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Abstract—This work introduces a strategy for the extension of
the standard Kaczmarz algorithm, which is popular for solving
very large inverse problems, to priors other than the commonly
used Tikhonov regularization. The proposed reformulation of
the algorithm allows us to include more sophisticated priors
while inheriting the row-wise operation structure of the classical
Kaczmarz algorithm. The new method is developed with help
of the alternating direction method of multipliers. The results
show that also with suboptimal alternating direction method of
multiplier steps, the proposed algorithm is able to solve convex
optimization problems with very high accuracy. Especially, on the
relative young preclinical medical imaging modality of magnetic
particle imaging, the algorithm demonstrates high convergence
rates. When the underlying matrix nearly shows mutually or-
thogonal rows, which is observed in the field of magnetic particle
imaging, very high convergence rates can be expected.

Index Terms—Kaczmarz method, alternating direction method
of multipliers, convex optimization, inverse problems, medical
imaging

I. INTRODUCTION

Many recovery problems are modeled as linear inverse
problems. Especially, such kind of problems occur in the field
of medical imaging, such as computer tomography (CT) [1],
magnetic resonance imaging (MRI) [2], and magnetic particle
imaging (MPI) [3].

In contrast to the commonly known CT and MRI, magnetic
particle imaging (MPI) is a relative young tracer-based medical
imaging method to measure the spatial distribution of super-
paramagnetic iron-oxide nanoparticles (SPIONs) [3]. In MPI,
two different magnetic fields are generated to image the spatial
distribution of the SPIONs in one, two, or three dimensions.
First, there is the so-called selection field, which induces the
field free point (FFP), and secondly, one uses the so-called
drive field, which moves the FFP inside an area of interest on
a given trajectory and defines the field of view (FOV). The
FFP is commonly moved on a periodic trajectory [3], [4]. The
determination of the SPION distribution can be expressed as
a linear inverse problem. Unfortunately, it is often ill-posed,
because a high spatial resolution and a short acquisition time
are sought at the same time.

Commonly, this problem is solved by a system-matrix based
approach in a least squares error sense [4]. One widely used

reconstruction method in MPI is the regularized algebraic
reconstruction technique (ART) [1], also known as Kaczmarz
algorithm (KA), because the method allows one to easily
incorporate physically motivated constraints, like non-negative
particle concentrations [5], [6]. However, the classical KA
has a drawback, it works only for consistent linear systems.
Therefore, commonly, a Tikhonov regularization is added to
the least-squares problem, which allows for reformulating
the least-squares problem as a consistent linear system [7].
Independent of the row-operating Kaczmarz algorithm with its
fairly simple Tikhonov regularization, it has become common
to use more sophisticated priors [8]–[10]. However, many of
the sophisticated prior strategies come with the drawback that
the MPI system matrix has to be applied also column-wise,
such as [11], [12], which leads to an increased computational
effort and makes these methods inefficient.

In the present work, a direct extension to the KA is
derived that allows us to include sophisticated priors while
operating only row-wise on the system matrix. The developed
formulation of the reconstruction problem is based on the al-
ternating direction method of multipliers (ADMM) [13], [14].
A related approach, which used another splitting approach
to extend the classical Kaczmarz algorithm, can be found in
[15]. Here, a linearized Bregman splitting was used to derive
an `1-norm minimizing KA, called sparse KA [15]–[17]. For
further details to linearized Bregman splitting see [18], [19].
However, these articles just deal with the consistent case of
linear systems. By contrast, in this article we also deduce
a formulation for the inconsistent case, based on the more
general concept in [15].

II. KACZMARZ ALGORITHM

The classical Kaczmarz algorithm [5] is generally formu-
lated for consistent linear problems of the form

Ax = b, (1)

where matrix A ∈ CM×N is used to model a physical system,
vector b ∈ CM contains the measurements, and x ∈ CN
denotes an unknown vector to be recovered. The KA iteration
for (1) is then given by
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xk+1 = xk +
bi − aixk

‖ai‖22
aHi , (2)

where ai ∈ C1×N denotes the i-th row of A, and bi is the i-th
component of b. One Kaczmarz iteration is a full run through
all rows ai with i ∈ {1, 2, . . . ,M}. The article uses random
permutation to select the order of rows in each KA iteration.

