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Abstract
In this paper, we study the efficiency of five different field free point trajectories in two-dimensional magnetic
particle imaging for the compressed-sensing based reconstruction of partially measured system matrices. To show
the suitability of the trajectories, different trajectories with identical repetition times were simulated using the same
scanner setup. We show that for all trajectories, the compressed-sensing based reconstruction approach for the
system matrix is possible and promising for real-world scenarios. Also we validate the already known fact that the
Lissajous trajectory is appropriate for the compressed sensing approach. Furthermore, the results show that there
are still other trajectory choices which show similar and even better performance in the compressed-sensing based
reconstruction.

I. Introduction
Magnetic particle imaging is a tracer-based imaging
method which can visualize the spatial distribution of
super-paramagnetic iron oxid nanoparticels (SPIONs)
[1]. To image the SPIONs’ distribution within a field of
view (FOV) commonly a field free point (FFP) is used.
With the help of a static magnetic field, the so-called se-
lection field, the FFP is generated. Only SPIONs in the
vicinity of the FFP contribute significantly to the mea-
sured voltage signal, because SPIONs far away from the
FFP are in saturation due to their nonlinear magnetiza-
tion behavior. An additional dynamic drive field moves
the FFP along a trajectory to image an area of interest.
For reconstruction, a system matrix based method is
widely used [2]. Even with unchanged scanner setup,
different trajectories result in different system functions.

For most trajectories, no closed-form solutions for the
system function are known. Therefore, in general, sys-
tem matrices need to be measured [2]. Unfortunately,
the measurement of the system matrix with a robot can
take several days for significant resolution inside the FOV.
To address this problem, different approaches have been
published. One method is the reconstruction without
a system matrix directly in the time domain, called x-
space reconstruction [3], but the x-space reconstruction
is not easily transferable to every trajectory. Also, the
reconstruction based on a measured system matrix al-
lows better reconstruction of the particle distribution.
A more recent method to measure the system matrix is
based on magnetic-particle spectrometry. Here, mag-
netic fields of the scanner are emulated and the signal
response near the particle probe is measured. The bene-
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fits are a significantly higher signal-to-noise ratio (SNR)
and a reduced acquisition time compared to the robot-
based measurement. The resulting system matrix is also
known as hybrid system matrix in the literature [4, 5].
Following the idea of compressed sensing (CS) [6], in [7]
a method for a partially measured system matrix based
on a Lissajous trajectory was introduced. Several symme-
try conditions for Lissajous trajectory based MPI system
matrices have been presented [8], and, additionally, a
method which combines the symmetry condition with
the compressed sensing based approach was introduced
[9]. To the best of the authors’ knowledge, no systemati-
cal study of the capability of different trajectories in the
context of CS-based system matrix reconstruction has
been carried out so far. In this paper, we demonstrate
in a simulation study based on system matrices from an
MPI scanner with five different FFP trajectories that all
trajectories are appropriate for CS-based reconstruction.
With two different phantoms we demonstrate the capa-
bility of the CS-based system matrices to reconstruct the
particle distribution.

II. MPI system function
The relationship between the induced voltage signal
u`(t ) in the `-th receive channel and the particle con-
centration c (r ) is commonly described by the Fourier
series expansion coefficients

û`,k =

∫

Ω

ŝ`,k (r )c (r )d r , (1)

where ŝ`,k (r ) is the k -th system function component of
the `-th receive channel, and Ω⊂Rd denotes the FOV of
dimensionality d . The system function component in
(1) is described by

ŝ`,k (r ) =−â`,k
µ0

T

∫ t0+T

t0

∂

∂ t

�

m (r , t ) ·p `(r )
�

e −2πi k t
T d t ,

(2)
where â`,k denotes the transfer function of the `-th re-
ceive chain, µ0 is the vacuum permeability, T is the repe-
tition time of the acceleration field, t0 ∈R is an arbitrary
time offset, m (r , t ) describes the mean magnetic mo-
ment, and p `(r ) denotes the coil-sensitivity profiles. In
a first simplified physical model for isotropic SPIONs
with instantaneous relaxation, the relationship between
the applied magnetic field H (r , t ) of the scanner and the
mean magnetic moment m (r , t ) is given by

m (r , t ) =m (‖H (r , t )‖)
H (r , t )
‖H (r , t )‖

, (3)

with ‖ · ‖ the euclidean norm and m (H ) the magnitude
of the mean magnetic moment, which is proportional
to the Langevin function [2]. The applied magnetic field

Lissajous Flower

Cartesian Radial Spiral

Figure 1: The five different trajectories for NB = 16.

H (r , t ) of the MPI scanner is given by a superposition
H (r , t ) =H S (r ) +H D (t ) of the so-called selection field
H S (r ) and drive field H D (t ), which perform the spa-
tial and temporal encoding, respectively. For the two-
dimensional imaging process (d = 2), the selection field
is given by

H S (r ) =G r with G =

�

G1 0
0 G2

�

. (4)

The temporal encoding by the drive field

H D (t ) =

�

H D
1 (t )

H D
2 (t )

�

(5)

can be performed using different periodic trajectories.
In Tab. 1 the drive fields simulated in this work are intro-
duced, in the following referred to as trajectories. To pro-
duce the different behavior, two different excitation fre-
quencies f1 =ω1/(2π) and f2 =ω2/(2π) are calculated ac-
cording to the rules shown in Tab. 1, with f1 = fB /NB , fB

being a chosen basis frequency and NB ∈N. The repeti-
tion time for all trajectories in Tab. 1 is T =NB (NB −1)/ fB .
All drive fields H D (t ) are simple combinations of sine
and cosine functions and can easily be realized in hard-
ware. In Fig. 1, the resulting trajectories are shown for
NB = 16.

III. The system matrix
An important issue in MPI is the lack of a closed-form
solution for the system function in more than one di-
mension. In one-dimensional MPI with the simplified
model, as defined in the previous section, the system
function components are related to the Chebyshev poly-
nomials of second-kind [11]. However, for two- and three-
dimensional MPI, to this point, no closed-form solution
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Table 1: An overview of different two-dimensional drive fields
H D (t ) and the required frequency-ratios, whereωi = 2π fi . The
table was obtained from [10].

