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Institute for Signal Processing, University of Lübeck, 23562 Lübeck, Germany
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Abstract. We present a new motion estimation algorithm that uses
cosine-sine modulated filter banks to form complex modulated filter
banks. The motion estimation is based on phase differences between a
template and the reference image. By using a non-downsampled version
of the cosine-sine modulated filter bank, our algorithm is able to shift
the template image over the reference image in the transform domain
by only changing the phases of the template image based on a given
motion field. We also show that we can correct small non-rigid motions
by directly using the phase difference between the reference and the tem-
plate images in the transform domain. We also include a first application
in magnetic resonance imaging, where the Fourier space is corrupted by
motion and we use the phase difference method to correct small motion.
This indicates the magnitude invariance for small motions.
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1 Introduction

In the literature, different methods have been proposed for motion field estima-
tion. They can be grouped into direct and indirect methods. For direct methods,
block-matching algorithms [9] are most intuitive and traditional. In these algo-
rithms, the template image is splitted into blocks each of which is then used to
search the best matching block in the reference image to measure the shift of
that block. Methods for capturing the real motion more efficiently are based on
optical flow models [6]. With the assumption that the brightness of an image
I(x, y, t) at (x, y) is changed only due to the temporal motion, the motion field
can be estimated under the assumption of a constant overall brightness [6], in
which the total time derivative is constrained to be zero. Indirect methods, on
the other hand, utilize different kinds of features and edge detection techniques
to estimate the motion field [15]. An overview of different techniques can be
found in [13].

Motion estimation can be done in the subband domain of filter banks based
on special filter design techniques [4,11]. These methods rely on the principle
that a shift in the spatial domain only causes a phase change in the subband
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domain, and the magnitude is not influenced. In [4], the motion estimation was
performed using the complex bandpass Gabor filters which are optimally located
in spatial and frequency space. This was then extended in [11] to develop a hierar-
chical estimation algorithm by using dyadic complex discrete wavelets transform
(C-DWT).

It has been shown that a so-called dual-tree complex wavelet transform (DT-
C-DWT) can be used as C-DWT [14]. The idea behind the DT-C-DWT is that
instead of directly using a C-DWT, we can perform two real-valued normal
discrete wavelet transforms (DWT). This is possible if two real-valued filter pairs
{h0(n), h1(n)} and {h̃0(n), h̃1(n)} from the first and second DWT respectively
are designed as Hilbert-transform pairs. Then, the complex summation of the
first and second filter bank results in a C-DWT [14]. The DT-C-DWT theory
was further extended to uniform M -band filter banks [3] and different design
methods have been proposed based on this extension [3,2,8].

Our proposed method in this work relies on filter design techniques for cosine-
sine modulated filter banks. We employ the M -band DT-C-DWT without DC-
leakage proposed in our previous work [10]. The DC-leakage-free property of
filter banks is important in image processing to avoid corrupting the higher-order
bandpass filtered images by their DC components. The M -band DT-C-DWT was
first proposed in [16] in form of a cosine-sine modulated filter bank (CSMFB).
The idea behind modulated filter banks is to derive all subband filters from a
single real-valued prototype. It was shown that the CSMFB can be interpreted
as an M -band DT-C-DWT [8], where the cosine and sine modulated filter banks,
respectively, correspond to the real and the imaginary part of the C-DWT. This
is illustrated in Fig. 1. In [10], we improved CSMFB to obtain DC-leakage-
free property by introducing a lifting factorization to design prototype filters.
We will show that, by using the M -band DT-C-DWT without DC-leakage, the
coefficient magnitudes are invariant to small motion, and most information about
the motion between neighboring frames is contained in the phase differences
only. Furthermore, it can be also used for motion estimation and correction with
applications in video processing and magnetic resonance imaging.