A. Block-Kaczmarz algorithm

The Kaczmarz methods has its origin in the projection onto
convex set (POCS) algorithm [5], [20], where the projection
in (2) can be interpreted as the orthogonal projection of the
actual xk onto the hyperplane Hi = {x ∈ CN | aix−bi = 0}
spanned by ai. This interpretation allows one also to project
a given xk onto more than one row of A. For this, let us
define subsets Ap and bp of A and b with index vector p =
(p1, p2, . . . , pν), pj ∈ {1, . . . ,M}, ν < M :

Ap =
(
aTp1 ,a

T
p2 , . . . ,a

T
pν

)T
,

bp =
(
bp1 , bp2 , . . . , bpν

)T
.

Hence, the orthogonal projection of xk onto the linear sub-
space Hp = {x ∈ CN | Apx− bp = 0} is given by [21]

xk+1 = xk +A+
p (bp −Apx

k), (3)

where A+
p denotes the Moore-Penrose pseudoinverse of Ap.

B. Inconsistent linear systems

For most problems, a consistent linear system as shown in
(1) cannot be guaranteed due to noise and modeling errors.
Therefore, the problem (1) is generally reformulated as a least
squares (LS) one. This modified problem can be reformulated
in a consistent one as AHAx = AHb, which is also known as
normal equations. However, if N is large, the resulting matrix
AHA becomes large and hard to manage. Especially, if no
efficient way is known to calculate the rows of AHA, one
would prefer a row-operating algorithm like the classical KA
that directly works on the rows of A.

In [7] it was shown that the regularized LS problem

argmin
x∈CN

‖Ax− b‖22 + ‖λx‖22 (4)

with λ > 0 can be reformulated in the consistent problem

argmin
x∈CN ,v∈CM

‖x‖22 + ‖v‖22 s.t.
[
A λIM

] [x
v

]
= b, (5)

where v = b−Ax
λ plays the role of the residuum.

III. CONVEX MODEL

We consider the generalized convex optimization problem

argmin
x∈D

‖Ax− b‖22 + βR(Lx), (6)

where A ∈ CM×N models a physical system by a linear
equation, b ∈ CM contains the measurements, x ∈ D ⊆ CN
denotes an unknown signal which is to be recovered and lies
in a convex subset D. L ∈ CK×N is an arbitrary matrix, the

function R : CK → R is a convex regularization term, and
β > 0 denotes the weighting of the regularization.

The problem in (6) can be rewritten as

argmin
x∈Cn

‖Ax−b‖22+βR(z)+χD(x), s.t. Lx−z = 0, (7)

where χD(x) denotes the indicator function of the subspace
D. With help of ADMM [14], Eq. (7) can be split into

x`+1 = argmin
x∈Cn

‖Ax− b‖22 +
ρ

2
‖z` −Lx+ u`‖22 + χD(x),

(8)

z`+1 = argmin
z∈CK

βR(z) + ρ

2
‖z −Lx`+1 + u`‖22 (9)

= prox β
ρR

(Lx`+1 − u`)

u`+1 = u` + z`+1 −Lx`+1, (10)

where ` denotes the iteration index and ρ > 0 is the ADMM
splitting parameter. The expression prox β

ρR
(Lx`+1 − u`)

denotes the proximity operator defined as

proxf (z) = argmin
x∈RN

f(x) +
1

2
‖z − x‖22 . (11)

A run through (8), (9), and (10) is referred to as one full
ADMM iteration.