Frequency-
ratio

Trajectory Drive field H D (t )

ω1 =
NB−1

NB
ω2

Lissajous

�

A1 sin(ω1t )
A2 sin(ω2t )

�

Flower

�

A1 sin(ω1t )cos(ω2t )
A2 sin(ω2t )sin(ω1t )

�

ω2 =
ω1

NB−1

Cartesian

�

A1 sin(ω1t )
A2 sin(ω2t )

�

Radial

�

A1 sin(ω1t )cos(ω2t )
A2 sin(ω2t )sin(ω1t )

�

Spiral

�

A1 sin(ω1t )sin(ω2t )
A2 sin(ω2t )cos(ω1t )

�

has been derived and the simplified physical model ex-
cluding the relaxation effects of the particles causes addi-
tional problems for complex trajectories. Therefore, the
system matrix is normally measured for each scanner in
an initial calibration step with a point-like sample, which
results in a spatial discretization of the form

r u
1 =

A1

G1
−

A1

N1G1
(1+2u ) and

r v
2 =

A2

G2
−

A2

N2G2
(1+2v ),

(6)

where u ∈ {0,1, . . . , N1 − 1} and v ∈ {0,1, . . . , N2 − 1} de-
scribe the equidistant spatial sampling of r inside the
FOV in two dimensions. The discrete version ŝ`,k (r u

1 , r v
2 )

is, for convenience, denoted by the discrete indices u
and v as ŝ`,k (u , v ). During our simulations, the integral
in (1) has been numerically approximated with help of
the midpoint quadrature rule. In real-world measure-
ments, the voltage signal u`(t ) will be sampled, but if
the Shannon-Nyquist sampling theorem is fulfilled, the
Fourier coefficients û`,k can be calculated from the sam-
pled periodic signal u`(tn ) by using the discrete Fourier
transform (DFT), where

tn =
nT

Nt
(n ∈ [0, . . . , Nt −1]) (7)

denotes the sampled time points, T is the repetition
time of the trajectory, and Nt ∈N is the number of sam-
pling points. We finally have in total 2K − 1 different
frequency components, where K < Nt

2 and K ∈ N. The
existing discrete system function components ŝ`,k (u , v )
with k ∈ {-K + 1, . . . ,0, . . . , K − 1} can then be reordered

in the system matrix

Ŝ ` =∆V









ŝ`,0(ϕ0) ŝ`,0(ϕ1) . . . ŝ`,0(ϕN1N2−1)
ŝ`,1(ϕ0) ŝ`,1(ϕ1) . . . ŝ`,1(ϕN1N2−1)

...
...

...
...

ŝ`,K −1(ϕ0) ŝ`,K −1(ϕ1) . . . ŝ`,K −1(ϕN1N2−1)









,

(8)
where ϕi denotes a bijective map on the coordinates of
the spatial grid and∆V denotes the volume of the voxels.
Because the measured signals are real-valued, the nega-
tive frequency components are only complex conjugates
of the positive ones, so that they can be excluded from
Ŝ ` ∈CK ×N1 ·N2 . For the sake of clarity, we omit the voxel
volume∆V throughout the following.

IV. System Matrix Compression

In [12] it was observed that MPI system matrices for an
MPI scanner using an FFP moving along a Lissajous-
trajectory are highly compressible. The focus in [12]was
to speed up the reconstruction process by using orthog-
onal transforms to compress the system matrices and to
reduce memory usage during the image reconstruction.
In [12], it was mentioned that the discrete cosine trans-
form of second-kind (DCT-II) and the discrete Chebyshev
transform (DTT) showed good compression behavior for
the spatial domain of the system function components in
the system matrix. Additionally, several symmetry condi-
tions on the system function component ŝ`,k (r ) could be
shown [8] that should be preserved by any compressive
orthogonal transform [8, 13]. Because the DCT-II fulfills
this symmetry conditions for an MPI scanner using a FFP
moving along a Lissajous-trajectory and since it is an or-
thogonal transform that can be efficiently computed, it
will be used in the following.

The compression of the system matrix of the `-th re-
ceive channel is carried out in the form

S̃ ` = Ŝ `T
T , (9)

where T ∈ RN1 ·N2×N1 ·N2 is an orthogonal matrix. To en-
force zeros inside the compressed system matrix S̃ `,
Lampe et al. [12] compared the magnitudes of the coeffi-
cients in S̃ ` to a global threshold and set coefficients with
a magnitude smaller than the global threshold to zero.
Alternatively, in [14] a local thresholding strategy was pro-
posed. Here, for each compressed system function com-
ponent s̃`,k (u , v ), a fixed number of values was selected
based on their magnitudes, and the rest of the coeffi-
cients was set to zero. In [14] and [13] it was shown that
the local thresholding strategy outperforms the global
one.
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V. Compressed Sensing
Compressed Sensing is a method which uses the com-
pressibility of a signal in a sparsity domain to reconstruct
the signal in the original domain, where the Nyquist-
Shannon sampling theorem is not directly fulfilled [6].
The rough idea can be explained by the underdetermined
reconstruction problem

arg min
x

‖x ‖0 s.t. y = Ax , (10)

where A = ΦΨ ∈ RM×N with M � N contains the mea-
surement matrix Φ ∈ RM×N and the sparsity basis Ψ ∈
RN×N , y ∈ RM the measurement vector, x ∈ RN is the
sparse signal which is to be reconstructed, and ‖ · ‖0

denotes the zero-pseudonorm counting the number of
nonzero entries. The signal in the non-sparse domain is
represented as x Ψ = Ψx . The drawback of the formula-
tion in equation (10) is the NP-hardness, which means
that under the hypothesis that NP6=P there is no deter-
ministic polynomial-time algorithm to solve the problem
exactly, so that in literature different methods have been
established. One widely used possibility is to replace the
non-convex `0-pseudonorm by the convex `1-norm. The
formulation of the problem then becomes

arg min
x

‖x ‖1 s.t. y = Ax . (11)

To answer the question under which condition the con-
vex problem in (11) is equivalent to the non-convex prob-
lem in (10), different measures were introduced. One fa-
mous definition is the so-called restricted isometry prop-
erty (RIP) presented in [15]. However, the evaluation of
the RIP for a given matrix A is as hard as the reconstruc-
tion problem (10) itself. Interestingly, for many classes of
random matrices (e.g. Gaussian, Bernoulli, Rademacher,
etc.) it can be shown that the RIP is fulfilled with high
probability for a wide range of M � N . From a practi-
cal point of view, however, the RIP is not a good tool to
evaluate the equivalence.

For a special group of matrices A a more tractable
approach is based on the mutual coherence [16]

µ(A) = max
k , j∈{0,1...,N−1}:k 6= j

�

�




a k , a j

��

�

‖a k‖ · ‖a j ‖
. (12)

and the inequality

S <
1

2

�

1+
1

µ(A)

�

, (13)

where S = ‖x 0‖0 is the number of non-zero entries in
x 0 ∈RN . If the inequality (13) is satisfied, then x 0 is the
unique solution to the `0-problem (10) and can be found
by solving the `1-problem (11) [17–19]. It becomes obvi-
ous in (13) that a perfect recovery can be guaranteed for
a wide range of S if the mutual coherenceµ(A) =µ(ΦΨ) is

low. Thus, in a practical measurement procedure, Φ and
Ψ should be selected together to ensure a small mutual
coherence.

