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Soft-Input Reconstruction of Binary Transmitted
Quantized Overcomplete Expansions
Jörg Kliewer, Senior Member, IEEE, and Alfred Mertins, Senior Member, IEEE

Abstract—In this letter, we propose a soft-decoding method
for quantized overcomplete frame expansions that are binary
transmitted through noisy channels. The frame expansions can
be viewed as real-valued block codes that are directly applied to
waveform signals prior to quantization. The explicit redundancy
introduced in the continuous amplitude domain is exploited by the
decoder in two stages. First, the index-based redundancy is used
by a soft-input soft-output source decoding approach that outputs
decoded symbols together with their reliability information. In a
second stage, the soft information on the symbols and the struc-
ture of the introduced redundancy are used to correct errors. The
performance of the proposed approach is evaluated for different
code constructions based on the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), and the discrete Hadamard
transform (DHT), and is compared to standard approaches
without soft decoding.

Index Terms—Joint source-channel coding, overcomplete frame
expansions, real-valued block codes, residual source redundancy.

I. INTRODUCTION

SHANNON’S source-channel separation principle is the
basis for the classical signal transmission strategy, where

the signals are first compressed as best as possible and then
explicit redundancy is added for error protection. However, in
recent years, it has been shown that especially for delay- and
complexity-constrained systems a better performance can be
achieved with combined source-channel coding or decoding
techniques. Some of these approaches keep the classical struc-
ture and carry out a joint allocation of source and channel
coding rates [1], [2], while others do not use binary channel
codes at all and design the source encoder such that the residual
index-based redundancy in the resulting bitstream alone is
sufficient to provide reasonable error protection [3], [4]. The
first class provides excellent results for moderately distorted
channels, however, especially for low channel signal-to-noise
ratios (SNRs) their performance highly depends on the proper-
ties of the used channel codes. The methods in the second class
often have less encoding delay and complexity, and for very low
channel SNRs, they often yield similar or better performance
than the combination of strong source and channel encoding.
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On the other hand, overcomplete signal expansions, where
the redundancy for error protection is inserted prior to the quan-
tization stage of the source encoder, have been recently sug-
gested as an alternative to classical forward error protection
(FEC) approaches [5]–[10]. In this letter, we follow the idea
of [7] and insert explicit redundancy by applying structured
overcomplete signal expansions to nonoverlapping blocks of
input samples, resulting in real-valued block channel codes. For
the code design, we study construction principles based on the
discrete Fourier transform (DFT) leading to real-valued BCH
codes [11], the discrete cosine transform (DCT), and the dis-
crete Hadamard transform (DHT). The novelty of our approach
lies mainly in the decoding process, which is carried out in the
following stages: First, the unequal symbol transition proba-
bilities that are present due to the overcomplete signal repre-
sentation are utilized for soft-input soft-output (SISO) source
decoding. Then, the structure of the introduced redundancy is
exploited by using the reliability information that is available
from the previous decoding stage. Finally, the waveform signal
is reconstructed through the application of the pseudo-inverse of
the overcomplete block transform. The performance of the pro-
posed combined source–channel coding and decoding approach
is studied for signal transmission over AWGN channels.

II. TRANSMISSION SYSTEM

The block diagram of the overall transmission system is de-
picted in Fig. 1. The real-valued symbols represent
samples of a correlated source signal, where we assume that the
source correlation can be described as a first-order autoregres-
sive process (AR(1)), which represents a good correlation model
for many waveform source signals. First, the symbols are
grouped into nonoverlapping blocks of symbols, and then
for each block an overcomplete frame expansion with the frame
operator of dimension with is carried out.
Similar to [5], the obtained symbols are quantized with -bit
quantizers and transmitted. The redundancy introduced prior to
quantization has two effects. First, it gives us some information
on the original symbols , which can be utilized in the decoder
to reduce the quantization effects irrespective of any transmis-
sion errors. Second, in analogy with the theory of real-valued
BCH-codes [11], the matrix can be interpreted as a gener-
ator matrix of the underlying channel code with a code rate of

.
In accordance with [7] and [8], the matrix is defined as

(1)
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Fig. 1. Model of the transmission system.

