge-based DWT itself, as required in the receiver in form of an inverse edge-based

DWT, means no significant increase of the number of operations.

5 Objective Quality Measures

In order to compare the coding performance of the edge-based and the standard DWT, we

consider two different objective quality measures: (a) the PSNR and (b) the picture quality

scale (PQS) [23]. The PQS is designed to approximate the mean opinion score in visual tests. It

reflects the psychovisual impression of human observers much better than the PSNR. A PQS of

5 means that the distortion is imperceptible, while for a decreasing PQS the distortion becomes

increasingly annoying.

Table 2 shows the rate-distortion tradeoff for the “camera man” image, using the edge map in

Figure 6(b). The abbreviations in Table 2 have the following meaning: “standard”= standard

DWT; “edge, init.” = edge based DWT without optimization; “edge, opt.” = edge based DWT

with optimization. As the results show, the PSNR for the standard DWT is slightly better

than for the edge-based one. This is due to the fact that the latter requires a relatively large

amount of side information for the transmission of the edge map (0.052 bpp for this image).

If we do not take this overhead into account, the edge-based coder gives the better PSNR. The

results further show that the initial boundary processing scheme for odd-length filters performs

almost optimally, while the one for even-length filters performs relatively poorly. When using

optimized boundary processing schemes, the results for even and odd-length filters are of equal

quality.
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As for the second quality measure, Table 3 shows the PQS versus the bit rate for the same

test image. According to this measure, the edge-based transform gives superior performance.

This is also reflected by the impression of human observers that were asked to comment on the

quality of the coders. Odd-length filters yield slightly better results than the even-length ones.

6 Coding Examples

Figure 6 shows coding results for the camera-man image. It turns out that the standard DWT

leads to distinct ringing artifacts at sharp edges while the edge-based method is able to re-

produce extremely sharp edges, even at very low rates. Since edge-based coding requires the

transmission of the edge map, less bits can be allocated for texture, and we have a less detailed

reproduction of texture. This property is clearly visible in Figure 6(f), where less bits are used

for texture than for edge coding.

A possible strategy to reduce the disproportion in the bit allocation at extremely low rates is to

use a standard DWT for the first stage of signal decomposition and to define the edge map on

a lower resolution level. However, one cannot gain very much from such an approach, because

the smaller edge map will typically contain much less redundancy than the full-resolution map,

and therefore it cannot be compressed very efficiently. Moreover, at extremely low rates, a

low-resolution edge map will cause step-like edges in the reconstructed image.

Figure 7 shows a second coding example. The motivation for this example is the fact that

many images are composed from real-word contents and text (e.g. internet applications). In

Figure 7(a) we see the original Lena image, but with text added. Figure 7(b) shows the edge

information. For detecting the edges around the letters, the sensitivity threshold was lowered to

5 in this particular image region (assuming that the text location is known). This image (without

text) is known to be easily compressed with the DWT. Now, because of the text, extreme ringing

artifacts occur. With the edge-based method, only very few artifacts are visible and we have a

much better overall performance. Even the PSNR is slightly better for the edge-based method.
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7 Conclusion

In this paper, image coding via an edge-based wavelet transform has been presented. It turned

out that this coding technique allows a significant reduction of the ringing effect, which usually

occurs in the vicinity of sharp edges. Since the technique requires the transmission of the edge

map as side information, less bits can be assigned for texture coding, and the reduction of

ringing is not necessarily accompanied by an improvement of the PSNR. However, the picture

quality scale, which better reflects the impression of human observers, shows superior results for

the proposed method. Moreover, the coding technique is well-suited for database applications

where the edge map, which forms an integral part of the compressed bit stream, can be utilized

for sketch based image retrieval and browsing.
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List of Tables

Table 1

Objective function (7) for various cases (initial value prior optimization and final value;
9-7 filters from [1] and 6-10 filters from [19]).