If white Gaussian noise n ∈ RM is expected in the
measurement process y = Ax +n , different relaxed con-
vex optimization problems can be derived from (11). In
this paper, the relaxation

arg min
x

‖Ax − y ‖2
2+λ‖x ‖1, with λ> 0 (14)

is used. For the problem (14), different global optimal
solvers exist in the literature [20–23].

V.I. Compressed Sensing based system
matrix reconstruction

In [7] the compressibility of the system matrix was firstly
used to reconstruct the system matrices from only par-
tial measurements. In [9] the compressed sensing based
method was extended by using the symmetry proper-
ties, which were shown in [8] for Lissajous-trajectory
based MPI. The basic idea in [7] is to partially measure
the FOV with point-samples. The partial measurement
of the FOV can be expressed with an undersampling ma-
trix U = (e i )i∈U ∈ RN1N2×M , where U ⊂ {1,2, . . . , N1N2},
M = #(U ) is the cardinality ofU , and e i ∈RN1N2 is the i -
th unit vector. The sampled FOV pointsU are normally
chosen as random subselection of all possible FOV points
to enforce incoherence for the CS-based reconstruction
of the system matrix. The sampling of the partially mea-
sured system matrix is then described by

Ŝ
p
` = Ŝ `U . (15)

Now let T ∈RN1N2×N1N2 denote an orthogonal compres-
sive transform in the spatial domain (see Section IV), so
that

Ŝ ` = S̃ `T
T , (16)

where S̃ ` is the compressed version of Ŝ `.
The reconstruction problem in (14) is then solved for

each system function component k and receive channel
` for the real parts

s̃ r
`,k =

�

ℜ
�

s̃`,k (ϕ0)
	

, . . . ,ℜ
�

s̃`,k (ϕN1N2−1)
	�T

and imaginary parts

s̃ i
`,k =

�

ℑ
�

s̃`,k (ϕ0)
	

, . . . ,ℑ
�

s̃`,k (ϕN1N2−1)
	�T

individually. Note that these are the real and imaginary
parts of the rows of S̃ `, turned into column vectors. For
the optimization, the partial measurements vector also
has to be split into real ŝ p,r

`,k =
�

ℜ
�

ŝk ,`(ϕi )
	�

i∈U and imag-

inary ŝ p,i
`,k =

�

ℑ
�

ŝk ,`(ϕi )
	�

i∈U parts. Hereby, the optimiza-
tion problem in (14) is solved as

s̃ t
k ,` = arg min

x∈RN1N2

‖U T T x − ŝ p,t
k ,`‖

2
2+λ‖x ‖1, (17)
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where t ∈ {r, i} denotes the real and imaginary parts, re-
spectively, Φ = U T , Ψ = T , and y = ŝ p,t

k ,`. Therefore, it
becomes recognizable that the random sampling pat-
tern decoded in U should be optimized to enforce in-
coherence for a given T (2D DCT-II). Furthermore, the
sampling pattern seems directly independent from the
choice of the FFP trajectory for the MPI scanner, whereas
it will be shown that the reconstruction error inside the
system matrices for a given uniformly sampled spatial
sampling pattern is region dependent. The optimization
problem is then finally solved by the FISTA algorithm
[23], which was also used in [7] and [9].

VI. Test setup

We simulated five different system matrices for the MPI-
scanner based on the trajectories in Tab. 1. For each
scanner, a system matrix in x - and y -receive-channel
was simulated. The base frequency was chosen as
fB = 2.5/3 MHz. With NB = 33 being selected as fre-
quency divider, it follows that f1 = fB /33. The second fre-
quency f2 can then be calculated as described in Tab. 1.
In this case, the frequency ratio for the Lissajous and
flower trajectories is f1/ f2 = 32/33. The repetition time
for all trajectories is 1.27 ms. Currently, within one repe-
tition, 1632 time-points are sampled, which corresponds
to 1632 frequency components in Fourier space and a
sampling frequency of 1.3 MHz. The FOV has a size of
5×5 cm2 and is discretized into 250×250 pixels. The max-
imal gradient strengths of the selection field in x - and y -
directions are 1.25 Tm−1. The particle diameter is 30 nm,
and the upper noise resistance in a patient is 0.185 mΩ
according to [24]. The resulting noise is included in the
simulated system matrix and voltage signal, respectively.
The particle temperature was chosen as the body temper-
ature in a patient. The voltage signals for the phantoms
were calculated on a finer 300× 300 grid related to the
simulated system matrices in this work.

To simulate the partial sampling of the grid, we per-
formed a uniform random permutation of all possi-
ble grid indices. The random undersampling is then
achieved by systematically using only the first given in-
dices in the permutation vector. To clarify our procedure,
an example is given: If only 5% of the coefficients are
used in the first test, and in a second test 10% of the
coefficients are used, then the 10% test also includes
all coefficients of the 5% test. We created ten different
sampling patterns and repeated all experiments for the
CS-based system matrix reconstruction ten times. Inside
the system matrix reconstruction, no assumptions on
symmetric structures were used, like in [9]. To make a fair
comparison, it is necessary that all system matrices are re-
constructed in the same manner. However, for all trajec-
tories, the system matrices show highly symmetric struc-
tures, and we expect that the symmetries can be proofed

(a) (b)

Figure 2: The two test phantoms. Here, the areas with particle
concentration equal to one are shown in white. Black is used
for areas without particles. In the phantom (a), a circle has a
diameter of 2 mm. In the phantom (b), a circle has a diameter
of 3 mm.

by similar techniques as in [8]. For all system matrices,
we observe only even- and odd-symmetric system func-
tion components along the x - and y -direction inside
the spatial domain. Because the results in [7–9, 12, 13]
show that it is preferable to use a transform for compres-
sion that exploits the symmetries, we decided to use the
two-dimensional DCT-II for this purpose.

Inside the FISTA reconstruction, all system function
components were separately reconstructed. Each system
function component was additionally split into real and
imaginary parts for the reconstruction. The `1-constraint
parameter was handcrafted as λ = 10−8 inside the re-
construction and the reconstruction was run until the
change of the coefficients between different iterations
was lower than a threshold or the objective function did
not change significantly anymore.

To show the efficiency of the reconstructed system
matrices, the following reconstruction problem was
solved for the resolution phantoms shown in Fig. 2:

c ∗ = arg min
c∈RN1 ·N2

+



Ŝ c − û




2

2
+µ‖c ‖2

2. (18)

The parameter µ was chosen for all trajectories hand-
crafted as µ= 10−9, so that visually best results over all
trajectories were reached. To simplify the paper, we ex-
cluded the study of finding optimal µ’s for all trajectories.
Inside the reconstruction, no deletion or normalization
of system function components was performed. The re-
construction was performed by the regularized Kaczmarz
method with setting the negative and imaginary parts in
c l during each iteration l to zero [25]. Furthermore, we
also performed the reconstruction with the FISTA algo-
rithm by making use a proximity operator with respect
to the nonnegativity constraint and the `2-regularization
term [23, 26, 27].
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VII. Results
The result section is subdivided into subsections to inves-
tigate different aspects of the CS-based system-matrix re-
construction. The first subsection investigates the ques-
tion of the compressibility of the different system matri-
ces by the DCT-II. The second subsection investigates
the mutual coherence of sampling patterns and the in-
fluence on the image reconstruction with the CS-based
system matrices. Then we look at the spatial distribu-
tion of errors on CS-recovered system matrices. Finally,
the last subsection investigates the image reconstruc-
tion performance of CS-based MPI system matrices for
different FFP trajectories.

