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ABSTRACT

For the separation of convolutive mixtures, an often used ap-
proach is the transformation to the time-frequency domain,
where the problem is reduced to multiple instantaneous mix-
tures. This allows for the employment of well-known ICA
algorithms. The drawbacks of this method are the inherent
permutation and scaling problems. These ambiguities have
to be corrected before a transformation back to the time do-
main can be carried out. The scaling ambiguity is usually
solved using the minimal distortion principle. For the per-
mutation problem, several approaches have been proposed.
In this paper we propose a modification of an existing algo-
rithm with the aim of simplifying the depermutation criterion
and the corresponding computational effort while maintain-
ing the same performance.

1. INTRODUCTION

Different methods of independent component analysis (ICA)
and blind source separation (BSS) have been proposed for
the separation of linear instantaneous mixtures [1, 2, 3]. With
real-world mixtures of audio signals, the situation becomes
more complicated. As the signals arrive multiple times with
different lags, the mixing process is convolutive. Usually, it
can be modelled using FIR filters, but for realistic scenarios
the length of the filters can reach up to several thousand. The
task of BSS is then to estimate a system of unmixing filters,
which ideally have at least the order of the mixing filters.

There exist methods for calculating such filters directly
in the time domain [4, 5]. The drawback of these methods is
the high computational cost and difficulties of convergence.
A much more promising way is the transformation of the sig-
nals to the time-frequency domain where the convolution be-
comes a multiplication [6]. Using this approach, an instan-
taneous ICA method can be applied to each frequency bin
independently. The problems arising from this approach are
the arbitrary scaling and permutation in every bin. Without
correction of the scaling ambiguity the restored signals are
arbitrarily filtered, but with the minimal distortion principle,
proposed in [7], an acceptable solution is found.

The correction of the different permutations is even more
important, as otherwise the whole separation process will
fail. There have been proposed different approaches for this
problem. One class of algorithms utilizes the properties of
the unmixing matrices. In [8] the authors propose to use
these as beamformers. With the calculation of the direction
of arrival, depermutation could be achieved for most of the
bins. In [9] and [10], the authors propose an alternative for-
mulation with the use of directivity patterns.

Another class of algorithms uses the time structure of the
separated bins. The assumption of high correlation in neigh-
boring bins has been used for the definition of a depermuta-
tion criterion in [11]. In [12] the authors propose to model
every bin using a generalized Gaussian distribution (GGD)
and to employ the small differences of the parameters be-
tween neighboring bins for a calculation of correct assign-
ments. In this paper, we propose a modification of this al-
gorithm with the aim of simplified formulation and reduced
calculation, while maintaining the same overall separation
performance.

2. MODEL AND METHODS

2.1 BSS for instantaneous mixtures

The instantaneous mixing process ofN sources intoN
observations can be modeled by anN × N matrix A.
Neglecting the measurement noise, a given source vector
s(n) = [s1(n), . . . , sN (n)]T is transformed to an observa-
tion x(n) = [x1(n), . . . , xN (n)]T by

x(n) = A · s(n). (1)

The separation process is again a multiplication with an un-
mixing matrixB:

y(n) = [y1(n), . . . , yN (n)]T = B · x(n) (2)

The only sources of information for estimatingB are the
statistical properties of the observed signalsx(n). When
BA = DΠ with Π being a permutation matrix andD an
arbitrary diagonal matrix, the separation is successful. The
two matrices represent the ambiguities of BSS: (1) The or-
der of the separated signals is arbitrary, and (2) they are only
scaled versions of the sources.

In the present work, for learning unmixing matrices
B, we use the well-known gradient-based update rule [1]
Bk+1 = Bk + ∆Bk with

∆Bk = µk(I − E
{

g(y)yH
}

)Bk (3)

and g(y) = [gi(yi), . . . , gn(yn)] being a component-wise
vector function of nonlinear score functionsgi(si) =
−p′i(si)/pi(si), wherepi(si) are the assumed source prob-
ability densities.

It is necessary to know, or at least well approximate,
the probability density functions of the sources in order to
achieve good separation performance. In [13] the authors
use the GGD with some fixed parameters, while in [14] the
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parameters are estimated on the basis of the separated signals
after each iteration of (3).

With the GGD defined as

py(y) =
β

2αΓ(1/β)
e−(|y|/α)β

(4)

with α, β > 0 andΓ(·) being the Gamma function given by

Γ(y) =

∫ ∞

0

xy−1e−xdx (5)

the nonlinear score function reduces to

gi(xi) =
xi

|xi|2−β
. (6)

For the complex case the GGD is assumed to be spherical
symmetric in the z-plane around the origin. This assump-
tion yields the same nonlinear score function as in (6). The
validity of this approach is shown in [15].