To enable solving (8) with the KA, we introduce an addi-
tional damping parameter δ > 0 and use the same trick as in
(4) and (5). Therefore, we obtain the extended linear system

argmin
x ∈ D
v ∈ CM
ε ∈ CK

‖x‖22 +
∥∥∥∥(vε

)∥∥∥∥2
2

s.t.
(
Ã δIM+K

)xv
ε

 = b̃,

(12)where

Ã =

(
A√
ρ
2L

)
and b̃ =

(
b√

ρ
2

(
u` + z`

)) . (13)

A. Weighting strategy
With an adaptation strategy for δ, the objective function of

the problem in (6) can be efficiently minimized. Here, we use
the following rule: δ is increased by a factor of 1.01 if the
objective function of (6) increases for three consecutive times
after ADMM iterations, otherwise it is decreased by factor
0.99. After each ADMM iteration, the residual vectors v and
ε are set to 0. For the parameter ρ > 0 we use the strategy
proposed in [22] (§3.4.1).

IV. PROPOSED ALGORITHM

The proposed algorithm consists of the following steps:
1) Check the objective function for possible adaptation of

δ as described in Section III-A.
2) Set v := 0 and ε := 0.
3) Perform a fixed number of Kaczmarz iterations:

• Kaczmarz iteration through the matrix A:

α :=
bi − aix− δvi
‖ai‖22 + δ2

x := PD(x+ αaHi ),

vi := vi + αδ

(14)
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where PD(x) denotes the orthogonal projection onto
the convex set D.

• Block-Kaczmarz iteration through L:

w := u+ z −Lx−
√

2δ2

ρ ε. (15)

Depending on the dimensionality of L, two different
ways for the orthogonal projections are possible:
◦ If K ≤ N

γ :=

(
LLH +

2δ2

ρ
IK

)−1
w

α := x+LHγ

ε := ε+
√

2δ2

ρ γ.

(16)

◦ If K > N

s :=

(
LHL+

2δ2

ρ
IN

)−1
LHw

α := x+ s

ε :=
√

ρ
2δ2 (u+ z −Lα) .

(17)

Orthogonal projection onto the convex subset D:

x := PD(α). (18)

4) Perform proximity update (9):

z := prox β
ρR

(Lx− u). (19)

5) Update dual variable (10):

u := u+ z −Lx. (20)

6) Update ρ if necessary by the rules from [22] (§3.4.1).

V. COMPARISON TO METHODS IN [15] AND [16]

Following the formulation of the authors in [16], their
method is able to optimize problems of the form

argmin
x,z

β

2
‖z‖1 +

1

2

(
‖x‖22 + ‖z‖22

)
s.t. Ax = b

Lx = z.

(21)

As in [15] conducted, a non-negativity constraint can be
easily included. However, this formulation does not solve
inconsistent problems of the form Ax ≈ b. If the linear
system is inconsistent, the sparse Kaczmarz (L = I) with
random selection of the system matrix rows should converge
in a least-squares sense [17]. However, we have observed that
for some matrices L this is not the case.

Alternatively, one could try to reformulate (7) in a form that
the splitting method in [15] can be applied in such a manner
that the Kaczmarcz method can be used for the inconsistent
linear system Ax ≈ b. Let in the following the sparse prior
be R(z) = ‖z‖1 and let D = RN+ . Then (7) reads

argmin
x∈RN+

1

2
‖Ax− b‖22 +

β

2
‖z‖1 s.t Lx = z. (22)

By adding the squared `2-norm of the variables x and z, the
splitting in [15] can be applied to

argmin
x,∈RN+z,v

1

2

(
‖v‖22 + ‖x‖22 + ‖z‖22

)
+
β

2
‖z‖1

s.t
(
A, −δIM

)(x
v

)
= b, Lx = z.