Case of interest 9-7 filters 6-10 filters
Start position Stop position Segment lengthinitial final initial final

even - - 0.58 0.05 0.24 0.06
odd - - 0.85 0.13 3.55 0.59

- even - 0.85 0.13 0.24 0.06
- odd - 0.58 0.05 1.38 0.15

even even 3 0.99 0.08 1.42 0.14
odd odd 3 0.79 0.63 3.69 1.39
even odd 4 0.91 0.04 0.35 0.10
odd even 4 0.91 0.04 3.63 0.92
even even 5 0.77 0.04 1.42 0.15
odd odd 5 1.13 0.13 3.58 0.64
even odd 6 0.95 0.05 0.35 0.08
odd even 6 0.95 0.05 3.93 0.64
even even 7 0.77 0.04 1.42 0.15
odd odd 7 1.13 0.13 3.58 0.56

Table 2

PSNR versus bit rate for the cameraman image.

Rate [bpp] 0.1 0.2 0.3 0.4 0.6 0.8 1.0
6-10 standard 23.28 25.60 27.27 28.48 30.62 32.46 34.10
6-10 edge, init. 22.01 24.52 26.04 27.58 29.55 31.51 32.94
6-10 edge, opt. 22.63 25.00 26.82 28.11 30.42 32.10 33.81
9-7 standard 23.29 25.58 27.21 28.49 30.54 32.47 34.22
9-7 edge, init. 22.35 24.86 26.71 27.78 30.21 32.00 33.80
9-7 edge, opt. 22.39 24.89 26.78 28.02 30.35 32.22 33.94

Table 3

Picture quality scale versus bit rate for the cameraman image.

Rate [bpp] 0.1 0.2 0.3 0.4 0.6 0.8 1.0 2.0 4.0
6-10 standard -3.28 -2.10 -0.94 -0.37 0.72 1.32 1.93 3.60 4.74
6-10 edge, init. -2.68 -1.56 -0.86 -0.25 0.66 1.30 1.78 3.44 4.65
6-10 edge, opt. -2.05 -1.20 -0.60 0.05 0.78 1.47 2.04 3.63 4.71
9-7 standard -3.10 -1.41 -0.70 -0.13 0.76 1.60 1.91 3.63 4.74
9-7 edge , init. -1.96 -1.07 -0.32 0.23 0.92 1.58 2.06 3.64 4.72
9-7 edge, opt. -1.88 -0.74 -0.25 0.28 0.99 1.65 2.13 3.64 4.73
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List of Figures

(a) (b)

Figure 1: Edge map on different resolution levels. (a) original edge map and processing inter-
vals; (b) decomposed map.

(a)

L LL

LH

HL

HH

H

(b) (c)

Figure 2: Example for the decomposition of an image and the edge information into four sub-
bands. The edges are shown in white. (a) original image with8�8 pixels and edge information;
(b) lowpass and highpass band after horizontal decomposition; (c) four subbands after vertical
decomposition.
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Figure 3: Symmetric reflection using odd-length symmetric filters with impulse responses
fA;B;C;B;Ag for the lowpass andf�a; b;�ag for the highpass; (a) even-length segment
starting at an even position; (b) even-length segment starting at an odd position; (c) odd-length
segment starting at an even position; (d) odd-length segment starting at an odd position.
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Figure 4: Symmetric reflection for even-length symmetric filters with impulse responses
fA;B;B;Ag for the lowpass andf�a;�b; b; ag for the highpass; (a) even-length segment
starting at an even position; (b) even-length segment starting at an odd position. (c) odd-length
segment starting at an even position; (d) odd-length segment starting at an odd position.
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Figure 5: MatrixH for the examples in Figures 3(a) and (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Coding results for the256� 256 camera man image. The DWT is based on the 9-7 filters. (a) original;
(b) edge map, coded at 0.052 bpp; (c) standard DWT at 0.4 bpp; (d) edge-based DWT at 0.4 bpp (0.348 bpp for
texture); (e) standard DWT at 0.1 bpp; (f) edge-based DWT at 0.1 bpp (0.048 bpp for texture).



(a) (b)

(c) (d)

(e) (f)

Figure 7: Coding results for Lena with text. The DWT is based on the 9-7 filters. (a) original; (b) edge map,
coded at 0.026 bpp; (c) and (e) standard DWT at 0.2 bpp, PSNR = 28.8 dB; (d) and (f) edge-based DWT at 0.2
bpp (0.174 bpp for texture), PSNR = 28.9 dB.