Herein, and denote unitary transform matrices of size
and , respectively. The matrix

has nonzero elements only on two diagonals, denoted in the fol-
lowing by and , respectively, and serves to introduce re-
dundancy into the data sequences. The term is the upper di-
agonal starting in the upper left corner of , and is the lower
diagonal that ends in the lower right corner of . For the most
interesting case, where the DFT is used as underlying transform,
the definitions depend on being even or odd. For even , the
upper and lower diagonal vectors are given by

For odd , we have

If is odd, then introduces consecutive zeros in the
center of the coefficient vector. For even , a total number of

zeros is introduced, and one coefficient is scaled by
the factor and repeated. Therefore, for both even and odd

, the number of redundant symbols is given by .
The transform using serves to distribute the introduced re-
dundancy to all output symbols of a block, such that addi-
tional correlation is inserted between all symbols . Note that
for real-valued transforms such as the DCT-II or DHT one could
alternatively insert all zeros at the end of the coefficient vector.
However, tests have shown that this does not lead to significant
advantages.

The symbol vector is scalar quantized with -bit quan-
tizers, where we obtain the index vector
with , . may also be inter-
preted as a binary sequence
with denoting the th bit of the index . Due to
nonperfect source encoding by scalar quantization the source
indices show mutual dependencies. For the sake of sim-
plicity these dependencies will be modeled as a first-order
stationary Gauss–Markov process with transition probabilities

where . The motivation for

an order-one model is that on the one hand a higher model
order would strongly increase the decoding complexity of the
soft-input soft-output source decoder discussed in Section III,
and that on the other hand, a first-order Gauss–Markov process
represents a good model for a quantized correlated input
process.

The sequence is transmitted over an AWGN channel with
noise variance , where coherently detected bi-
nary-phase shift keying is assumed for the modulation. de-
notes the one-sided power spectral density and is the transmit
energy per codebit. Then the conditional p.d.f. of a received
soft-bit is Gaussian-distributed and can be written as

(2)

with .

III. DECODER STRUCTURE

At the decoder, first a soft-input soft-output (SISO) source
decoder is applied to the received soft-bit vector . The SISO
decoder outputs reliability information for the source hypotheses

in form of a posteriori probabilities (APPs) where an
index-based version of the classical BCJR algorithm [12] with
the states is used as SISO decoder for generating the
APPs . Because for the full BCJR algorithm, in
principle, the whole soft-bit vector must have been received
before the decoding operation can be started, we mainly restrict
ourselves to the forward recursion of the BCJR algorithm in
order to keep the system latency low. By just considering

the forward recursion we obtain the APPs
which are only conditioned on the received soft-bit vector

up to the time instant . Since these
APPs can now be generated instantaneously for every , the
system latency remains to be samples as for the case
without SISO source decoding. By additionally considering the
a priori index correlation , the decoding
rule writes

(3)

for and the normalization constant .
Since the considered AWGN channel is memoryless the channel
term can be obtained from (2) according to

(4)
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Using the APPs from (3), we perform the following max-
imum a posteriori probability (MAP) decoding at the decoder
output:

Given , the corresponding element of the sequence
in Fig. 1 is obtained according to , where denotes
the quantizer reconstruction level corresponding to the index

. The corresponding APP represents an
element of the probability sequence .

For the further symbol reconstruction, we first construct a
matrix which plays the role of a parity check matrix. For
odd , is the submatrix of that corresponds to the

inserted zeros, such that

(5)

where is a length- block of the original symbol sequence,
and is a vector of zeros. For even , the first rows of

consist of the rows of that correspond to the
inserted zeros. The th row is the difference of the two rows of

that correspond to the repeated symbol, so that (5) is again
satisfied.

Now we consider the vector

(6)

where denotes a block of elements taken from . The
vector is called the syndrome and has a similar function as the
syndrome in classical BCH codes over finite fields. However,
unlike in the binary case, in the method proposed in this letter
the norm of the vector does, in general, not
completely vanish if there is error-free transmission due to the
quantization error introduced after frame expansion.

For the decoding process, we define the corrected symbols as

(7)

and demand that

(8)

The question is then how to find the correction term that leads
to the best estimate for the true vector . Because of
the linear system (8) is underdetermined and has infinitely many
solutions for .

Estimating in an optimal way from the information that is
available after MAP decoding means to find the vector which
maximizes the conditional p.d.f. subject to
(8). This density will, in general, be non-Gaussian. However,
for the reason of simplicity and in order to obtain a linear es-
timator, we approximate this p.d.f. by a Gaussian distribution.
Moreover, we assume that the p.d.f. is independent of and
that all components , , of have zero mean and
are mutually uncorrelated. The variances of the components ,
denoted by , are modeled to be dependent on the reliability
information and the normalized channel noise variance

. Under the assumptions made above, the conditional p.d.f.
of the correction term is given by

(9)
where . The quantities ,

, denote the variances of the errors
and are approximated as

in the following.
The relationship between and the terms and was

found experimentally and approximated by a polynomial of the
form

(10)

where the coefficients depend on . To determine the co-
efficients , trials were made where the mean-squared error

was collected for lying in intervals
, with and for various

fixed values of . In a second step, a least-squares polynomial
fit of the collected data was carried out to determine the coeffi-
cient sets , , for each value of , where an
order for the approximation polynomial was chosen as a
good compromise between complexity and performance.

