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Abstract—Moving microphones allow for the fast acquisition of
spatially dense sound-field data. The dynamic samples encode pa-
rameters that describe the particular sound field. For parameter
decoding, a deconvolution problem in the time dimension and an
interpolation problem in the spatial dimension must be solved si-
multaneously. The corresponding system of linear equations tends
to be ill-posed and underdetermined unless an excessive number
of samples is provided. Therefore, sparse recovery according to
the compressed-sensing paradigm is required, which is achievable
by exploiting the sparsity of sound fields in frequency domain. At
this, stability and robustness depend on the sensing matrix and
can be indicated by its coherence. For optimizing the coherence,
mathematical tools that operate directly on the sensing matrix are
impractical, as the dynamic-sensing matrix possesses structured
entries constrained by the measurement trajectory. In this paper,
we present an efficient update scheme that allows for the direct
manipulation of the microphone trajectory for improving the
coherence of the sensing matrix and, thus, reducing error bounds
of the sparse recovery in frequency domain.

Index Terms—Compressed sensing, dynamic sound-field mea-
surements, trajectory optimization, room impulse responses.

I. INTRODUCTION

The estimation of sound fields from spatio-temporal samples
poses a common inverse problem that is crucial in many audio
applications dealing with reverberant environments. Sound
fields within listening areas are described by spatio-temporal
room impulse responses (RIRs), and the signal received at
a particular listening position is modeled as the convolution
result between the source signal and the RIR for the corre-
sponding emitter-receiver configuration.

In stationary setups, RIRs are typically measured by using
deterministic excitation signals that allow for straightforward
deconvolution, such as maximum length sequences (MLSs)
[1] and sine sweeps [2]. In order to reduce hardware effort
and sampling time for acquiring spacious sound-field data,
several methods have been proposed that exploit sparse signal
structures according to the principle of compressed sensing
(CS) [3] and allow for qualified sound-field estimates from
spatially undersampled measurements [4], [5].

In dynamic setups, one moving microphone is sufficient
for capturing entire sound-field information. An analytical ap-
proach for the reconstruction of RIRs along linear and circular
trajectories, sampled at constant speed, has been presented in

This work has been supported by the German Research Foundation under
Grant No. ME 1170/10-2.

[6]. Beyond that, dynamic techniques are typically based on
estimates from systems of linear equations that encode the
convolutions of RIRs and source signals, and relate them to
the measured samples. In one group of such methods, impulse
responses at steadily changing positions are modeled in terms
of time-varying systems, whose coefficients are tracked by
adaptive filtering concepts [7], [8].

More recently, another group of dynamic methods has
evolved, relying on a time-invariant spatio-temporal measure-
ment model [9]–[12]. Here, the reconstruction from dynamic
sound-field samples is interpreted as spatial interpolation
task which is supplementally incorporated into the linear
measurement equations by using positional information of
the microphone. In [9], perfect-sequence excitation is used
for the orthogonal expansion of impulse responses in time
domain, in order to describe the dynamic spatio-temporal
sampling by notional static sampling processes of single
expansion coefficients. The method in [10] uses a spatial
Fourier basis for the angular reconstruction of head-related
impulse responses from continuous-azimuth recordings. In
[11], a dynamic framework has been presented that allows for
RIR reconstruction within cubical volumes. To achieve this,
the sound field is parameterized by modeling notional grid
points in space, and dynamic samples are understood as the
result of bandlimited interpolation on that grid using sampled
sinc-function approximations. The solution to the resulting
linear system leads to RIRs on a virtual grid that enable spatial
reconstruction. In practice, this inverse problem is most likely
ill-posed or even underdetermined, thus, a CS based strategy
has been proposed in [12] using sparse Fourier representations.

According to the CS paradigm, stable and robust parameter
recovery is guaranteed for sensing matrices with low coher-
ence. Lowering the coherence of the sensing matrix leads to
the reduction of upper bounds for the recovery error [13].
Randomly generated sensing matrices were proven to be good
choices for obtaining incoherent measurements [14], [15].
Nevertheless, it has also been shown that several iterative
strategies often lead to well-designed deterministic matrices
with optimized coherence and performance [16]–[20]. Most
of these methods operate directly on the sensing matrix or,
respectively, on the resulting Gram matrix. However, in many
applications, entries of the matrix are not the design variables
themselves (e.g., sampling positions), but rather result from



particular relationships. For cases where the sensing matrix is
some nonlinear function of the model parameters for the CS
problem, an iterative scheme is given in [20]. That algorithm
performs an alternating minimization procedure and solves
augmented Lagrangian subproblems, in order to improve the
coherence subject to the design parameters.