VII.I. Compressibility of the
system-matrix coefficients

w
In this section, the compressibility of the different

simulated system matrices will be investigated with help
of the two-dimensional DCT-II as compressive orthogo-
nal transform. It should be noted here that a systematic
study of different other compressive transforms was not
performed. However, the compressibility of the different
system matrices is a necessary condition for compressed-
sensing reconstruction techniques to work. To demon-
strate that the DCT-II is a suitable compressive transform
for all system matrices, two different measures obtained
from [28]will be introduced. In [28], different commonly
used sparsity measures were investigated with regard to
their suitability under different manipulations of the co-
efficients. The two sparsity measures for x ∈ RN used
here are

`norm
0,ε (x ) =

#
�

�

i ∈ {0, 1, . . . , N −1}
�

� |xi |>ε
	

�

N
and

`1

`2
(x ) =

‖x ‖1

‖x ‖2
,

(19)

where #( · ) denotes the cardinality of a set. Both mea-
sures decrease with increasing sparsity. The variable ε
for `norm

0,ε ( · ) is chosen in such a way that 99 % of the en-
ergy is recovered from the original x . In Tab. 2 the global
compression performances are shown. By global com-
pression performance we mean that the two measures
are evaluated for each vectorized system matrix before
and after the application of the 2D DCT-II to the spatial
dimension. It is clearly visible that system matrices can
be highly compressed by the DCT-II. Here, according
to both measures, the system matrices for an MPI scan-
ner with the FFP traveling along a Lissajous trajectory
have the best compression performance. The Cartesian
FFP trajectory system matrix shows a better compression
ratio for one receive channel than for the other. Both
completely symmetric FFP trajectories (flower and ra-
dial) have the same compression performance for both

receive-channel system matrices, which is due to the or-
thogonal setting of the receive coils. It should be noted
that these symmetries might be useful for further com-
pression. In a second test, the local compression ratio
for each system function component k was investigated.
Therefore, a plot of the ratios `norm

0,ε (s̃ `,k )/`
norm
0,ε (ŝ `,k ) of the

compressed s̃ `,k to the uncompressed ŝ `,k system func-
tion components is presented. Fig. 3 shows that the sys-
tem matrices transformed by the 2D DCT-II are generally
more sparse than the untransformed ones. For some
compressed system function components, the number
of remaining coefficients is by a factor of 10−4 smaller
than for the uncompressed system function components.
While there are several system function components with
a low compression ratio of `norm

0,ε (s̃ `,k )/`
norm
0,ε (ŝ `,k ) being

approximately equal to one, the ratio does not become
higher than one, which is a good indicator for system
function components with a low signal-to-noise ratio. It
should be noted that a low compression ratio in this test
can have two reasons. The first reason is that a system
function component has a low signal-to-noise ratio due
to the corruption with simulated white Gaussian noise,
and white noise cannot be compressed. The second rea-
son is a high number of spatial frequencies inside the
system function component ŝ `,k , as for such structures,
the 2D DCT-II cannot be a compressive transform. To
this point, it has been shown that all system matrices are
highly compressible by the 2D DCT-II and compressed-
sensing based reconstruction of several system function
components should be possible from a partial number
of calibration scans.

VII.II. Mutual Coherence

For the evaluation of the ten different sampling patterns,
where the coordinates are taken from a uniform dis-
tribution, the mutual coherence is calculated accord-
ing to Eq. (12). Specially, for the CS-based recovery of
the system matrix, the measurement matrix A is a com-
position of the undersampling matrix U and the two-
dimensional DCT-II matrix. The calculation of µ(A) is
quite time consuming for large M and N . Obviously, the
number of scalar products

�

�




a i , a j

��

� to be calculated is

given by (N 2−N )/2, because
�

�




a j , a i

��

�=
�

�




a i , a j

��

�. For
each scalar product, M multiplications and M − 1 ad-
ditions have to be performed. Since multiplication is
the computationally more challenging calculation, only
the multiplications are counted in the following. Over-
all, M (N 2−N )/2 multiplications have to be performed,
and the computational complexity is in O (M N 2). Within
the parameter ranges in this article, M (2504−2502)/2=
1953093750 ·M multiplications have to be performed.
Even if M is small, the process of calculating the mu-
tual coherence is highly time consuming and, in general,
not practical for large scenarios. Due to this reason, the
mutual coherence is only determined for "high" under-
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Figure 3: The compression ratio of `norm
0,ε (s̃ `,k )/`

norm
0,ε (ŝ `,k ) as function of the system function components k for both receive

channels of the system matrices from an MPI scanner with different FFP trajectories. Here s̃ `,k denotes the DCT-II transformed
system matrices, whereas ŝ `,k denotes the uncompressed system matrix. The plot is shown in logarithmic scale to the base 10.

Table 2: Global compression measure (mes) calculated for simulated system matrices of an MPI scanner with the FFP traveling
along different trajectories for both receive channels (chan). The measure `norm

0,ε is given in percentage of necessary coefficients

to cover 99 % of the energy. The measure `1
`2

is round to integer numbers.

chan mes Lissajous Flower Cartesian Radial Spiral
org DCT-II org DCT-II org DCT-II org DCT-II org DCT-II

x
`norm

0,ε 37.74 0.0084 20.90 0.0238 44.50 0.0112 28.11 0.0321 31.67 0.0488
`1
`2

2874 106 2280 112 2939 114 2471 146 2577 170

y
`norm

0,ε 34.13 0.0079 20.90 0.0238 65.28 0.0384 28.11 0.0321 31.75 0.0489
`1
`2

2797 104 2280 122 4285 227 2471 146 2579 169

sampling factors (i.e., small M ), so that only {2, 2.5, . . . , 5}
percent of the original spatial coefficients are sampled.
In Tab. 3 it is observable that all patterns are more or less
on the same level in terms of mutual coherence. Addi-
tionally, the so called Welch bound as lower limit of the
mutual coherence is given for each sampling ratio. The
Welch bound is computed as

µ(A)≥
√

√ N −M

M (N −1)
. (20)