(23)

This formulation allows one to perform the KA on the rows
of
(
A, −δIM

)
. For δ = 0 we recover the algorithm from

[16] with the problem in (21) with a non-negativity constraint.
The exact relationship between the algorithm in [16] and

the proposed one can be verified by fixing the parameter δ
and not resetting ε and v in each iteration. Then, in the
proposed algorithm, the problem in (7) with an additional
regularization term δ2‖x‖22 will be optimized. When the new
objective function is compared with the one in (23), it can be
identified that the difference in both objective functions lies
only in the additional quadratic regularization term regarding
z. The other obvious difference between both methods is that
the parameter δ is steered depending on the development of
the objective function in the proposed method.

VI. EXPERIMENTS AND RESULTS

A. Reconstruction model and methods

For the regularization termR(Lx) = ‖Lx‖1, we follow the
proposal by Storath et al. in [8]. The authors used a weighted
anisotropic total variation (TV) based regularization with an
extended neighborhood relationship system. Additionally, they
added an `1-norm regarding the particle distribution x. This
prior has shown good performances for the MPI task. For
comparison purposes, we implemented the algorithm in [8],
in the following called Storath method.

The entire reconstruction model reads

argmin
x∈RN+

‖W (Ax− b) ‖22+β
S∑
s=1

ωs‖∇sx‖1+α‖x‖1, (24)

where ∇s is the discretized gradient operator with respect to
the neighborhood systems and ωs denotes the corresponding
weighting factor. The parameter α is set to β

4 , which follows
the empirically motivated suggestion in [8]. However, fine-
tuning the parameters α and β without prior knowledge of
the ground truth must be done quite carefully with respect
to individual visual perception. The matrix W is a diagonal
matrix that leads to normalized rows of the matrix WA.

The second implemented algorithm is the splitting methods
by Condat [23], which allows for reconstruction without
inversion of a matrix, called in the following the Condat
method.

The third algorithm is the fast gradient projection [24],
which is FISTA (fast iterative-shrinkage thresholding algo-
rithm) in combination with an additional TV-regularization. It
should be noted that the algorithm in the article is described
for “classical” TV-based problem, but it can be extended to
the problem (24).
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Furthermore, we used the conjugate gradient (CG) method
instead of the KA to solve (8), called the CG method in
the following. The rest of the algorithm is the same as the
proposed one.

The fifth algorithm is the KA based algorithm by Lorenz
et al. [15] with the implementation following [16] and an
additional parameter δ ≥ 0. For δ = 0 it is called unregularized
Lorenz, otherwise it is called regularized Lorenz.

For the proposed method, the inner iterations for solving
(8) were limited to just one KA iteration. The same was used
for the CG method, because no change in the convergence be-
havior was observed when the iteration number was changed.

Computations were carried out on a server with 56 CPUs
of the type Intel Xeon E5-2680 v4 at 2.40 GHz using Matlab,
where no particular parallel processing steps were used.

B. Simulation dataset

For the first test we simulated an MPI signal and the cor-
responding system matrix for a two-dimensional MPI scanner
with a Lissajous FFP-trajectory. The simulations were per-
formed with respect to the Langevin theory of paramagnetism
[25]. The basis frequency of the scanner was set to fB = 2.5
MHz, which was used as basis frequency for two drive fields
working with the frequencies fx = fB

96 and fy = fB
93 ,

respectively. This setup results in a periodic FFP-Lissajous
trajectory with the frequency ratio of fx/fy = 32/31. The
gradient field had a homogeneous field strength of 1 T/m.
The resulting field of view, which is equivalent to the area
of the FFP movement, had a size of 12.5 × 12.5 mm2 and
was discretized into 623× 623 pixels to simulate the voltage
signal. For reconstruction and to avoid so-called inverse crime,
a second matrix was simulated with 256×256 pixels that was
used for the reconstruction purpose. The tracer particle size
was considered to be 30 nm.

For the ground-truth particle distribution, we used a vessel
angiography, which is shown in Fig. 1(b). The periodic voltage
signal was corrupted with signal-independent additive white
Gaussian noise, resulting in a signal-to-noise ratio (SNR) of
20 dB. Afterwards, we transformed the periodic MPI signal
to the frequency domain and used only frequency components
between 50 KHz and 2 MHz for the reconstruction. In addi-
tion, frequency components with an SNR lower than 1.5 were
discarded, resulting in a highly underdetermined system matrix
of the size 603× 2562.