In this paper, we propose a simple and powerful tool for
optimizing the coherence of the dynamic-sampling problem
presented in [12]. At that, there is no need to explicitly
set up the sensing matrix, which is favorable for sound-
field sampling at high frequencies involving a high number
of unknown variables. Iteratively, a low-complexity objective
function describing maximum correlation in frequency domain
is designed, and a gradient descent step with respect to
trajectory positions is performed. In numerical experiments we
show that just slight adjustments of the microphone trajectory
may lead to lower coherence and reduced recovery error.

II. SPATIO-TEMPORAL SAMPLING MODEL

In a closed-room scenario, the propagation of the sound
signal s(t) originating at fixed source position can be modeled
as linear time-invariant (LTI) system described by the spatio-
temporal RIR h(x, t) that depends on the listener position
x = [x, y, z]T and time t ∈ R.

For a signal having maximum frequency fmax, the sampling
at fs > 2fmax yields uniform samples at equidistant time points
tn = n/fs (n ∈ Z) that allow for aliasing-free reconstruction
in time. Supposing that the amplitude of h(x, t) vanishes into
the noise level for tn > tL−1, we model the temporal sampling
of the sound-pressure field p(x, t) according to

p(x, n) =

L−1∑
m=0

s(n−m)h(x,m) + η(x, n), (1)

with η(x, n) being the measurement noise.

A. Spatial Model for RIR Parameterization

Microphones generate samples at uniform points in time,
but, for general setups, at non-uniform spatial positions in-
side the volume of interest Ω. In order to describe spatio-
temporal sound-field measurements, we model an appropriate
parameterization of the continuous-space and discrete-time
RIR within bounds of Ω. A straightforward parameterization
is given by the bandlimited interpolation in space on a three-
dimensional grid of size X × Y × Z,

h(x, n) ≈
G∑
p=1

h(gp, n) fp(x) ∀x ∈ Ω, (2)

where gp ∈
{
x0 + [gx∆x, gy∆y, gz∆z]

T
}

constitutes G =
XY Z grid positions at discrete grid points [gx, gy, gz]

T ∈ Z3

with spacing ∆ξ < c/(2fmax)∀ ξ ∈ {x, y, z} [21] for speed of
sound c and grid origin x0, h(gp, n) represents grid RIRs
(parameters), and fp(x) = fp(x) fp(y) fp(z) are separable
basis functions approximating the sinc functions centered at
gp and evaluated at point x. The time dimension of the RIR is

encoded in the parameterization itself which leads to P = LG
sound-field variables required for describing h(x, n) inside Ω.

Using (2), the spatial sampling of (1) can be modeled as

p = Ah+ η, (3)

where the measurement vector p ∈ RMQ contains the stack
of Q microphone signals of lengths M , A ∈ RMQ×P is
the sampling matrix, h ∈ RP encapsulates P sound-field
parameters, and η is the perturbation vector compensating for
errors due to both sampling and parameterization. Of course,
other parameterization models are possible, however, using
bandlimited interpolation provides a capable framework due
to its simplicity with separable lowpass filters that allow for
error analyses at low computational cost [11], [12].

B. Moving Microphones

In dynamic setups, sound-field information is acquired at
non-uniform and time-varying positions inside Ω. In this
case, only one microphone (Q = 1) moving along the sam-
pled trajectory x(n) is sufficient for gathering entire sound-
field information. This setup is considered in the following
descriptions. The expansion to Q dynamic microphones is
straightforward and may reduce acquisition time.

In order to fit the dynamic setup into the sampling and
parameterization models according to (1), (2) and (3), respec-
tively, we need to extend the position vector to its temporal
dependency and interrelate the measured sound pressure on
the trajectory and the unknown RIR on the trajectory subject
to p(x(n), n) = h(r, n) ∗ s(n)|r=x(n) [11]. Altogether, the
incorporation of instantaneously varying microphone positions
leads to the measurement matrix

A =
[
D1S,D2S, . . . ,DGS

]
, (4)

with Dp = diag {fp(x(0)), . . . , fp(x(M − 1))} and S ∈
RM×L being the convolution matrix of the source signal s(n).

III. SPARSE RECOVERY

In practice, the linear system (3) easily tends to be underde-
termined due to several reasons [12]. For larger bandwidths,
the modeled grid in space demands a high number of unknown
variables. Sampling constraints often lead to M < P and, thus,
to an infinite number of least-squares solutions. Nevertheless,
the spatio-temporal spectrum of h(x, t) is ideally measurable
on a sparsely occupied hypercone along the temporal fre-
quency axis [21]. Thus, the principle of CS can be used to
identify a stable and robust estimate for h living in a subspace
of dimension K �M < P .