The upper bound is given by µ(A)≤ 1.
With help of a first phantom reconstruction test, the

image reconstruction with the CS-based system matri-
ces for the sampling patterns will be compared with the
mutual coherence given in Tab. 3. Exemplarily, here the
sampling pattern 5 and the sampling pattern 4 will be
compared. For the image reconstruction test, the 3 mm
phantom from Fig. 2 (b) is taken. The results are shown in

Fig. 4. We evaluate the reconstruction by the normalized
root mean square error, which is given by

NRMSE=
‖c ∗− c org‖2

p

N1N2

�

max(c org)−min(c org)
� , (21)

where c ∗ denotes the reconstructed particle distribution,
c org is the original particle distribution, and max(c org)
and min(c org) are the highest and smallest values in c org,
respectively. It is recognizable that for all FFP trajectories,
sampling pattern 4 (solid lines) outperforms sampling
pattern 5 (dashed lines) when the system matrices are
obtained within a CS framework. By the mutual coher-
ence as measure (see Tab. 3) a different outcome would
be expected, because pattern 5 has most often a smaller
mutual coherence than pattern 4. It becomes clear that
the mutual coherence can only be understood as a rough
indication of possible performance, not as a strict perfor-
mance measure. A source of the problem could be the
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Table 3: The mutual coherence calculated by (12) for ten sampling patterns uniformly sampled form all possible pixels inside
the FOV. The number of sampled position (Pos.) is given in %. Additionally, the Welch Bound (WB) is given as lower boundary.

Pos. Sampling pattern
in % 1 2 3 4 5 6 7 8 9 10 WB

5.0 0.1120 0.1153 0.1114 0.1165 0.1136 0.1207 0.1157 0.1132 0.1132 0.1103 0.0174
4.5 0.1163 0.1173 0.1189 0.1184 0.1199 0.1235 0.1183 0.1163 0.1224 0.1160 0.0184
4.0 0.1305 0.1247 0.1286 0.1217 0.1254 0.1236 0.1292 0.1259 0.1330 0.1293 0.0196
3.5 0.1360 0.1370 0.1374 0.1450 0.1298 0.1339 0.1339 0.1317 0.1340 0.1357 0.0210
3.0 0.1557 0.1492 0.1537 0.1497 0.1463 0.1469 0.1374 0.1494 0.1502 0.1465 0.0227
2.5 0.1633 0.1611 0.1716 0.1624 0.1573 0.1610 0.1506 0.1545 0.1600 0.1593 0.0250
2.0 0.1745 0.1815 0.1870 0.1817 0.1781 0.1946 0.1808 0.1830 0.1833 0.1797 0.0280

1 2 3 4 5 6 7 8 9 10
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Figure 4: An example of an image reconstruction of the 3 mm
phantom with CS-based system matrices for two different sam-
pling patterns. The pattern 5 (dashed line) has mostly a lower
mutual coherence than pattern 4 (solid line).

usage of the CS-based system matrices for estimation of
the particle distribution, and in the moment this is not
covered inside the CS-based framework.

When comparing Tab. 2 and Fig. 4, one can see that a
larger compression ratio generally corresponds to a bet-
ter reconstruction performance. However, establishing
an exact numerical relationship between the compres-
sion ratio and the reconstruction error is quite difficult,
because not only the trajectory and the sparsifying trans-
form, but also the sparsity parameter λ influence the
result.

VII.III. Spatial distribution of error on
system matrices

To validate the spatial distributions of the reconstruction
error on the CS-based system functions, we consider the

absolute spatial error given by

ASE(u , v ) =

√

√

√

2
∑

`=1

K −1
∑

k=0

�

�ŝ org
`,k (u , v )− ŝ CS

`,k (u , v )
�

�

2
(22)

with ŝ org
`,k (u , v ) being the original system function com-

ponent without any compression or modification from
a full calibration scan in each pixel and ŝ CS

`,k (u , v ) being
the CS-based system function component. For each of
the trajectories and ten different randomly generated
sampling patterns, the mean ASE (MASE) was calculated.
To enable a comparison between the spatial error distri-
butions and the spatial sensitivities, also the sensitivity
profiles

SP(u , v ) =
2
∑

`=1

K −1
∑

k=0

�

�ŝ org
`,k (u , v )

�

�

2
(23)

have been computed. In Fig. 5, the top row shows the
sensitivity profiles (SP) for the different trajectories. The
middle row shows the MASE for CS-based system matri-
ces derived from only 5% of the full number of calibra-
tion scans, whereas the lower row shows the MASE for
CS-based system matrices recovered from only 2% of a
full calibration scan. The CS-based system matrices for
trajectories with rectangular envelopes become worse
firstly in the border regions of the FOV, where the FFP
travels slow and the spatial sensitivity is low. In addition,
for the CS-based system matrix for an MPI scanner with a
Cartesian FFP trajectory and 2 % of a full scan, an increas-
ing MASE related to the distance of the FFP trajectory can
be observed in the center. The CS-based system matrix
from the flower and radial trajectories have a lower MASE
in the FOV than the CS-based system matrix from the
spiral trajectory. However, both show a high-error spot
directly in the center of the FOV. For the CS-based system
matrix from the flower trajectory, the border region has a
smaller mean absolute error than the one from the radial
trajectory. The MASE of the CS-based system matrix from
a spiral FFP-trajectory shows concentric higher-error re-
gions around the center and very large errors along the
boundaries.
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Cartesian Lissajous Flower Radial Spiral

Figure 5: Sensitivity profiles for different trajectories and the corresponding MASE results for the CS-based system matrices as
heat map (blue=small value / red=high value). The top row shows the spatial energy distribution inside the system matrices
from full calibration scans (i.e., the sensitivity profiles). The middle row shows the MASE for only 5 % of calibrations scans. The
bottom row shows the MASE for only 2% of calibrations scans. The heat maps of the spatial energy distributions are scaled
between the highest spatial energy component over all fully scanned system matrices. For the middle and bottom row, the
full-calibration-scan system-matrix coefficients were normalized to have a unit Frobenius norm, where, in a first step, both
receive channels were merged into one system matrix. The heat-map color is scaled between 0 and the highest spatial error over
all trajectories from the system matrix reconstruction from only 2 % of calibration scans.

The observations on the spatial error distributions
for Cartesian and Lissajous trajectories give rise to the
assumption that the travel velocity of the FFP is an im-
portant parameter that governs the absolute error and
determines in which region the largest error occurs in CS-
based system matrices derived under uniform random
sampling. For the spiral trajectory, it is most obvious
that the distance of several pixels to the trajectory is a
second important parameter. For the flower and radial
trajectories, a higher error level occurs in a small region
around the center of the FOV. With these trajectories, the
center is crossed by the FFP from all directions, resulting
in a particularly high sensitivity for this point. However,
this rapid change of sensitivity toward the center could
be occasionally missed by uniform random sampling.
Moreover, the rapid change cannot be well represented
by the DCT-II with only a few coefficients. Thus, the
combination of low-density sampling and the inability
of the sparsifying transform to properly approximate the
system function components with very few coefficients
seem to be another cause of error. To illustrate this more,

Fig. 6 shows two examples of the obtained error distri-
butions. The left image corresponds to a poor recon-
struction of the center, whereas the right image is an
example of a good reconstruction. In the lower detail
plot it is visible that the configuration of the sampled
points (dark blue) around the center is the reason for the
poor reconstruction, because the center is not covered
by the sampling points. In the right image, the sampling
points are distributed closer to the center of the FOV, and
a better reconstruction of the CS-based system matrix
becomes possible. Thus, for such trajectories, it seems
appropriate to adapt the sampling density to the spatial
variation of the sensitivity. However, a full optimization
of the sampling densities for all possible trajectories is
out of the scope of this paper and will be addressed in
future work.

