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Abstract: In Magnetic Particle Imaging the reconstruction of the image given the voltage signal is not trivial. Since the system function 

cannot be measured in its entirety the reconstruction algorithms can only estimate the images. The standard reconstruction approaches 

usually rely on time consuming optimization concepts that involve the use of sophisticated priors. We studied the general possibility of 

learning the reconstruction with neural networks. The results reveal that the networks potentially can reconstruct the images while even 

learning priors. However, the structures used for harvesting the training data should be chosen wisely.  

 

I. Introduction 
In Magnetic Particle Imaging (MPI), voltage signals induced 

by superparamagnetic nanoparticles are acquired from which 

the particle distributions have to be reconstructed. One ap-

proach for reconstruction is based on the system matrix. 

Given the estimated system matrix, one common way to deal 

with the reconstruction is based on iterative algorithms like 

the Kaczmarz method [1]. Thus, the reconstruction of an im-

age is usually an iterative optimization process that is often 

time consuming. The same holds when sophisticated priors 

are used for regularization. An alternative is to learn the in-

verse system in a data-driven fashion.  For this purpose, ma-

chine learning techniques from the field of neural networks 

(NNs) can be adopted. First attempts to use neural networks 

for the particle distribution reconstruction have already been 

made [2,3]. However, both of these methods work in the fre-

quency space, with only one-dimensional trajectory for the 

drive fields. Also, only dense NNs were used. In contrast, the 

method proposed here works with two-dimensional trajectory 

and operates in the time domain. Arguably, it appears prom-

ising to adopt so-called convolutional neural networks 

(CNNs). For example, in [4] CNNs were used for denoising 

and reconstruction of computed tomography images. Further-

more, CNNs have been adopted to reconstruct images of gen-

eral inverse problems [5,6]. Due to the success of CNNs, we 

use this type of network for reconstruction of MPI images.  

II. Material and Methods 

II.I. Convolutional Neural Network 
In this work, we propose a fairly small architecture (see Fig. 

1). The network is similar to the one in [7] used for recon-

struction of e.g. magnetic tomography images. The input of 

the network is the measured voltage signal as a vector. The 

first two layers of the network are dense layers. The size of 

the second dense layer defines the size of the reconstructed 

image. Subsequently, 2D convolution layers are deployed. 

The multiple feature maps produced by the first convolution 

 

 

Figure 1: Network architecture. Dense indicates a dense layer, 

where its size is specified in parenthesis. Conv denotes a 2D-con-

volution layer, where the number of 3x3 kernels is given in paren-

thesis. The reshape block represents the transition from a 1D sig-

nal to a 2D image (28x28 pixels). 

layer are fused to a single image by the single kernel of the 

second convolution layer. Thus, the output of the network is 

the reconstructed image. As activation function we used the 

exponential linear unit (elu) 

 𝑓(𝛼, 𝑥) = {
𝛼(𝑒𝑥 − 1), for 𝑥 < 0

𝑥,  for 𝑥 ≥ 0
 (1) 

with 𝛼 = 0.1 for our experiments. This feed-forward network 

is trained in a supervised fashion. We tried two different loss 

functions: mean squared error (MSE) and mean absolute error 

(MAE) between the network's output and the ground truth. 

The loss is used to adapt the weights using the Adam opti-

mizer. 

II.II Test Setup 
As a reference system, a linear minimum MSE (MMSE) es-

timator followed by a non-negativity constraint was used [8]. 

Given the observed signal 𝑢, an estimate �̂� for the particle 

distribution 𝑐 is calculated by �̂� = max (𝐴 ⋅ (𝑢 − �̅�) + 𝑐̅, 0), 

where 

 𝐴 = 𝐸{(𝑐 − 𝑐̅)(𝑢 − �̅�)𝑇}𝐸{(𝑢 − �̅�)(𝑢 − �̅�)𝑇}−1 (2) 

with the expectation operation 𝐸{⋅}, 𝑐̅ = 𝐸{𝑐}, and �̅� = 𝐸{𝑢}. 