Let the matrix F ∈ CU×U perform the discrete Fourier
transform (DFT) of length U . Exploiting the separability on
the uniform grid and using the Kronecker product ⊗, we define
Ψ = FZ ⊗ F Y ⊗ FX ⊗ TL and represent the sound-field
parameters by c = Ψh , which corresponds to the four-
dimensional DFT of the virtual-grid RIR h(gp, n). The least-
squares problem may be constrained to the K-sparse problem

argmin
c∈CP

‖p−Ac‖22 s.t. ‖c‖0 ≤ K, (5)



with the sensing matrix A = AΨ−1, and ‖c‖0 =
|{i : ci 6= 0}| quantifying the support of c. The problem (5)
is NP-hard [22] and is solved in practice by using greedy
algorithms [23], [24] or applying convex optimization to
corresponding `1-minimization problems [3], [25].

In order to achieve stable and robust recovery, the sensing
matrix must satisfy the so-called restricted isometry property
(RIP) with an RIP constant being as small as possible [26].
This constant determines upper bounds for recovery errors
induced by measurement noise, the K-sparse signal approx-
imation, and a mismatch of A that in our case may occur
due to impreciseness in position tracking. Verifying the RIP
of a matrix is an NP-hard problem [27]. Sensing matrices
generated by independent and identically distributed random
processes [14] and random ensembles [15], respectively, meet
the RIP with very high probability for a wide range of matrix
sizes. However, in practice, totally random setups are often
impossible. The setup may underlie certain restrictions and
points on the trajectory are highly dependent on each other
as the speed of a moving microphone is limited. Then, an
indicator for RIP guarantees is given by the coherence measure

µ(A) = max
1≤u 6=v≤P

|〈au,av〉|
‖au‖2 ‖av‖2

, (6)

with au being the u-th column of A. The error bounds of
sparse recovery improve for a smaller coherence [13].

IV. PROPOSED COHERENCE OPTIMIZATION

In the following, we present a fast algorithm allowing for
adjustments of given microphone positions, in order to reduce
the coherence and improve the accuracy of the recovered
sound-field signal. By assuming ideal lowpass filters in the
parameterization, the origin of high correlations |〈au,av〉| is
identified efficiently. Based on that, we propose to adapt the
microphone trajectory by gradient descent steps, in order to
approach a local minimum of maximum correlation and, thus,
to obtain a sensing matrix better suited to the CS paradigm.

A. Influence of Varying Microphone Positions

First, consider the measurement space to be confined to a
line in x-dimension. Then, Ψ performs the two-dimensional
DFT with frequency variables kx ∈ {−X−1

2 , . . . , X−1
2 } and

l ∈ {−L−1
2 , . . . , L−1

2 } for X,L being odd. Let us define the
signal sn(gx,m) = s(n−m)fgx(x(n)) as the spatio-temporal,
spectrally flat excitation on the uniformly sampled line and its
discrete Fourier spectrum Sn(kx, l) forming the LX columns
of A: a(kx,l) = [S0(kx, l), . . . ,SM−1(kx, l)]

T . Then, using
the grid-related trajectory rx(n) = (x(n) − x0)/∆x, it can
be shown [12] that the moving of the microphone from point
x(n) to x(n+ d) manipulates A according to

Sn+d(kx, l) = Sn(kx, l) e
−2πjd l

L e−2πj(rx(d)−rx(n)) kx
X . (7)

B. Efficient Coherence Calculations

For measurements in three-dimensional space, we can use
(7) and exploit the separability on a multidimensional grid,
in order to describe the LG columns of A by structured

spatial and temporal phase terms of different frequency pairs.
This structure in A allows for calculating the coherence
(6) directly in respect of the grid-related trajectory r(n) =
[rx(n), ry(n), rz(n)]T at low complexity O(LG): for finding
the maximum correlation between columns, only combinations
of frequency distances l̄ = l′ − l′′, k̄ξ = k′ξ − k′′ξ are relevant:

µ̃(r(·)) = max
f̄ 6=0

1

M

∣∣∣∣∣
M−1∑
n=0

e−jCf̄ (r(n))

∣∣∣∣∣ , (8)

with f̄ = (l̄, k̄), k̄ = (k̄x, k̄y, k̄z), Cf̄ (r(n)) = Tl̄(n) +
Xk̄(r(n)), involving the temporal relationship Tl̄(n) =
2πnl̄/L and the positional dependency