VII.IV. Image reconstruction

In Fig. 7, we show the reconstruction results for the phan-
tom in Fig. 2 (a) with a circle diameter of 2 mm for dif-
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Figure 6: The absolute spatial error of the CS-based system
matrix of an MPI scanner with a FFP that travels along the flower
trajectory for two different sampling patterns, when only 2%
of calibration scans are performed. On the left, the result for
sampling pattern 1, and on the right, the sampling pattern 7 is
shown. The upper plot shows the absolute spatial error over
the whole FOV, whereas the lower plot shows a detailed zoom
of the center. The dark blue points in the lower plot correspond
to the sampled spatial positions.

ferent trajectory choices. This experiment has been re-
peated 10 times with different randomly generated spa-
tial sampling patterns and the mean over all trials was cal-
culated. The standard deviation of the obtained RMSE-
values turned out to be not more than one-tenth of the
RMSE in the worst-case scenario. However, it could be
observed that with a higher degree of undersampling the
standard deviation increased. In Fig. 7 (a), we observe
that the reconstruction with help of the partially mea-
sured system matrix works well for all trajectories when
at least 5% of coefficients are retained. In this case, the
reconstruction results seem to depend only on the reso-
lution properties of the trajectory choices. We observe
that the trajectories with a circular envelope (flower, ra-
dial, spiral) offer similar performance with respect to the
NRMSE. For the trajectories with a rectangular envelope
the Lissajous trajectory based system matrix yields about
1 dB better performance than the Cartesian trajectory
based system matrix. The difference between the trajec-
tories with a circular and rectangular envelope for the
CS-based system matrices is about 3 dB. To see what hap-
pens when less than 5 % of coefficients are observed and
the CS-based system matrices start to fail to reconstruct
the particle distribution, we plot in Fig. 7 (b) the NRMSE
for the interval from 1 % to 5 % of remaining coefficients.
Here we can observe that the trajectories with rectan-
gular envelope seem to be more robust against a higher
degree of information loss on the system matrix than
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Figure 7: The mean over ten trials of the NRMSE for the recon-
structed phantom in Fig. 2 (a) as function of the percentage of
measured spatial grid points inside the calibration scan. One
trial corresponds to the reconstruction from one random sam-
pling pattern. The results are presented for five different tra-
jectories. The upper plot shows the interval from 0 % to 100 %.
The lower plot shows the interval from 1 % to 5 % in detail.

the circular variants. Comparing the trajectories with
a rectangular envelope among one another, it becomes
obvious that the Cartesian trajectory is more robust than
the Lissajous trajectory to the loss of information in the
system matrix.

Because the spatial resolution seems to be the lim-
iting factor for the Lissajous and Cartesian trajectories,
the previous experiment was repeated for the phantom
in Fig. 2 (b), where the diameter of one circle filled with
particles is now 3 mm. The results of this experiment
are shown in Fig. 8. In Fig. 8 (a) it can been observed
that the flower, Lissajous, spiral, and radial trajectories
have similar resolution performance, whereas the Carte-
sian one is about 2 dB lower in the reconstruction result.
For this phantom a small loss of reconstruction perfor-
mance starts at about 90 % of undersampling. Therefore,
in Fig. 8 (b), the interval up to 10 % remaining coefficients
is shown. As for the first phantom, it can be observed
that the rectangular-envelope CS-based system matrices
seem to be more robust against a higher loss of informa-
tion through the CS-based reconstruction of the system
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Figure 8: The mean over ten trials of the NRMSE for the recon-
structed phantom in Fig. 2 (b) as function of the percentage of
measured spatial grid points inside the calibration scan. One
trial corresponds to reconstruction from one randomly selected
sampling pattern. The results are presented for five different
trajectories. The upper plot shows the interval from 0% to
100%. The lower plot shows the interval from 1% to 10% in
detail.

matrix than the ones with circular envelope. Addition-
ally, the Cartesian trajectory is the most robust trajectory
against a high level of undersampling.

The reconstructions from CS-based system matri-
ces for MPI scanners with a spiral and radial trajectory
show no significant differences in the performance in
the highly undersampled case. Interestingly, in the ex-
tremely undersampled case, the flower trajectory yields
worse reconstruction results than the rest of the trajecto-
ries. Quite obviously and not surprisingly, the temporal
acceleration frequencies f1 and f2 have a significant ef-
fect on the robustness of the compressed sensing based
approach. The reason is that f2 in the second group in
Tab. 1 (Cartesian, radial, spiral) is by a magnitude smaller
than in the first group (Lissajous, flower). The second
important contribution seems to be the rotation param-
eter in radial, spiral, and flower against the other two
trajectories (Lissajous, Cartesian).

In the following, we investigate directly the recon-
structed particle distributions for the phantoms and

differently strong undersampled FOVs. In Fig. 9, the
resolution phantom with a circle diameter of 2 mm is
shown. Because the trajectories with rectangular en-
velopes (Cartesian, Lissajous) were not really able to re-
construct this phantom, they will be excluded from the
following discussion. We obverse that the trajectories
with circular envelopes offer a sufficiently high spatial
resolution for the reconstruction of this phantom. For
5 % of sampled spatial points, the visual impression of the
phantom reconstruction is similar to the fully sampled
system matrices. Some small differences can be observed
around the center axis in the image reconstructed with
the CS-based system matrix from an MPI scanner with a
radial and spiral trajectory, whereas the reconstruction
from a CS-based system matrix with an FFP that travels
along a flower trajectory does not show significant dif-
ferences. However, if only 2% of the grid points of the
FOV are measured, peak-like noise of salt-and-pepper
type appears in the images obtained from trajectories
with circular envelopes. This noise seems to be related to
nearly singular values inside the CS-based system matrix
for some single pixels. The flower trajectory based sys-
tem matrix equally distributes the noise over the whole
reconstruction. The radial trajectory has a tendency to
result in most noise at the borders of the FOV and in a re-
gion near to the center, the spiral case shows most noise
in the center and around the center axes.