2.2 Convolutive mixtures

For real-world acoustic scenarios, the mixing model has to
be modified due to the convolutive properties. It can be mod-
eled by FIR filters of lengthL whereL can go beyond2000,
depending on the sampling rate and reverberation time. The
convolutive mixing model reads

x(n) =

L−1
∑

l=0

H(l)s(n − l) (7)

whereH(n) is a sequence ofN ×N matrices containing the
impulse responses of the mixing channels. For the separa-
tion, one can use FIR filters of lengthM ≥ (N−1)(L−1)+1
[16] and obtain

y(n) =

M−1
∑

l=0

W(l)x(n − l) (8)

with W(n) containing the unmixing coefficients.
The direct estimation ofW(n) in the time domain is very

difficult due to the large number of coefficients. The exist-
ing approaches [4, 5] are not satisfying because of distortion
introduced by the unmixing system. To circumvent this prob-
lem, an approach in the time-frequency domain is often used.
Using the blockwise short-time Fourier transform (STFT),
the convolution becomes a multiplication [6]:

Y (ωk, τ) = W (ωk)X(ωk, τ). (9)

With this formulation, the coefficients for each frequency bin
can be estimated separately. This simplification comes at the
price of each frequency bin being differently scaled and per-
muted:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ)
(10)

whereΠ(ω) is a frequency-dependent permutation matrix
and D(ω) is an arbitrary diagonal scaling matrix. If the
permutations are not corrected, the whole separation process
will fail, as parts of all signals can appear in every output
channel. Without correcting the scaling, a filtered version
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Figure 1: Beta values of two signals over the frequency in-
dex. The detected clusters are indicated with bars⊢⊣.

of the sources is recovered. In [17] the authors proposed to
use inverse postfilters for restoring the signals as they have
been recorded by the microphones. This approach accepts
the filtering done by the mixing system without adding new
distortion. In [7] a similar method was proposed which is
called the minimal distortion principle. Newer approaches
solve the scaling ambiguity with the aim of filter shortening
[18] or shaping [19]. In the following, we use the unmixing
matrix

W ′(ω) = diag[W−1(ω)] · W (ω), (11)

which corresponds to the method in [7], with diag[·] return-
ing the argument with all off-diagonal elements set to zero.

3. DEPERMUTATION ALGORITHM

There exist different methods [17, 11] which utilize the high
correlation of neighboring bins. WithV (ω, τ) = |Y (ω, τ)|,
the correlation between two binsk andl is defined as

ρqp(ωk, ωl) =

∑T −1
τ=0 Vq(ωk, τ)Vp(ωl, τ)

√

∑T −1
τ=0 Vq

2(ωk, τ)
√

∑T −1
τ=0 Vp

2(ωl, τ)

(12)
wherep, q are the indices of the separated signals,Vq(ωk, τ)
is the qth element ofV (ωk, τ), and T is the number of
frames. The decision on aligning the bins is made on the
basis of the ratio

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
. (13)

It is assumed that withrkl > 1 the bins are correctly aligned
and otherwise a permutation has occurred. The problem aris-
ing here is that the assumption of highly correlated bins can-
not always be made, especially when the bins are poorly sep-
arated. In [11] the authors proposed to use a dyadic sorting
scheme. They start with pairwise comparisons and then ar-
range these pairs to new larger groups. By repeating this pro-
cedure recursively, all bins can be grouped, and single false
permutations do not unbalance the overall structure. Unfor-
tunately, this is not true if too many errors occur in the early
stages.

In [12], the authors propose an alternative strategy. The
main difference is the calculation of the starting clusters,
which are then depermuted using a correlation approach sim-
ilar to the one mentioned above. Although not all bins are
sorted in the first step, the calculated clusters have only cor-
rect assignments. Using such clusters, the subsequent dyadic
sorting is much more effective.

The idea is to model every frequency bin using the GGD
and to use the small differences of the parametersα andβ in
neighboring bins for defining a depermutation criterion. In
Figure 1, such a situation is shown. Here we seeβ values
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for the two signals and marked areas where the clustering
procedure was successful.

The clustering procedure as described in [12] is imple-
mented independently for both parametersα andβ. After
building the clusters, the overlapping parts are used to create
larger ones. This way, more bins are assigned in fewer clus-
ters, which is a better starting point for the depermutation
using the correlation coefficients.

The rules for clustering in [12] have the following style:

βH(ωl) > k1 · βL(ωl)

and βH(ωl+1) > k1 · βL(ωl+1)
(14)

with

βH(ω) = max[β(ω, p), β(ω, q)] (15)
βL(ω) = min[β(ω, p), β(ω, q)] (16)

and some constantk1. If (14) is fulfilled, the next bin can
be added to the cluster. For clustering using the parameter
α, a similar procedure is utilized, but due to different prop-
erties, the logarithm of the values is used. Overall there are
eight equations with nine constants which makes the proce-
dure quite complicated.