Xk̄(r(n)) = 2π

(
rx(n)

k̄x
X

+ ry(n)
k̄y
Y

+ rz(n)
k̄z
Z

)
. (9)

The quantity (8) is equivalent to (6) for spectrally flat
behavior of the measuring process in any dimension, which
can be met by selecting appropriate design parameters. For
the temporal dimension, the choice of L-shift cross orthogonal
excitation sequences is suitable (e.g., MLSs). For the spatial
dimensions, using higher order maximally flat fractional delay
filters and modeling the grid spacing according to (at least)
twofold spatial oversampling ∆ξ ≤ c/(4fmax) is appropriate.
Then, the bandlimited signal is located at the lower halfband
where the interpolator approaches ideal response, and the
model of A (and, thus, (6) and (8)) can be reduced to these
low spatial frequencies. For a non-ideal design, the measure
(8) is an efficient approximation of (6) (cf. [12]).

C. Fast Update Scheme for Trajectory Adjustments

A simple procedure is proposed for updating the trajectory
r(n) subject to the minimization of the maximum correlation
between two columns of A. Exploiting the low-complexity
measure (8), we define the objective function

J(r(·)) =

∣∣∣∣∣
M−1∑
n=0

e−jCf̄′ (r(n))

∣∣∣∣∣ , (10)

where the frequency distances in f̄ ′ are selected in accordance
with the highest spectral correlation for the current trajectory,

f̄ ′ = argmax
f̄ 6=0

∣∣∣∣∣
M−1∑
n=0

e−jCf̄ (r(n))

∣∣∣∣∣ . (11)

In order to minimize (10), different scenarios can be con-
sidered by adapting either one single position (e. g., to find
optimal direction of future movement), multiple, or even all
points on the trajectory simultaneously at iteration i. The latter
case emphasizes the need for a cost-effective optimization, as
the number of measuring positions in dynamic setups is, in
general, as high as the number of provided samples.

Updates for one particular position variable rξ(n
∗) are

performed following the gradient descent scheme

r
[i+1]
ξ (n∗) = r

[i]
ξ (n∗)− α ∂J(r(·))/∂r[i]

ξ (n∗), (12)

with α being a small step size. Each iteration goes along with
a redesign of the objective function in a greedy fashion: if the



origin of the maximum correlation, i.e. (11), relocates, then
J(r(·)) is adapted accordingly.

By using Euler’s formula and defining the summations
σcos(r(·)) =

∑M−1
n=0 cos(Cf̄ ′(r(n))) and σsin(r(·)), analo-

gously, the objective function can be rewritten according to
J(r(·)) = (σ2

cos(r(·)) + σ2
sin(r(·)))1/2, in order to deduce

simple expressions for the partial derivatives composing the
considered gradient. Applying the chain rule several times and
using trigonometric identities, the partial derivative subject to
the specific position variable reads

∂J(r(·))
∂rξ(n∗)

= γξ

M−1∑
n=0

sin
(
Cf̄ ′(r(n)− r(n∗))

)
, (13)

where the factor γξ = (2πk̄′ξ)/(DJ(r(·))) depends on the
particular dimension ξ ∈ {x, y, z} and D ∈ {X,Y, Z}. All in
all, efficient adjustments of trajectory positions are performed
by iteratively finding maximum spectral correlation according
to (11), calculating the gradient of the free variables in terms
of (13), and updating subject to (12), until some predefined
exit conditions are reached. These could be, for example,
constraints respecting limitations of the measurement setup,
i.e., boundaries of the spatial grid, maximum distance between
positions, or maximum microphone speed.

D. Adaptation to Sensor Placement Problems

The presented model design and technique of position
optimization is actually adaptable to any sampling problem
requiring the recovery of bandlimited, spectrally sparse func-
tions on a multidimensional Cartesian grid. For example, we
can also consider a stationary sensor setup of Q microphones
at grid-related locations rq and obtain a conformable and even
more structured sensing matrix where the time-varying com-
ponent dissolves. Then, the coherence based objective function
simplifies to J(r·) = |

∑Q
q=1 e

−jXk̄′ (rq)|. The corresponding
analysis is similar and leads to position updates by analogy
with (12) and (13) setting the temporal dependency to l̄′ = 0
and, thus, Tl̄′(n) = 0. Also, the same formulas are obtained
for the pure sound-field interpolation task presented in [28],
where RIRs are directly available at several locations.