Because the system matrices for an MPI scanner with
an FFP that travels along a Lissajous or Cartesian trajec-
tory did not allow for a proper reconstruction of the phan-
tom in Fig. 9, we also investigated the reconstruction of
a different phantom with a circle diameter of 3 mm. The
results are shown in Fig. 10. Here, the reconstruction
from a Cartesian trajectory still fails in the center of the
image, but the system matrices for an MPI scanner with
the FFP traveling along a Lissajous trajectory work suf-
ficiently. For the image reconstruction with a CS-based
system matrix obtained from only 5 % of sampled pixels
the FFP trajectories with rectangular envelopes show no
difference, whereas the ones with circular envelopes re-
sult in slight deformations of the circles. When only 2 %
of spatial points are sampled and the system matrices
are reconstructed in a CS-based framework, all image
reconstructions of the second phantom include salt-and-
pepper like noise. For the Cartesian trajectory only in the
border regions the salt-and-pepper like noise appears,
whereas in the center of the image, the included noise
looks more Gaussian like. For the Lissajous trajectory
a similar behavior can be observed. The flower trajec-
tory distributes the salt-and-pepper like noise over the
whole FOV. For the radial trajectory, similar observations
as for the flower trajectory can be made, however the salt-
and-pepper like noise is more observable in the border
regions and directly in a small area around the center
of the FOV, where the trajectory is crossing from all di-
rections. For the radial trajectory the noise level seems
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Cartesian Lissajous Flower Radial Spiral

Figure 9: The reconstruction results of the particle phantom in Fig. 2 (a) for different trajectories shown for values in the interval
[0, 1]. The top row shows the reconstruction results for the system matrices with full calibration scans. The middle row shows the
reconstruction results from CS-based system matrices obtained from 5% of calibration scans. The bottom row shows results
from CS-based system matrices obtained from 2 % of calibration scans. Note that some individual errors may be larger than the
figures suggest, because the estimated particle distributions had to be clipped for visualization in order to fit the given grayscale.

overall lower than for the flower trajectory. As with the
previous phantom, for the reconstruction from the spiral
trajectory we have an increased noise level in the center
and along the axes of the image.

VIII. Conclusions

We studied in this paper different magnetic particle
imaging trajectories for system matrices obtained via
a compressed sensing framework. Within the simulation
model, our results show that all trajectories offer highly
compressible spatial structures, so that system matrices
corresponding to all five trajectories can be recovered
from only 5 % to 10 % of measured spatial positions with-
out significant loss of quality for the reconstructed parti-
cle distribution. Additionally, we observed a correlation
between the velocity of the FFP in the trajectory, the dis-
tance of pixels to the trajectory, and the reconstruction
error of particle phantoms that occurs when using CS-
based system matrices. A more complicated situation
appears in the spatial center region of the system matrix
for a scanner with radial or flower trajectory. Here the
sampling pattern in the center has to be chosen more
carefully than for the other trajectories. The results show
that the Cartesian trajectory is the most stable choice
if a very high level of undersampling is the goal. The

Lissajous trajectory can be set between the Cartesian
trajectory and the ones with circular envelope. The spa-
tial resolution of the Lissajous trajectory is more limited
than for trajectories with the circular envelope, but it is
still better than for the Cartesian trajectory. In particular,
it offers a higher stability to information loss than the
trajectories with circular envelope. To make a decision
within the group of trajectories with circular envelope is
difficult. They all offer a higher spatial resolution than
the two rectangular ones, but they have their individual
pros and cons. Therefore, and because we only investi-
gated uniform random spatial sampling, the question
of which is the best trajectory for CS-based MPI still re-
mains. Additionally, it should be noted here that the Lis-
sajous and Cartesian trajectories are technically easier to
realize than the circular ones. Also the step from the two-
dimensional setting to the three-dimensional MPI is for
some trajectories more challenging than for others. Our
results will hopefully help to improve the sampling pat-
terns for CS-based system matrix reconstruction. In an
upcoming study, we will validate our simulation results
with help of the hybrid system matrix approach.
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Cartesian Lissajous Flower Radial Spiral

Figure 10: The reconstruction results of the particle phantom in Fig. 2 (b) for different trajectories shown for values in the
interval [0, 1]. The top row shows the reconstruction results for the system matrices with full calibration scans. The middle row
shows the reconstruction results from CS-based system matrices obtained from 5 % of calibration scans. The bottom row shows
results from CS-based system matrices obtained from 2 % of calibration scans. Note that some individual errors may be larger
than the figures suggest, because the estimated particle distributions had to be clipped for visualization in order to fit the given
grayscale.

IX. Acknowledgments
This work was supported by the German Research
Foundation under grant numbers ME 1170/7-1 and BU
1436/7-1.

References
[1] B. Gleich and J. Weizenecker. Tomographic imaging using the

nonlinear response of magnetic particles. Nature, 435(7046):1214–
1217, 2005. doi:10.1038/nature03808.

[2] T. Knopp and T. M. Buzug. Magnetic Particle Imaging: An Introduc-
tion to Imaging Principles and Scanner Instrumentation. Springer,
Berlin/Heidelberg, 2012. doi:10.1007/978-3-642-04199-0.

[3] P. W. Goodwill and S. M. Conolly. Multidimensional X-Space Mag-
netic Particle Imaging. IEEE Trans. Med. Imag., 30(9):1581–1590,
2011. doi:10.1109/TMI.2011.2125982.

[4] M. Grüttner, M. Graeser, S. Biederer, T. F. Sattel, H. Wojtczyk,
W. Tenner, T. Knopp, B. Gleich, J. Borgert, and T. M. Buzug.
1D-image reconstruction for magnetic particle imaging us-
ing a hybrid system function. In Nuclear Science Sympo-
sium and Medical Imaging Conference, pages 2545–2548, 2011.
doi:10.1109/NSSMIC.2011.6152687.

[5] M. Graeser, A. von Gladiss, P. Szwargulski, M. Ahlborg, T. Knopp,
and T. M. Buzug. Reconstruction of Experimental 2D MPI Data
using a Hybrid System Matrix. In International Workshop on
Magnetic Particle Imaging (IWMPI), page 130, 2016.

[6] D. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):
1289–1306, 2006. doi:10.1109/tit.2006.871582.

[7] T. Knopp and A. Weber. Sparse Reconstruction of the Magnetic
Particle Imaging System Matrix. IEEE Trans. Med. Imag., 32(8):
1473–1480, 2013. doi:10.1109/tmi.2013.2258029.

[8] A. Weber and T. Knopp. Symmetries of the 2D magnetic particle
imaging system matrix. Phys. Med. Biol., 60(10):4033–4044, 2015.
doi:10.1088/0031-9155/60/10/4033.

[9] A. Weber and T. Knopp. Reconstruction of the Magnetic
Particle Imaging System Matrix Using Symmetries and Com-
pressed Sensing. Adv. Math. Phys., 2015:460496, 2015.
doi:10.1155/2015/460496.