2 Cosine-Sine Modulated Filter Bank

The one-dimensional CSMFB, illustrated in Fig. 1, has two M -band filter banks,
each of which is decimated by N . The system functions Hk(z), H̃k(z), Fk(z)
and F̃k(z) are expressed as cosine- and sine-modulated version of the real-valued
prototype P (z) [17]. As proved in [8], the filter bank can also be seen as an M -
band DT-C-DWT. The one-dimensional complex analysis filters are obtained
by

Gk(z) = Hk(z) + jH̃k(z)

G∗
k(z) = Hk(z) − jH̃k(z)

(1)
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Fig. 1. M -band dual-tree wavelet transform and cosine-sine modulated filter bank.
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Fig. 2. Processing the image x(n, m) with the transform Wi
kℓ[x] which consists of the

complex bandpass filter ui
kℓ(n, m) followed by the downsampler ↓(N, N).

with Hk(z) and H̃k(z) defined in [10]. For motion estimation, we need the central
frequencies of Gk(ejω) and G∗

k(ejω). Under the assumption
(

argmax
ω

∣

∣P (ejω)
∣

∣

)

= 0, (2)

it can be easily verified that the central frequency for Gk(ejω) is

ωk = argmax
ω

∣

∣Gk(ejω)
∣

∣ =

(

k +
1

2

)

π

M
. (3)

The central frequency ω∗
k for G∗

k(ejω) can equivalently be calculated.
Following the standard approach [14] for DT-C-DWT, extensions to a two-

dimensional M -band DT-C-DWT can be found in the literature [3,7]. For image
filtering, the two-dimensional complex bandpass filter will compose two separable
bandpass filters, one filter on the columns and the other on the rows. They are
defined as

U1
kℓ(z1, z2) =

(

U4
kℓ(z1, z2)

)∗
= Gk(z1)Gℓ(z2)

U2
kℓ(z1, z2) =

(

U3
kℓ(z1, z2)

)∗
= Gk(z1)G

∗
ℓ (z2).

(4)

As a consequence, 2M filters in one dimension result in 4 · (M × M) two-
dimensional bandpass filters. The filtering process on an image x(n,m) with a
complex filter ui

kℓ(n,m) is illustrated in Fig. 2.
Complex filters can be completely shift invariant if they have a compact sup-

port on one half of the frequency space. However, this can only be achieved with
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IIR filters [14]. Therefore, we have to accept that we can only obtain approximate
shift invariance for DT-C-DWT. Fortunately, we will show that, for the CSMFB
we can arbitrarily choose the number of subbands, and the higher number of
bands should produce more shift invariance.

The shift invariance property can be defined by processing an image x(n) =
x(n,m) and its shifted version x̂(n) = x(n + s) = x(n + s1(n),m + s2(n)) with
the transform Wi

kℓ[x]. Wi
kℓ[x], as in Fig. 2, consists of the complex bandpass

filter ui
kℓ(n,m) followed by the downsampler ↓ (N,N). The shift invariance can

be described as

W1
kℓ[x̂(n)] ≈ ej(ωk s̃1(m)+ωℓs̃2(m))W1

kℓ[x(n)],

W2
kℓ[x̂(n)] ≈ ej(ωk s̃1(m)+ω∗

ℓ
s̃2(m))W2

kℓ[x(n)],
(5)

where ωk, ωℓ and ω∗
ℓ are defined by (3) and s̃i(m) = si(Nm) is the downsam-

pled shift. This means that the difference between x(n,m) and x̂(n,m) can be
approximated by only a phase shift in the transform domain, while the magni-
tudes remain approximately equal.

3 Motion Estimation

3.1 The Error Function

Based on the work in [11], we develop a motion estimation algorithm using the
CSMFB. The idea of this algorithm is to obtain the approximate shift invariance
on the subband images, as in (5). Let x(n) denote the reference image and
x̂(n) ≈ x(n + s) denote the current image, respectively. The subband error can
be defined as

E i
kℓ(n, s) ≈

(∣

∣Wi
kℓ[x(n)]

∣

∣ −
∣

∣Wi
kℓ[x̂(n)]

∣

∣

)2

+
∣

∣Wi
kℓ[x(n)]Wi

kℓ[x̂(n)]
∣

∣ ·
{

[

Ω
i
kℓ

]T
s̃(m) − θi

kℓ(m)
}

,
(6)

where Wi
kℓ[x] represents the subfilter bank as in Fig. 2 and

θi
kl(m) = ∠

[

Wi
kℓ[x̂(n)]

Wi
kℓ[x(n)]

]

, s̃(m) = [s̃1(m), s̃2(m)]
T

,

Ω
1
kℓ = [ωk, ωℓ]

T
, and Ω

2
kl = [ωk, ω∗

ℓ ]
T

.