V. EXPERIMENTS AND RESULTS

It has been shown in [11] that for sufficiently long sampling
the minimum mean squared error of estimates from the inverse
problem (3) with (4) becomes smaller for trajectory positions
sampled closer to the notional grid points. For the sparse
recovery in frequency domain, no such general statement on
the trajectory is applicable. Nevertheless, in [12] the use of a
Lissajous trajectory covering the entire volume of interest has
been experimentally shown to be a good choice, performing
even better than totally random dynamic sampling positions.
Here, we use the presented optimization method to modify
the points on a Lissajous trajectory (Fig. 1(a)). Also, we
test the algorithm on a random trajectory resulting from
an autoregressive moving average process (ARMA) in each
dimension (Fig. 1(b)). The trajectories are sampled at 4 · 105

positions and scaled to directly fit into the cubical volume Ω.

(a) Lissajous: i = 0, µ = 0.18 (b) ARMA: i = 0, µ = 0.65

(c) i = 80, µ = 0.08 (d) i = 60, µ = 0.55

(e) i = 300, µ = 0.014 (f) i = 800, µ = 0.021

Fig. 1. Optimized microphone trajectories. (a)-(b) Original states and (c)-(f)
improved versions after i iterations leading to lower coherence µ.
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Fig. 2. (a) Reduction of coherence over the number of iterations i and (b)
the corresponding average displacement from the original state at i = 0.

For sound-field parameterization, we define 93 notional grid
points with spacings ∆ξ = c/(4fmax), covering Ω entirely. The
number of RIR taps is limited to L = 2047. To achieve spectral
flatness of excitation, MLSs with period length L are chosen,
scaled to yield zero DC offset, and played over 200 periods
during measurements. For interpolation in space, Lagrangian
fractional delay filters of order 11 are used, ensuring (nearly)
ideal frequency response at the lower halfband. This setup
originally results in sensing matrices A of size 4·105×1.5·106,
having coherence µ = 0.18 for the Lissajous trajectory and
µ = 0.65 for the trajectory based on ARMA processes.

Without building up large sensing matrices, the proposed
optimization technique was capable of reducing the coherence
by manipulating the pre-defined trajectory positions. Perform-
ing the update rule (12) with (13) on each trajectory point at
step size α = 0.1/(2π) obtained setups where the coherence
of the corresponding CS problem was significantly lowered
by 0.1 after only a couple of iterations (Figs. 1(c) and 1(d)),
and finally reached a minimum in µ = 0.014 and µ = 0.021,
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Fig. 3. Recovery error using original trajectories and the improved versions.

respectively (Figs. 1(e) and 1(f)). No constraints were made on
the resulting microphone velocity. In Fig. 2(a), the decrease
of coherence is shown subject to the number of iterations.
The sporadic peaks in Fig. 2(a) result from the greedy-like
adaptation of J(r(·)) according to the current maximum
correlation. The average change of positions compared to
the original state r[0](n),

∑M−1
n=0 ‖r[0](n) − r[i](n)‖/M , is

depicted in Fig. 2(b). For both types of trajectories, just little
changes in rξ(n) by 0.2 on average led to the coherence
improvement by 0.1. At this, the ARMA based trajectory took
a slightly more expansive configuration (Fig. 1(d)), and the
Lissajous type was squeezed, having a bit more distance to
the grid points at the boundary of Ω (Fig. 1(c)).

In numerical experiments, we tested the trajectories from
Fig. 1 for sparse sound-field recovery in frequency domain.
Using the image source method [29], we simulated dynamic
measurements in fifty reverberant environments, randomly
chosen according to the uniform distribution of room sizes
[2 m; 10 m]3, sampling frequencies fs ∈ [6000; 16000] Hz,
and reverberation times T60 ∈ [0.05 s;L/fs]. The source
position and the origin of Ω were randomly selected in each
experiment. White Gaussian measurement noise was added
at a signal-to-noise ratio of 20 dB. We applied the CS based
reconstruction algorithm from [12]. To evaluate spatial RIR
recovery, the MNSM error measure as in [11], [12] is used. In
Fig. 3, the sound-field recovery errors based on the particular
measurement trajectories are presented in box plots. The
adjusted trajectories lead to better performance, also for the
cases where positions are just slightly manipulated.

VI. CONCLUSIONS

In this paper, we presented a simple method of updating
microphone positions on a pre-defined trajectory, in order
to obtain measurements that lead to lower coherence of the
sensing matrix. This makes the dynamic-sampling procedure
more compatible with the CS principle and leads to reduced
errors of the sparse recovery in frequency domain.
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