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Abstract

In this paper, we propose a joint source-channel decoding approach for the robust image transmission over wireless
channels. In addition to the explicit redundancy coming from channel codes, we also use implicit residual source
redundancy for error protection. The source redundancy is modeled by a Markov random field (MRF) source model,
which considers the residual spatial correlation after source encoding. Due to the link between MRFs and the
Gibbs distribution, the source decoder can be implemented with low complexity. At the decoder we use an iterative
source-channel decoder which can be obtained in the same manner as for serially concatenated channel codes. As
a novel result we show that this iterative decoding scheme in combination with a simplified joint allocation of
source and channel coding rates can be successfully employed for recovering the image data, especially when the
channel is highly corrupted.

1 Introduction

Recently, joint source-channel coding approaches
have become a reasonable alternative compared to
the strict application of Shannon’s source-channel
separation principle especially for delay- or complexity-
constrained systems. One subclass of those approaches
is represented by a joint allocation of source and
channel coding rates such that the reconstruction error
at the decoder is minimized. Often these techniques
are used in combination with a state-of-the-art source
coder and an elaborate error protection scheme for the
highly sensitive source-encoded bitstream (e.g. [1], [2]).
These methods provide excellent results for moderately
distorted channels, however, especially for low channel
signal-to-noise ratios (SNRs) their performance highly
depends on the properties of the used channel codes.

Another subclass of joint source-channel coding is
given by joint source-channel decoding, where residual
source redundancy is exploited for additional error
protection at the decoder. Some approaches even do
not use channel codes at all and design the source
encoder such that the residual index-based redundancy
in the resulting bitstream alone is sufficient to provide
reasonable error protection at the decoder (e.g. [3],
[4]). These methods have less encoding delay and
complexity, and for very low channel SNRs, they
often yield similar or better performance than the
combination of strong source and channel encoding.

In this paper, we combine the ideas from both
subclasses mentioned above and present an iterative
joint source-channel decoding approach for robust
image transmission, where both the implicit residual
index correlation after source-encoding and the explicit
redundancies from channel codes are used for
protecting the data. Furthermore, in the encoder of
the proposed image transmission system the source and
channel encoding rates are jointly allocated in a rate-
distortion sense. As a new result the two-dimensional
residual spatial correlation of the source image is
modeled via a Markov random field (MRF) approach
[5], [6], which has the advantage that it is not necessary
to store a priori information describing the residual
source correlation at the decoder. This is in contrast
to those approaches which model the image data as
Gauss-Markov processes, as for example the methods
proposed in [4], [7]. The proposed technique utilizes
an iterative source-channel decoding scheme [8] analog
to the decoding of serially concatenated channel codes
[9], where the outer constituent soft-input/soft-output
(SISO) channel decoder is replaced by the MRF-based
SISO source decoder.

2 Description of the Transmission
System

The block diagram of the overall transmission system is
depicted in Fig. 1. The two-dimensional (2-D) subband
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Fig. 1. Model of the transmission system

image is scanned in order to obtain the one-dimensional
(1-D) subband vector [ \ ]�^`_ba)^ � adcdcdc�a)^`egf �(h con-
sisting of i source values ^kj . After subsequent
(vector-) quantization, the resulting indices lmjon p
are represented with q bits, and thus can be described
with the finite alphabet pr\os�tuadvbadcdcdc)axwzy {|v4} . We can
generally assume that there are dependencies between
the elements of the index vector ~�\ ]�l>_za(l � adcdcdc�a(l�egf �xh
due to delay and complexity constraints for the source
encoder.

In the channel encoder the bitstream is first
interleaved in order to provide uncorrelated bits for
the following codeword generation step using a rate-���

systematic channel code. We obtain the code
bit vector ��\ ]����%~��)a�� h where ��\ ]��A_ba�� � adcdcdcda��4e���f �(h
with �bj�n�s�tuadv4} , i��`\ i ��q � ���

, and � referring to
the redundancy bits. The code bit vector � is then
transmitted over an AWGN channel, where coherently
detected BPSK is used for the modulation. The
conditional p.d.f. for the received soft bit ��z� n �E�
at the channel output given the transmitted bit �z� ,� \ tuadvbadcdcdc�a(i���{�v , can be written as� ����4� � �4�¡��\ v¢ w���£�¤¦¥ f §¨%© ¨ªu«¬�(®¦f¯�)°®`± ¨ a �³²� \ v´{�w��4�µa

(1)
and £ �¤ \ e�¶

�(·¹¸ denoting the channel noise variance. º¼»
is the energy to transmit each bit and i½_ corresponds
to the one-sided power spectral density of the noise.
Using conditional log-likelihood ratios (L-values) we
may express (1) also as¾ ����4� � �4�¡�b\À¿�Á Â � ����4� � �4�o\Ãtz�� ����4� � �4�o\ v���Ä \ÀÅ ºg»iÆ_ ��4�Ç\ ¾ÉÈ ��4��c

(2)
The source-channel decoding step in Fig. 1 then
provides an estimate of the input vector [ in such a
way that the SNR at the decoder output is maximized.