(7)

Note that in our case the scale of the last quadratic term in (6) is different
from that in [11] since on each level M of the motion estimation the transform
produces subbands in the complete frequency space. Normally, the images are
real-valued, therefore the motion estimation will only be performed on i = 1, 2 as
formulated in (7). The complete error function for the level M is then determined
by

E(n, s) =
∑

i

M−2
∑

k,ℓ=1

E i
kℓ(n, s). (8)
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Here, we do not include the suberrors with k, ℓ ∈ {0,M − 1}, because these
bands lap into the other frequency quadrants and the shift invariance is not
valid anymore.

The combined error is a quadratic function and can be written as

E(n, s) = As̃2
1 + Bs̃2

2 + Cs̃1s̃2 + Ds̃1 + Es̃2 + G. (9)

3.2 Hierarchical Motion Estimation with CSMFB

Our hierarchical motion estimation approach starts with the level Mmax = 2Jmax

and ends with the level Mmin = 2Jmin . Here, M in W
(i,M)
kℓ [x] represents both

the number of bands and the downsampler in the CSMFB. The algorithm can
also include prior knowledge about the motion field s0(n) and has the following
steps:

1. Perform the transformation W
(i,M)
kℓ [x] for the reference frame x(n) and the

current frame x̂(n) for each level M = 2J with J = Jmin, . . . , Jmax and each
subband i, k and ℓ. If the image is real-valued, it is sufficient to perform the
transformation only for i = 1, 2.

2. For each level M from Mmax to Mmin

– If there is prior knowledge about the motion included, correct motion on

the downsampled grid s̃0(m) for all subbands W
(i,M)
kℓ [x(n)] with (5).

– Calculate ∆s̃0(m) = argmin
s
E(n, s) by (9).

– Interpolate s̃0(m) + ∆s̃0(m) to the next higher level.
– If there exists prior knowledge about the motion on the higher level, use

the mean of the prior motion and the interpolated motion as new prior
motion s̃0(m).

3. Interpolate s̃0(m) from the last level to s0(n) with the size of x(n).
4. Repeat the algorithm with prior motion knowledge s0(n) if necessary.

4 Results

4.1 Motion Estimation

To demonstrate the motion estimation properties of our algorithm under noisy
conditions, we consider the Yosemite sequence without clouds, for which the
ground truth motion is known[1]. The angular error measure is calculated as in
[4]:

ψe = arccos

(

v
T
v

coor

‖v‖ · ‖vcoor‖

)

(10)

with v = [s, 1]
T

and v
coor = [scoor, 1]

T
. Here, s is the estimated motion vector

and s
coor is the ground truth motion vector for one spatial position in the image.

We calculated the mean ψe and the standard deviation σψe
of the angular error

measures over the whole sequence.
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In the estimation algorithm, we set the maximum level to Jmax = 8 and the
minimum level to Jmin = 4. The frames were extended by zeros at the borders
during the downsampling process. When calculating the mean and standard
deviation, we took into account only pixel elements that are not in the cloud area
of the image. We considered white Gaussian noise with zero mean and different
standard deviations σg before processing the frames to check the robustness of
our algorithm.

The experimental results on the angular error measure are shown in Table 1.
As expected, the motion estimation for the noise-free case is relatively good, but
it gets worse in noisy conditions. Although the performance of our system in
terms of angular error measure is marginally lower than for the best algorithms
in [1], it has some significant advantages with regard to motion correction. Our
transform has similar properties as the Fourier transform in the sense of shift
invariance of the magnitude. With the information being coded in the phase, we
can directly calculate the motion field. In contrast to the Fourier transform, our
method is able to cope with non-rigid motion and its associated noise.

Table 1. Mean and standard deviation for different noise level of the motion estimation

σg 0 10 20 30 40

ψe 4.256◦ 11.642◦ 17.912◦ 24.463◦ 30.216◦

σψe
5.096◦ 10.596◦ 13.654◦ 18.074◦ 21.532◦

4.2 Motion Correction

In this experiment, we perform motion correction between two frames by using
the ground truth motion field of the Yosemite sequence without clouds and
the filter bank without downsampling step. The downsampling step is not per-
formed because the ground truth motion field can be directly applied by (5) to
correct the bandpass filtered images. We used all subbands of the image exclud-
ing W1

0,0[x] and W2
0,0[x], because they include the DC-component of the image,

and correcting the phase here can result in changing the image DC. The other
bands do not include DC, because we used filters without DC-leakage [10].