Maximizing (9) through the choice of is equivalent to min-
imizing , so that we obtain the following optimization
problem:

(11)

The solution can be found via the Lagrange multiplier method.
We then have to minimize

(12)

through the choice of and vector . The solution to this
problem is given by

(13)

and after partitioned inversion, we obtain

(14)

Given , we determine from (7). A reconstructed block
of the sequence at the output of the reconstruction stage is
finally obtained as

(15)

where denotes the pseudo-inverse of and is given by
.

It is worth to mention that the correction term only has an
influence on the final output when is not a multiple of the
identity matrix, because due to the orthogonality of and the
given construction of , we have . Thus,
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if all received symbols are equally reliable, resulting in equal
values , then no correction will be made.

In terms of decoding complexity the proposed syndrome
decoding step has roughly the same order of complexity as the
real-valued BCH decoding technique described in [7]. It can
be observed from (3) that the BCJR forward recursion leads
to approximately additional multiplications and additions
for generating all APPs for one source symbol. The full BCJR
decoder requires roughly twice the complexity of the forward
recursion [12].

IV. SIMULATION RESULTS

In order to verify the performance of the resulting trans-
mission system simulations were carried out for an AR(1)
input process with correlation coefficient and a block
length of 48 000 source symbols averaged over 50 simulated
AWGN transmissions. The frame expansion uses the parame-
ters and , and the subsequent scalar uniform
quantization has a resolution of . We employ
different unitary transforms , namely, the DFT, the DCT-II,
and the DHT, where the forward recursion (3) of the BCJR
algorithm and in the DFT-case also the full BCJR is used as
SISO source decoder. The performance is compared to an FEC
scheme employing a binary BCH code, which is
hard-decoded using the Berlekamp–Massey [13] algorithm and
whose parameters are chosen such that approximately the same
system latency is achieved as for the proposed approach with
the BCJR forward recursion. Furthermore, we compare the
proposed decoding method to the (one-dimensional) syndrome
decoding approach from [7], where the decoding operation is
performed on the hard-decoded AWGN channel outputs. The
results are displayed in Figs. 2 and 3 where the reconstruc-
tion SNR at the decoder output is plotted over the channel
parameter with . The overall code rate is
given as and as for the FEC scheme,
respectively.

We can see from Fig. 2, which shows the result for an uncorre-
lated input process ( ), that a strong SNR gain is achieved
compared to the method from [7] if SISO source decoding in
combination with the proposed frame reconstruction method
is used. Clearly, the full BCJR-based source decoder performs
best at the expense of a larger system delay. Furthermore, it can
be observed that for strongly distorted channels and the clear
channel case the proposed transmission technique gives a better
performance compared to the FEC-based system with the binary

BCH code.
Fig. 3 depicts the results for a strongly correlated AR(1) input

process with . Compared to Fig. 2, here the SNR gain
by using additional SISO source decoding is higher due to the
source symbol correlation already inherent in the input sequence

. In this case, the DCT-II yields a slightly higher SNR than the
DFT.

V. CONCLUSIONS

We have presented a coding technique that applies real-valued
block codes prior to quantization on the encoder side and uses
a two-stage soft decoding method on the receiver side. The first

Fig. 2. Reconstruction SNR for an uncorrelated input process (Parameters:
K = 16, N = 32, M = 5 bit, 48000 source symbols averaged over 50
simulated AWGN channel transmissions).

Fig. 3. Reconstruction SNR for a strongly correlated AR(1) input process with
a = 0:9 (Parameters: K = 16, N = 32, M = 5 bit, 48 000 source symbols
averaged over 50 simulated AWGN channel transmissions).

decoding stage consists of a SISO source decoder and exploits
the index-based redundancy that is present in the transmitted
symbols. The second stage is a syndrome decoding method for
which we have proposed a dedicated linear estimator for error
correction by using the reliability information for the estimated
source symbols. Code designs based on the DFT, the DCT-II,
and the DHT were studied, of which the best performance was
obtained with DFT- and DCT-II-based codes, depending on the
source correlation. The soft-decoding strategy proved to be very
robust in the presence of noise and a strong performance gain
is obtained compared to hard-decoded syndrome decoding of
real-valued BCH codes. Furthermore, the presented transmis-
sion system generally outperforms classical FEC based on bi-
nary BCH codes for both strongly corrupted channels and high
channel SNRs where clear channel quality is achieved.
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