3 Joint Allocation of Source and
Channel Coding Rates

When considering the transmission model in Fig. 1
for every subband in a subband image compression
scheme, we have the additional problem of choosing
the individual bit rates for the subbands and the
channel coding rates for a given rate budget

�µÊ
such that the resulting distortion in the reconstructed
signal is minimized. In the following, we propose a

suboptimal strategy for jointly assigning the source and
channel coding rates ËbÌÃ\ ] � « _ ±Ì adcdcdcda � «�Í ±Ì adcdcdcda � «�Î f � ±Ì h
and Ë � \ ] � « _ ±� adcdcdcda � «�Í ±� adcdcdcda � «�Î f � ±� h , with

� «�Í ±Ì4Ï �
denoting the corresponding rates in the Ð -th subband
and Ñ representing the overall number of subbands.
For simplicity reasons we restrict ourselves to the case
where the only method of error protection is channel
coding (i.e., we use source decoding by table lookups).
The proposed method is based on the rate-distortion-
optimal bit allocation algorithm from [10], which is
modified such that also the error correction capabilities
of the channel codes and the additional channel noise
is incorporated in the distortion measure.

In order to obtain a transmission with bit error rate
(BER) � ¤ over an AWGN channel we know from
Shannon’s channel coding theorem that under idealized
conditions [11]Ò �%~�� ���ÀÓ � � ¤��(��q Ô Õ AWGN ��ºg»d�)iÆ_�� (3)

with
Ó � � ¤)�ÉÖ\ vÉ× � ¤ log � � � ¤��Ø× �vÙ{ � ¤�� log � �vÙ{ � ¤��

has to be satisfied. Herein,
Ò �%~�� denotes the entropy of

the source index vector ~ , and Õ AWGN ���� is the capacity
of the binary-input AWGN channel, which depends on
the parameter ºÚ»d�)iÆ_ . By using the equality in (3) and
applying it to every subband Ð we obtain a relation
between the actual BER � «�Í ±¤ on the one hand, and the
channel coding rate

� «�Í ±� , the quantized source signalÛ ]x[ «�Í ± a � «�Í ±Ì h with rate
� «�Í ±Ì , and the channel capacity

on the other hand:Ó � � «�Í ±¤ ��\ Õ AWGN ��ºg»d�)iÆ_�����q «�Í ±� «�Í ±� � Ò � Û ]x[ «�Í ± a � «�Í ±Ì h � (4)

for Ðo\ tuadcdcdc�a(Ñ {Ãv . q «�Í ± refers to the word length
in the Ð -th subband and depends on the actual
rate

� «�Í ±Ì . A worst case estimate for the distortionÜ � � «�Í ±¤ a � «�Í ±Ì a � «�Í ±� � in the Ð -th subband after decoding
can be now achieved in the following way: Let Ý «�Í ±Þ ,ß \ tuadvbadcdcdc�axq «�Í ± , denote the probability that ß bits
are received wrongly when the q «�Í ± -bit codewordl «�Í ±j \áà is transmitted over a binary symmetric channel
with error probability � «�Í ±¤ . Then, Ý «�Í ±Þ can be specified
as Ý «�Í ±Þ \ Â q «�Í ±ß Ä â � «�Í ±¤ ã Þ â vÙ{ � «�Í ±¤ ã y�äæå0ç f Þ

(5)

where � «�Í ±¤ is derived by solving (4). A reconstructed
distorted subband value è^ «�Í ±j at time instant é can now
be generated within the encoder as