After the correction, we transform the images back into the spatial domain.
We measure the error of the correction as E = ‖X1 − Xcoor

2 ‖F, where X1

denotes the reference frame and Xcoor
2 denotes the corrected frame. By using the

Frobenius norm ‖ ·‖F, we measure the distance between two images. As baseline
we also include the error ‖X1 − X2‖F, where X2 is the next frame without
motion correction. For this experiment, we normalized the pixel values to be in
the interval [0, 1]. In Fig. 3, we show the error measures between neighboring
frames. It can clearly be seen that it is possible to correct motion with a two-
dimensional CSMFB for the given motion fields.
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Fig. 3. Error of the motion correction using motion field correction with different
number of bands 4M2 on the Yosemite sequence.
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Fig. 4. Error of the motion correction using phase difference correction with different
number of bands 4M2 on the Yosemite sequence.

4.3 Phase Shift Correction

In this experiment, we want to show that for a two-dimensional CSMFB with
downsampling, the difference between the reference and the template frame is
only in the phase differences of the subband images Wi

kℓ[x]. By correcting the
phase differences, we are able to correct the non-rigid motion. As baseline, we
used the Fourier transform which is optimal for correcting horizontal and vertical
image shifts. In Fig. 4, we show the difference error between neighboring frames.
Here, we used the Yosemite sequence with clouds, therefore we are not interested
in the ground truth motion. As can be seen in Fig. 4, with increasing number of
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(a) (b)

(c) (d)

Fig. 5. Example of MR imaging. (a) Original. (b) The motion corrupted phantom. (c)
The reconstruction by [12]. (d) The reconstruction with phase shift correction with
M = 16.

bands, the motion correction becomes better until M = 32, which corresponds to
4 ·322 bandpass filtered images. With a reasonable number of bands, the motion
information is coded only in the phase, and the motion can be easily corrected
by the phase differences. For M = 64 and above, the motion correction becomes
worse again. The reason is that a too large number of bands causes the two-
dimensional CSMFB to become equivalent to the baseline Fourier transform.

4.4 Motion Correction in Magnetic Resonance Imaging

In magnetic resonance imaging the Fourier-space, called k-space, will be sampled
directly. If the patient moves during the data acquisition, the movement will
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result in motion artifacts after the reconstruction. Without any additional phase
correction, the sampled medical images could be strongly corrupted by these
motion artifacts, and diagnostics are not possible anymore. We extended the
blind motion estimation in [18,12] for subpixel motion by a phase-correction step.
We simulated the subpixel motion by linear interpolation on the Shepp-Logan
phantom (256 × 256 pixels) by randomly chosen ±5 pixel translational motion
for each k-space line. The motion-corrupted image is denoted by xm. Then, we
perform a first motion correction as in [12] to obtain the image xs. After that,
we perform a total-variation denoising step with the algorithm in [5] and get the
denoised image xd. Between all subbands Wi

kℓ[xd] and Wi
kℓ[xs], we calculate the

phase differences in the transform-domain W by (5) and perform the correction
for Wi

kℓ[xs]. After the following inverse transform, we obtain the image x̃s.
Finally, we used the Fourier-transform F [x̂s] =

∣

∣F [xm]
∣

∣· exp (j · ∠(F [x̃s])) as the
new starting point for the iteration. This is repeated until the phase difference
between Wi

kℓ[x̃s] and Wi
kℓ[xs] becomes small. We show the results in Fig. 5. An

improvement can be clearly seen between the reconstructed image resulted by
[12] (Fig. 5 c) and the one obtained by our proposed algorithm (Fig. 5 d).

5 Conclusions

We investigated two-dimensional CSMFBs for motion-field estimation and
motion correction. We showed that the motion information is only coded by
the phase information of the two-dimensional CSMFB, which significantly facil-
itates the motion estimation and correction. Furthermore, given a motion field,
the motion can be corrected without the need for an external interpolation func-
tion. Because of this, we do not need to perform a regridding from images.

Our experimental results on the Yosemite sequence are promising, and fur-
ther optimization may improve the performance on motion estimation. The main
application area of the transform is seen as a building block within image recon-
struction methods for capturing image sequences with non-rigid motion, such as
in magnetic resonance imaging, where a k-space is corrupted.
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