We conducted experiments on simulated data. For the crea-

tion of a dataset, the MNIST dataset [7] was used as particle 

distribution. It contains 70000 digital images of handwritten 
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numbers between the digits zero and nine, where each image 

has a size of 28×28 pixels. The simulation of the voltage sig-

nal was based on the Langevin model of paramagnetism. The 

field of view (FOV) was defined to have size 20.4 ×
20.4 mm2, the frequency ratio for the Lissajous trajectory 

was 𝑓𝑥 𝑓𝑦⁄ = 31 32⁄ , the particle size was 30 nm, and the 

body temperature of humans was assumed inside the simula-

tion. To prevent inverse crime, the images were upscaled to 

40 × 40 pixels. The voltage signals were corrupted with 

white Gaussian noise at a signal-to-noise ratio (SNR) of 

20 dB. To cover the whole FOV, the dataset was augmented 

by three random rigid motions for each digit.  In total, the 

dataset had 4 × 70000 voltage signals. All images showing 

a five form the test dataset (25252 samples) and the images 

of the other 9 digits were used for training the NNs. 

III. Results 
The approaches were compared with three error measures: 

MSE, MAE, and structural similarity (SSIM) index. For all 

measures, the average and standard deviation (±) over the 

whole test dataset were calculated (see Tab. 1).  Both NNs 

outperform the linear MMSE estimator. The NN trained with 

MAE loss turned out to be superior to the one optimized un-

der MSE loss with respect to the SSIM. Therefore, in Fig. 2, 

a few test images reconstructed by the NN with MAE loss are 

shown exemplarily. Even though the letter five was not in-

cluded in the training data, it is quite accurately reconstructed. 

We used the trained model also for the reconstruction of ves-

sel-like structures from their voltage signals (SNR of 20 dB). 

Examples can be found in Fig. 3. The reconstruction of this 

structures is reasonable but not as good as for the fives of the 

MNIST database (see Fig. 2). 

IV. Discussion 
The experiments verifies that for the reconstruction in MPI, 

nonlinear approaches that go beyond demanding �̂� ≥ 0 are 

favorable. Furthermore, the nonlinear networks appear as a 

promising method for learning the inverse system. The results 

indicate that there is a significant difference between the 

structures of the vessel-like phantom and the MNIST num-

bers. It seems promising to present all different kinds of struc-

tures in the training dataset. However, the coarse structures as 

well as the background are reconstructed well. This shows the 

generalization ability of the network and indicates that the 

trained NN learned to invert the physical model. One draw-

back of the approach is the required amount of training data. 

In future research, we will focus on strategies to tackle the 

problem and apply the proposed technique to real data.  

V. Conclusions 
We proposed an end-to-end trained neural network capable 

of reconstructing MPI images from the voltage signal. The 

network can reconstruct structures that have never been pre-

sented during training. Since the networks outperform the lin-

ear MMSE estimator quite significantly, it becomes obvious 

that our nonlinear approach can learn and exploit the statistics 

of the data much better than a linear method. 

Table 1: Results for the networks and the MMSE estimator on the 

MNIST test data containing only the digit five. 

 MSE MAE SSIM index 

NN (MSE loss) 
0.0041
± 0.0024 

0.0232
± 0.0086 

0.9214
± 0.0261 

NN (MAE loss) 
0.0042
± 0.0024 

0.0209
± 0.0075 

0.9510
± 0.0246 

Linear MMSE 

estimator 

0.0087
± 0.0038 

0.0490
± 0.0122 

0.4803
± 0.0895 

 

   

   

Figure 2: Reconstructed MNIST images. First column:  ground 

truth. Second column: reconstructions of NN trained with MAE 

loss. Third column: MMSE reconstructions. 

   

Figure 3: Vessel images. From left to right; Ground truth, recon-

struction of NN trained with MSE (MSE: 0.0110, MAE: 0.0411, 

SSIM index: 0.9081), and MMSE reconstruction (MSE: 0.0134, 

MAE: 0.0686, SSIM index: 0.5083). 
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