è^ «�Í ±j \ Ý «�Í ±_ ��^�ê4�0à�a � «�Í ±Ì �Ø× y�äæå0çëÞ�ì �

Ý «�Í ±Þ ��^�ê�� èà�� ß �)a � «�Í ±Ì �)a
with èàØ� ß �k\ ]íèàu_zadcdcdc�a�èà Þ f � axà Þ adcdcdc�axà y äæå0ç f � h
and èàïîÙ\ vÙ{ àïî (6)

for ðo\ tuadvbadcdcdc)a ß {ov . ^�ê��0à�a � «�Í ±Ì � refers to the à -
th entry of the quantization table, which leads to a



source coding rate
� «�Í ±Ì , and à î�n s�tuadv4} denotes a

single bit of the index à . The distorted value è^ «�Í ±j
can thus be obtained by successive flipping of bits
in the binary representation of the index à starting
with the most significant bit. The corresponding entries
of the quantization table are then weighted with the
probabilities Ý «�Í ±Þ from (5). Finally, the distortionÜ � � «�Í ±¤ a � «�Í ±Ì a � «�Í ±� � can be calculated from the mean
squared error between è^ «�Í ±j and the undistorted source
value ^ «�Í ±j .

The rate allocation scheme can now be summarized
as follows:

1. Calculate
Ü � � «�Í ±¤ a � «�Í ±Ì a � «�Í ±� � , Ð \ tuadvbadcdcdc)a(Ñ {Çv ,

by using (4), (5), and (6) for all combinations of� «�Í ±Ì ,
� «�Í ±� , and the given º � �)iÆ_ on the channel.

Here, º � \ ºg»�� ��� � overall, where
�¼� � overall denotes

the channel coding rate for the whole image.
2. Obtain an optimal allocation for Ë Ì and Ë � , given

the rates and distortions from step 1 and the
overall rate budget

�¡Ê
, by using a modification

of the bit-allocation algorithm from [10], where
also the channel coding rates are included in the
optimization.

3. In order to allow for equal transmission energy for
all bits in the whole image, update

� � � overall by
using Ë � from step 2. Go to step 1 and iterate until
there is no further improvement for the vectors Ë �
and Ë4Ì .

4 MRF-based SISO Source Decod-
ing

In this section only the residual source redundancy
after source encoding is exploited for error protection,
i.e. no channel codes are used. Thus, in the transmission
system from Fig. 1 we therefore have �Ç\ ~ .

In the following we derive a SISO source decoder
based on a MRF source model which generates
a posteriori probabilities (APPs) for the source
hypotheses l�j�\áà . To this end, let us consider the eight
nearest neighbors for a given subband source index l j
within a quantized subband image prior to transmission.
Such a neighborhood system is displayed in Fig. 2(a),
where all neighboring source indices are referenced
relatively to the index l j � _ � _ under consideration, which
for the sake of brevity will also simply be written
as ldj in all future discussions. We denote the set
of all source indices belonging to the neighborhood
of ldj as

����� \ s�ldj � ê � Í Ö �³a%Ð \ {µvba(tuadv4}
	�ldj in the
following. Since all indices in the neighborhood system
of Fig. 2(a) show spatial dependencies due to imperfect
source encoding the index probabilities Ý���lmj \ à�� ,à n p , may be modeled via a MRF using the well-
known Markov-Gibbs correspondence [5]. Using this

relation, the probability for an element lmj of the MRF
given all other source indices in a local neighborhood�����

can then be stated as [5]Ý���ldj�\áà�� ����� ��\ v� ¥ f�§�� «�� ����� � ± a (7)

where the function ^|�0à�a ����� � is called energy function,
the quantity � is called temperature, and

�
denotes a

normalization constant. We can decompose ^|�0à�a ����� �
as a sum over so-called potential functions � � �0à�a ����� �
according to ^|�0à�a ����� ��\ ë � � � �0à�a ����� �)c (8)

The potential functions are defined for a given cliqueÕ , and the sum in (8) is carried out over all or a subset
of all possible cliques in the local neighborhood. An
example is depicted in Fig. 2(b) for the eight-pixel
neighborhood system in Fig. 2(a) where all associated
cliques are shown. The first type of clique just consists
of single source indices, the second type of cliques
describes the index l j and its horizontal neighbors, the
third type addresses all vertical neighbors of lmj and
so on. In the following we restrict ourselves only to

����� ��� �
�����  !�  

����� ��� "#�
����� ���  

����� "#��� "$���%�&�  !� "#�
����� "#���  
����� "#��� � �����  !� �

(b)(a)

Fig. 2. Eight-pixel neighborhood system with all ten corresponding
cliques

two-element cliques and the potential functions

� � �0à�a(ldj � ê � Í ��\ ��à�{ ldj � ê � Í �(' (9)

proposed in [12], where ) is a free parameter.