[10] M. Ahlborg. Bildgebungskonzepte für Magnetic Particle Imag-
ing: Bildgebungskonzepte und Rekonstruktionsansätze für große
Bildgebungsvolumen bei Magnetic Particle Imaging. Infinite Sci-
ence Publishing, 2016.

[11] J. Rahmer, J. Weizenecker, B. Gleich, and J. Borgert. Signal en-
coding in magnetic particle imaging: properties of the system
function. BMC Medical Imaging, 9(4), 2009. doi:10.1186/1471-
2342-9-4.

[12] J. Lampe, C. Bassoy, J. Rahmer, J. Weizenecker, H. Voss, B. Gleich,
and J. Borgert. Fast reconstruction in magnetic particle imag-
ing. Phys. Med. Biol., 57(4):1113–1134, 2012. doi:10.1088/0031-
9155/57/4/1113.

[13] M. Maass, K. Bente, M. Ahlborg, H. Medimagh, H. Phan, T. M.
Buzug, and A. Mertins. Optimized Compression of MPI System
Matrices Using a Symmetry-Preserving Secondary Orthogonal
Transform. Intern. J. Magnetic Particle Imaging, 2(1):1607002,
2016. doi:10.18416/ijmpi.2016.1607002.

[14] T. Knopp and A. Weber. Local System Matrix Compression for
Efficient Reconstruction in Magnetic Particle Imaging. Adv. Math.
Phys., 2015(472818), 2015. doi:10.1155/2015/472818.

[15] E. Candès and T. Tao. Decoding by Linear Program-

10.18416/ijmpi.2017.1706005 c© 2017 Infinite Science Publishing

http://dx.doi.org/10.1038/nature03808
http://dx.doi.org/10.1007/978-3-642-04199-0
http://dx.doi.org/10.1109/TMI.2011.2125982
http://dx.doi.org/10.1109/NSSMIC.2011.6152687
http://dx.doi.org/10.1109/tit.2006.871582
http://dx.doi.org/10.1109/tmi.2013.2258029
http://dx.doi.org/10.1088/0031-9155/60/10/4033
http://dx.doi.org/10.1155/2015/460496
http://dx.doi.org/10.1186/1471-2342-9-4
http://dx.doi.org/10.1186/1471-2342-9-4
http://dx.doi.org/10.1088/0031-9155/57/4/1113
http://dx.doi.org/10.1088/0031-9155/57/4/1113
http://dx.doi.org/10.18416/ijmpi.2016.1607002
http://dx.doi.org/10.1155/2015/472818
http://dx.doi.org/10.18416/ijmpi.2017.1706005
http://dx.doi.org/10.18416/ijmpi.2017.1706005


International Journal on Magnetic Particle Imaging 14

ming. IEEE Trans. Inf. Theory, 51(12):4203–4215, 2005.
doi:10.1109/TIT.2005.858979.

[16] S. Foucart and H. Rauhut. A Mathematical Introduction to Com-
pressive Sensing. Birkhäuser, Basel, 2013. doi:10.1007/978-0-8176-
4948-7.

[17] M. Elad and A. M. Bruckstein. A Generalized Uncertainty Princi-
ple and Sparse Representation in Pairs of Bases. IEEE Trans. Inf.
Theory, 48(9):2558–2567, 2002. doi:10.1109/tit.2002.801410.

[18] D. Donoho and M. Elad. Optimally sparse representation in gen-
eral (nonorthogonal) dictionaries via `1 minimization. Proceed-
ings of the National Academy of Sciences, 100(5):2197–2202, 2003.
doi:10.1073/pnas.0437847100.

[19] R. Gribonval and M. Nielsen. Sparse Representations in Unions
of Bases. IEEE Trans. Inf. Theory, 49(12):3320–3325, 2003.
doi:10.1109/TIT.2003.820031.

[20] I. Daubechies, M. Defrise, and C. De Mol. An Iterative Thresh-
olding Algorithm for Linear Inverse Problems with a Sparsity
Constraint. Comm. Pure Appl. Math., 57(11):1413–1457, 2004.
doi:10.1002/cpa.20042.

[21] J. M. Bioucas-Dias and M. A. Figueiredo. A New TwIST: Two-
Step Iterative Shrinkage/Thresholding Algorithms for Image
Restoration. IEEE Trans. Image Process., 16(12):2992–3004, 2007.
doi:10.1109/TIP.2007.909319.

[22] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman Itera-
tive Algorithms for `1-Minimization with Applications to Com-
pressed Sensing. SIAM J. Imaging Sci., 1(1):143–168, 2008.
doi:10.1137/070703983.

[23] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci., 2(1):
183–202, 2009. doi:10.1137/080716542.

[24] J. Weizenecker, B. Gleich, and J. Borgert. A simulation study on the
resolution and sensitivity of magnetic particle imaging. Phys. Med.
Biol., 52(21):6363–6374, 2007. doi:10.1088/0031-9155/52/21/001.

[25] T. Knopp, J. Rahmer, T. F. Sattel, S. Biederer, J. Weizenecker, B. Gle-
ich, J. Borgert, and T. M. Buzug. Weighted iterative reconstruction
for magnetic particle imaging. Phys. Med. Biol., 55(6):1577–1589,
2010. doi:10.1088/0031-9155/55/6/003.

[26] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in
signal processing. In Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, volume 49, pages 185–212. Springer,
New York, 2011. doi:10.1007/978-1-4419-9569-8_10.

[27] N. Parikh and S. Boyd. Proximal Algorithms. Found. Trends Opt.,
1(3):127–239, 2014. doi:10.1561/2400000003.

[28] N. Hurley and S. Rickard. Comparing Measures of Spar-
sity. IEEE Trans. Inf. Theory, 55(10):4723–4741, 2009.
doi:10.1109/TIT.2009.2027527.

10.18416/ijmpi.2017.1706005 c© 2017 Infinite Science Publishing

http://dx.doi.org/10.1109/TIT.2005.858979
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://dx.doi.org/10.1109/tit.2002.801410
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1109/TIT.2003.820031
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1109/TIP.2007.909319
http://dx.doi.org/10.1137/070703983
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1088/0031-9155/52/21/001
http://dx.doi.org/10.1088/0031-9155/55/6/003
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1561/2400000003
http://dx.doi.org/10.1109/TIT.2009.2027527
http://dx.doi.org/10.18416/ijmpi.2017.1706005
http://dx.doi.org/10.18416/ijmpi.2017.1706005

	Introduction
	MPI system function
	The system matrix
	System Matrix Compression
	Compressed Sensing
	Compressed Sensing based system matrix reconstruction

	Test setup
	Results
	Compressibility of the system-matrix coefficients
	Mutual Coherence
	Spatial distribution of error on system matrices
	Image reconstruction

	Conclusions
	Acknowledgments