C. Real-world dataset

An experiment with the real-world dataset from the Open-
MPI database [26] was carried out. We decided to use the
3D MPI system matrix with 193 voxels spatial resolution and
3 · 26929 frequency components from three receive channels.
We used the shape phantom to demonstrate that our algorithm
converges to the same result as the algorithm in [24]. For
further details on the dataset we refer the reader to [26]. In a
first preprocessing step, the rows of the system matrix with an
estimated SNR lower than 1.5 were discarded, resulting in a
system matrix of size 20206×193. Due to the transfer function
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Fig. 1. Temporal progress and reconstruction results for phantom. (a) The
temporal progress of the objective function as function of the reconstruction
time. The objective function value is rescaled such that the value of x = 0 is
0 dB in the figure. (b) The ground truth SPION distribution. (c) The recon-
struction result by the algorithm by Storath et al. [8]. (d) The reconstruction
result by the proposed algorithm.

of the scanner, also frequency components lower than 70 kHz
were discarded. We used the empty measurements to estimate
the scanner-background signal which was then subtracted from
the system matrix and measurement vectors. This procedure
has shown to increase the reconstruction quality in MPI [27].
The parameter β in (24) was set to 10−5.

D. Results

Fig. 1(a) shows the objective function over the compu-
tation time for seven different algorithms for the simulated
two-dimensional scenario in the first 25 seconds. We can
clearly observe that the proposed method outperforms the
Condat, fast gradient projection, and Storath algorithm. The
proposed algorithm is slightly slower than the CG one. The
unregularized Lorenz algorithm tends to diverge, whereas the
regularized version converges fast on a relatively high-value
for the objective function. Exemplarily, Fig. 1(b) shows the
ground truth distribution, Fig. 1(c) the reconstruction with
the Storath algorithm and Fig. 1(d) the reconstruction with
the proposed algorithm after 2000 iterations. Because both
methods optimize the same objective function, they nearly
achieve the same result. Small derivations can be noticed in
the upper left and lower right corners.

In Fig. 2(a) the temporal progress of the objective function
as function of the reconstruction time is shown for the real-
world 3D shape phantom. We show the reconstruction for 200
seconds. As in the first test example, the proposed method
outperforms the other ones. After about 40 seconds the fast
gradient projection method slightly surpassed the proposed
ones. In contrast to the first test, the CG method did not
work at all. This may be due to the ill-conditioning of the
real-world system matrix, which itself includes a relatively
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Fig. 2. Temporal progress and reconstruction results for shape phantom from
OpenMPI database [26]. (a) The temporal progress of the objective function
as function of the reconstruction time. The objective function value is rescaled
such that the value of x = 0 is 0 dB in the figure. (b) Different reconstruction
planes for the fast gradient projection method [24]. (c) Different reconstruction
planes for the proposed method.

high noise level. It can again be observed that the regularized
Lorenz method is convergent, whereas the unregularized one
shows a highly oscillating behavior. In Figs. 2(b) and (c) the
reconstruction results are shown for the fast gradient projection
algorithm from [24] and the proposed one. It can be observed
that the results are nearly identical.

VII. CONCLUSIONS

We proposed a new formulation for Kaczmarz algorithm
based on ADMM splitting for the purpose of MPI. Our
new formulation allows for more sophisticated priors than
the well-known Tikhonov regularization. We demonstrated
the efficiency of the developed algorithm in comparison to
other modern splitting methods for inverse imaging problems.
We were able to show that the reconstruction time can be
significantly decreased in the MPI problem setting. Even more,
the formulation is quite general, which allows us to treat
different inverse problems within the same framework. Still,
there are also open questions that should be investigated in the
future, like, for example, how fast the convergence is in cases
that are not well suited for the classical KA.
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