In order to apply the MRF model to the source
decoder we consider a new set

� *��� \ s�+ldj � ê � Í Ö �³a%ÐÀ\{µvba(tuadv4}
	,+ldj where +ldj � ê � Í now denotes an already
decoded estimate of l j � ê � Í , e.g. from a maximum-
likelihood (ML) decoding of the received soft-bits at
the channel output. The APPs for lmjµ\ à based on
the local neighborhood at the decoder can then be
written as Ý���l�jØ\áà�� �ldj³a � *��� � , where the soft-bit vector�ldjÇ\ ] �- _ � jza �- � � jzadcdcdcda �- y f � � j h consists of the individual
soft-bits �- î � jÆná�E� received at the output of the channel.
By applying the Bayes theorem we obtainÝ���ldjØ\áà�� �ldj³a � *��� �k\Õ¦jg� � � �ldjÙ�ldjØ\áà����dÝ���ldjØ\áà�� � *��� � (10)

with the normalization constant ÕÙj . In (10) the term� � �ldj��ldjØ\Çà�� denotes soft-information from the output
of the AWGN channel according to� � �ldjÙ�ldjØ\áà��k\ y f �.î ì _ � � �- î � jÉ� - î � j�� (11)



where the conditional p.d.f. � � �- î � j¦� - î � j�� for the ð -th bit- î � j of the index l�j is given in (1) when �b� is replaced
with

- î � j . The term Ý���l�jÆ\ à�� � *��� � corresponds to
the conditional probability from (7) where the original
source indices l�j � ê � Í , for the neighborhood are replaced
by the estimates +ldj � ê � Í .

Like in classical Bayesian MRF-based image
restoration [5] we use an iterative decoding approach
where (10) is applied multiple times until convergence
is achieved. The procedure is as follows:

1. Obtain initial estimates +l « _ ±j for the received 1-D
scanned subband image indices by performing a
ML decoding from the received soft-bit sequence �~
at the channel output. Set ��� t .

2. Apply (10) in order to determine the APPsÝ���ldjØ\áà�� �ldj³a � *� ä � ç� � .
3. Obtain a new estimate +l «���� � ±j via a maximum a

posteriori (MAP) estimation according to

+l «���� � ±j \ arg �
	��� Ý���ldjØ\áà�� �ldj³a � *� ä � ç� �)c
4. Set � � �Æ× v and go to step 2 as long as the

estimates +l «�� ±j change between iterations.

The resulting APPs Ý���l�j \ à�� �ldj³a � *� ä � ç� � at the
output of the last iteration may be interpreted as
approximations of the APPs Ý���l j \ à�� �ldjïa � ¬��� �
conditioned on all received soft-bit vectors �ldj � ê � Í in
the local neighborhood of �ldj .

The calculated APPs can then be used for a mean-
squares estimation of the reconstructed source value�^�j , which corresponds to the demand for maximal
reconstruction SNR, according to

�^�j¡\ �� f �ë
� ì _ ^�ê��0à�a � Ì¯���dÝ���ldjØ\áà�� �ldj³a � ¬��� �)c (12)

5 Iterative Source-Channel Decod-
ing

An error protection carried out by only using the
residual spatial source redundancy may not be enough
in many transmission situations. Therefore, we assume
that the output of the source encoder is protected by
a systematic channel code, as it is depicted in Fig. 1.
Note that this scheme is highly similar to a serially
concatenated channel code. Therefore, we can apply an
iterative decoding scheme, where the outer constituent
channel decoder is replaced by the MRF-based source
decoder presented in Section 4.

The structure of the resulting decoder is depicted
in Fig. 3. At the beginning of the first iteration,
the SISO channel decoder issues APPs Ý�� - ²î � j � ����
for the information bits

- ²î � j of the bit-interleaved
source index sequence ���%~�� . These APPs are

Decoder
Channel

Decoder

MRF SISO
Source

SISO

�
�

Estimation

MS

� ��� ���extr �����

�����

� � ��� �����

��� ���� ��������  !�" �$#!�����%� ���  !�" �����

���  &�� �$#&�����'� ��� ���extr �$#!�����'� (*),+'-/.103254!6-7.98%:<;=?>�@
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Fig. 3. Structure of the iterative source-channel decoder

used to calculate the corresponding conditional L-
values

¾ « � ± � - ²î � j �b\ ¾ÉÈ �- ²î � j × ¾ « � ±C � - ²î � j � × ¾ « � ±
extr � - ²î � j � forð�\Ãtuadcdcdc�axq {�v , é�\Ãtuadcdcdc�a(i {�v . The term