4. NOVEL ALTERNATIVE FORMULATION

Here we propose to use an alternative formulation that makes
the calculation drastically easier. Instead of comparing
βH(ωl) andβL(ωl), we use the difference:

βpq(ω) = β(ω, p) − β(ω, q) (17)

For the clustering using theα parameter, we define corre-
spondingly

αpq(ω) = log[α(ω, p)] − log[α(ω, q)] (18)

The values ofβpq(ω) andαpq(ω) are quite similar in ad-
jacent bins. Therefore it is possible to make a prediction
based on preceding bins. Withβpredpq

(ω) being the pre-
dicted value, the comparison of

βd1
(ωl+1) = βpredpq

(ωl+1) − βpq(ωl+1) (19)

βd2
(ωl+1) = βpredpq

(ωl+1) − βqp(ωl+1) (20)

yields a depermutation criterion. Whenβd1
and βd2

dif-
fer substantially, then the correct permutation can be deter-
mined. The ratio

rl =
βd1

(ωl+1)

βd2
(ωl+1)

(21)

shows the correct permutation. Withrl < 1 the bins are
correctly aligned andrl > 1 indicates a permutation. For
more reliable clustering, an error margin is advisable, where
the comparisonsrl < 1/ρ andrl > ρ with ρ > 1 are used.

For the prediction ofβpredpq
(ω), a linear predictor can be

used. Some tests with different lengths showed that even very
short linear predictors deliver good results. Using longerlin-
ear predictors can be better for particular signals, but then
the generalization suffers. Therefore we use a linear predic-
tor with two coefficients which just do a linear extrapola-
tion. The prediction error under the two possible permuta-
tions then reads

βd1
(ωl+1) = −βpq(ωl−1) + 2βpq(ωl) − βpq(ωl+1), (22)

βd2
(ωl+1) = −βpq(ωl−1) + 2βpq(ωl) − βqp(ωl+1). (23)
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Figure 2: Detected Clusters. (a) New algorithm usingα. (b)
New algorithm usingβ. (c) Joint algorithm.

For clustering usingα, we propose correspondingly:

αd1
(ωl+1) = −αpq(ωl−1) + 2αpq(ωl) − αpq(ωl+1) (24)

αd2
(ωl+1) = −αpq(ωl−1) + 2αpq(ωl) − αqp(ωl+1) (25)

In Figures 2(a) and 2(b), the results for a real-world case
are shown. As one can see, the valuesαd1

andβd1
are quite

small for almost all frequency bins, while the valuesβd2
and

αd2
are large for most of the frequencies. Since smallαd1

andβd1
and largeβd2

andαd2
indicate equal permutations of

adjacent bins, this means that the method correctly identifies
most permutations as correctly aligned. Thus, using eitherα
or β, most of the bins can be clustered, as marked with the
underlying bars. The next step according to [12] would be to
join both cluster types by estimating overlapping parts.

In this paper, we use another approach. With

zpq(ω) =

[

αpq(ω)

σα
,
βpq(ω)

σβ

]T

(26)

andσα andσβ being the standard deviations forαpq andβpq,
respectively, a joint criterion can be derived. For this, we
define

∆1(ωl+1) = ‖− zpq(ωl−1) + 2zpq(ωl) − zpq(ωl+1)‖ℓ2 , (27)
∆2(ωl+1) = ‖− zpq(ωl−1) + 2zpq(ωl) − zqp(ωl+1)‖ℓ2 . (28)

The final decision is made in analogy to (21) on the basis
of

rl =
∆1(ωl+1)

∆2(ωl+1)
(29)

with rl < 1/ρ showing correct alignment andrl > ρ indi-
cating a permutation.

The new algorithm now depends on just one parameter
ρ. In Figure 2(c) the resulting clustering for this method is
shown. Especially, some bins could be clustered which had
been left out by the single approaches.
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Table 1: Comparison of cluster sizes using the algorithms
from [12]. Only clusters with size larger than eight are
counted.

Number Clustered Avg. Cluster

bins Sizes

α-Cluster 92 3085 33.53

β-Cluster 90 3236 35.96

Res. Cluster 62 3402 54.87

Table 2: Comparison of cluster sizes using the new algo-
rithm. Only clusters with size larger than eight are counted.

Number Clustered Avg. Cluster

bins Sizes

α-Cluster 106 3371 31.80

β-Cluster 98 3159 32.23

Joint Cluster 71 3706 52.20

5. SIMULATIONS

The simulations have been performed using data available
at [20]. This data set consists of eight seconds long speech
recordings sampled at 8 kHz with individual contributions
from the sources to the micropohones. The chosen parame-
ters were a Hanning window of length 2048, a window shift
of 256, and an FFT-length of 8192. After 400 iterations of
(3), the depermutation has been performed using either the
old or the new algorithm for the first clustering stage. The
following stage of cluster correlation was carried out using
the method from [18].

The results of the algorithm from [12] are shown in Ta-
ble 1. The results for the new algorithm are given in Table 2.
They show that even more bins could be clustered, but that
the average cluster size is slightly smaller. This is due to the
effect of additional small clusters which actually improvethe
performance. The next step, in which the cluster permuta-
tions are aligned using the correlation approach describedin
[18], could depermute all bins. The overall separation per-
formance for channels 1 and 2 from [20] was18.07 dB.

6. SUMMARY

In this paper we have proposed a modification of a deper-
mutation algorithm that is used in convolutive blind source
separation. The depermutation criterion is greatly simplified,
while the overall performance is maintained. Results have
been shown using real-world data.
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