¾ È �- ²î � j
is defined analog to (2) for the interleaved index
bit

- ²î � j .
¾ « � ±C � - ²î � j � denotes the a priori information

for the index bit
- ²î � j , and

¾ « � ±
extr � - ²î � j � refers to the

extrinsic information [13]. After subtraction of the
a priori term and after deinterleaving we obtain
the L-values

¾ « � ±
e � - î � j��k\ ¾ÉÈ �- î � jÙ× ¾ « � ±

extr � - î � j�� , which
are used as a priori information

¾ « Ì ±C � - î � j4� for the
SISO source decoder. In the following, we assume
that all information bits are uncorrelated. Then, the
corresponding index-based probabilities for the a
priori L-values

¾ « Ì ±C � - î � j�� can be obtained by bitwise
multiplication of the probabilities for the index bits- î � j�\áàïî . By inserting this a priori knowledge into (10)
we obtain modified APPs according toÝ ² ��ldjØ\áà�� �ldj³a � *��� ��\ Õ ²j � Ý���ldjØ\áà�� � *��� �)�y f �.î ì _ � � �- î � j�� - î � j¹\áàïî)�ïÝ « � ±

extr � - î � j¹\áàïî¦� ���� (13)

where Õ ²j is a normalizing constant (as above). Here,
the iterative source decoding procedure described in
Section 4 uses initial estimates +l « _ ±j obtained from
the L-values

¾ « � ± � - ²î � j � which belong to the channel-
decoded information sequence ���%~�� . After the iterations
have been performed, the output of the SISO source
decoder corresponds to index-based modified APPsÝ ² ��ldjØ\áà�� �ldjïa � ¬��� � , where the related bit-based L-
values can be derived for ð�\ tuadvbadcdcdc)axq {�v as

¾ « Ì ± � - î � j��b\À¿�Á DE
F

GHJILKNMOHLP ì _ Ý ² ��ldjÆ\ QÀ� �ldj³a � ¬��� �GHJILKNMOHLP ì �
Ý ² ��ldjÆ\ QÀ� �ldj³a � ¬��� �

RTS
U c

(14)
By subtracting the source a priori information¾ « Ì ±C � - î � j�� from

¾ « Ì ± � - î � j�� in (14) we finally obtain
the extrinsic information

¾ « Ì ±
extr � - î � j4� , which is used as a

priori information for subsequent channel decoding.

6 Simulation Results

An experimental image transmission system is now
derived by applying the transmission model from
Fig. 1 to every subband of an

¾
-level wavelet

octave filter bank and using the results from above.



The Ñ 2-D subband signals are first scanned in a
meander-type fashion [7] and quantized with optimal
scalar quantizers. Then, the resulting bitstream in each
subband is bit-interleaved using a random interleaver
and channel encoded with a terminated memory-4
recursive systematic convolutional (RSC) code derived
from a nonrecursive RCPC code [14]. In our setup
we assume that sensitive side information, such as the
lowpass subband DC content, quantizer stepsizes, and
rate allocations, are protected by a sufficiently strong
channel code, so that they can be transmitted without
errors.

The experimental image transmission system is
applied to the �ïv�w����ïv�w pixel ”Goldhill” test image for
a 3-level wavelet decomposition and an overall target
bit rate of

�¼Ê \ tuc���� bits per pixel (bpp) including
channel coding and all side information. This approach
is denoted with ”MRF JSCD” in the simulations. We
have found experimentally that for the LL-subband only
the horizontally and vertically oriented two-element
cliques in Fig. 2 have to be considered, whereas for the
rest of the subbands all possible two-element cliques
are used. Note that in the presented MRF source
model the number of pixels and their position within
a local neighborhood mainly represent free variables
(besides the temperature and the potential function)
to obtain a suitable approximation of the probability
distribution for the subband image indices. The further
MRF parameters are )�\ tuc�� , � \ wïc�	 for the LL
subband, and �Ã\ÀÅ for all other subbands, respectively.
Furthermore, we allow four iterations in the MRF
source decoder. We compare the performance of the
presented approach with the method from [7] (”2-D
JSCD”) which employs the same rate allocation strategy
and a similar iterative source-channel decoding setup,
but a different source model. In this model, horizontal
and vertical correlations are regarded as separate
Markov sources, where the transition probabilities
corresponding to these Markov processes are obtained
from a large training set and stored at the decoder.
Besides, plain MRF-based source decoding (”MRF
SD”) [6] without additional protection by channel
codes is also considered for comparison purposes. For
all approaches, a mean-squares estimation is employed.

Fig. 4 shows the simulation results1 for the above-
mentioned methods where the peak-SNR (PSNR)
values of the reconstructed images versus the
channel parameter º � �)iÆ_ averaged over 100 simulated
transmissions are displayed. We can see from Fig. 4
that especially for low channel SNR the ”MRF JSCD”
technique outperforms the ”2-D JSCD” approach by

1Since the rate allocation algorithm only searches for operation
points on the convex hull in the rate-distortion plane [10], for
some values of 
������� we obtain an overall bit rate being slightly
smaller than the target rate ��� . Thus, the curves for the JSCD
techniques in both Fig. 4 and Fig. 6 lack the smooth behavior of
those for the pure MRF source decoding approach.

approximately 1-2 dB in PSNR. This performance gain
may be due to the fact that the MRF source decoding
itself is performed iteratively, such that the channel
decoder can be provided with more reliable L-values
for the next iteration between source and channel
decoder. For channels with an º � �)iÆ_ � v dB both
approaches have approximately the same performance.
In our simulations we observed that the ”MRF JSCD”
approach approximately has the same complexity as
the ”2-D JSCD” approach. However, the storage
complexity is significantly reduced for the proposed
MRF-based JSCD approach since there is no need to
store source a priori information. By comparison with
the results for the ”MRF SD” approach we can see that
we gain up to almost 3 dB in PSNR for the same target
rate

��Ê
by adding explicit redundancy from channel

codes in combination with a joint rate allocation at the
encoder and an iterative source-channel decoder. An
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Fig. 4. Results for the ”Goldhill” image ( ����������� � bpp, !"��� )

example of the good reconstruction quality for a highly
corrupted channel is displayed in Fig. 5.

Fig. 5. Reconstructed ”Goldhill” image for 
�������#�%$�& dB
(BER 10.4 %), PSNR: ')(���')� dB ( ���*�+����� � bpp, !��+� , MRF
JSCD, four iterations).

The simulation results for the ”Lena” test image are
shown in Fig. 6, where the same simulation parameters
as for the ”Goldhill” image are used. We can see that
here for º � �)iÆ_*� t dB the ”MRF JSCD” approach is



even able to give slightly better results than the ”2-D
JSCD” technique.
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Fig. 6. Results for the ”Lena” image ( ����������� � bpp, !"��� )

Besides plotting the SNR-PSNR performance the
iterative MRF-based source-channel decoder can also
be analyzed via EXIT charts [15] which show the
input-output characteristics of the constituent decoders
in terms of mutual information l�����d��� between L-
values and the index sequence ~ . Given the mutual
informations (cmp. Fig. 3)
�������
	 ����������� ������������������������� �"!#���
	 ����������$ �������������������������
����%&�
	 ���� ��'(�

extr
������������� �"!�%&�
	 �������'(�$ �������������

the transfer characteristics �*) of the (inner) channel
decoder and �,+ of the (outer) MRF SISO decoder are
defined as l · � \ �-)���l�. � a(º � �)iÆ_�� and l · % \ �*+4��l�. % � ,
respectively. By plotting both mappings �,) and �*+
into one diagram we obtain an EXIT chart, where an
example for the LL subband of the ”Goldhill” image
and an º � �)iÆ_Ø\ {µv dB is depicted in Fig. 7. In order
to illustrate the iterative decoding process Fig. 7 also
displays snapshot decoding trajectories, where we can
observe that after two iterations convergence is already
obtained.
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Fig. 7. EXIT chart for the LL subband of the ”Goldhill” image
and 
 �������� $�& dB

7 Conclusions
By using the implicit two-dimensional residual source
redundancy for error protection in conjunction with
channel coding, an iterative decoding scheme is derived

in a similar way as for serially concatenated channel
codes: the difference is that a soft-input APP source
decoder replaces the outer constituent channel decoder.
The source signals are modeled using Markov random
fields, and due to the Markov-Gibbs correspondence,
the computation of a priori densities can be made very
resource-efficient. We have shown that this source-
channel decoding technique, in combination with a
novel joint source-channel rate-allocation, can be used
for robust image transmission over highly distorted
AWGN channels. The advantage of the proposed
method is that by incorporating residual redundancies
into the decoding process, less powerful channel codes
can be chosen, which also reduce the complexity of the
encoder and the encoding delay. The simulation results
show that the clear-channel quality is already achieved
for moderately distorted channels.
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