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Closed-room scenarios are characterized by reverberation, which decreases the performance of

applications such as hands-free teleconferencing and multichannel sound reproduction. However,

exact knowledge of the sound field inside a volume of interest enables the compensation of room

effects and allows for a performance improvement within a wide range of applications. The sam-

pling of sound fields involves the measurement of spatially dependent room impulse responses,

where the Nyquist-Shannon sampling theorem applies in the temporal and spatial domains. The

spatial measurement often requires a huge number of sampling points and entails other difficulties,

such as the need for exact calibration of a large number of microphones. In this paper, a method for

measuring sound fields using moving microphones is presented. The number of microphones is cus-

tomizable, allowing for a tradeoff between hardware effort and measurement time. The goal is to

reconstruct room impulse responses on a regular grid from data acquired with microphones between

grid positions, in general. For this, the sound field at equidistant positions is related to the measure-

ments taken along the microphone trajectories via spatial interpolation. The benefits of using per-

fect sequences for excitation, a multigrid recovery, and the prospects for reconstruction by

compressed sensing are presented. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4983093]
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I. INTRODUCTION

Closed-room scenarios exhibit undesirable acoustic prop-

erties for various audio applications. Acoustic systems, such

as communication devices and multichannel audio systems,

ordinarily assume a free-field environment and decrease their

performance in the presence of reverberation. However, there

are existing methods for listening-room compensation1–3

which aim at removing the acoustical influences of rooms dur-

ing sound-field reproduction.

There are several stationary methods available for the mea-

surement of room impulse responses (RIRs). Common

approaches are the use of perfect sequences4,5 and maximum-

length sequences6,7 (MLS). Perfect sequences are periodic

pseudo-random signals that have an autocorrelation function

which is a periodic sequence of Dirac pulses. If the period is

longer than the RIR, the measurement reduces to a correlation

of the received signal with the sequence. MLS sequences are

binary sequences that come close to perfect sequences, and the

longer the period becomes, the better the reconstruction gets.

Another well established method is the use of exponential sine

sweeps.8 As with the previous methods, the RIR can be

obtained by correlating the measured signal with an appropriate

second signal, often referred to as the inverse signal. An advan-

tage of sweep-based measurements is that they are less sensi-

tive to system nonlinearities. Finally, also perfect sweeps9 have

been introduced, which combine the properties of perfect

sequences and sweeps. For dynamic setups, such as acoustic

echo cancellation (AEC),10 in which the RIRs change over

time, the common approach is to demand a minimum mean

squared error (MMSE) between the measured signal and the

output of an adaptive filter that is excited by the same input as

the loudspeaker. Of course, the method can also be used to

measure time-invariant RIRs. In this case, an excitation with

white noise would be preferable, because it provides maximum

convergence speed.10

The above mentioned methods are essentially all based

on minimizing a mean squared error. However, there also

exist methods for RIR estimation that exploit the sparsity of

the early parts of RIRs and the exponential decay of later

parts. A group of these methods is known as proportionate

update schemes.11–14 In these methods, which are already

common practice in echo cancellation, an individual step

size is computed for each filter coefficient, resulting in faster

convergence for the few large filter taps of a sparse RIR. A

method for multichannel estimation that exploits the sparsity

of the early parts of RIRs by introducing an ‘p,q-norm based

regularization term has been also proposed.15 The term ‘p,q

means that the ‘q-norm of a set of ‘p-norms is computed.

The authors report that the convergence rate improves due to

the sparsity constraint and that the non-uniqueness problem

of multichannel identification,16 although not yet resolved, is

less severe than with least-squares approaches.

In order to describe the spatio-temporal sound field

inside a defined volume of interest, the concept of the plena-

coustic function17,18 (PAF) has been introduced. Generally,

the PAF encapsulates the information on the entire set of

spatio-temporal RIRs for any position in space. The sam-

pling of the PAF by considering equidistant sampling points

in space that satisfy the Nyquist-Shannon sampling theorem

is not practical for larger bandwidths.

There is an existing method for the dynamic measure-

ment of a set of RIRs using one microphone that moves

along a given trajectory.19 Despite the motion of thea)Electronic mail: katzberg@isip.uni-luebeck.de
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microphone, the RIRs are reconstructed for all positions

along the trajectory. In particular, motion along a line and a

circle have been studied. To make this principle work, a spe-

cially designed input signal is needed, and the speed of the

microphone must be constant and is restricted to an upper

limit. Quite different from RIR measurements with a fixed

microphone, the excitation signal must not contain all audio

frequencies, but only a certain subset. The omitted frequen-

cies are essentially generated through the Doppler effect.

The technique is suited to record relatively short RIRs and

has also been proposed to record head related transfer func-

tions with a microphone that moves along a circular trajec-

tory around the head. Further, a setup was considered in

which a microphone was moved along a random trajectory.20

However, this setup was not used to reconstruct all RIRs

along the trajectory or even the entire PAF within a volume,

but to simulate time-varying channels that are governed by

the wave equation and for the computation of frequency-

dependent update rules for adaptive algorithms.

In this paper, we propose an approach which allows for

the measurement of the PAF using a moving array with a

manageable number of microphones. The simplest setup

involves only one hand-held microphone. Each recorded

sample of a microphone signal is regarded as the result of

the projection of the wanted parameters onto an appropriate

sampling vector and contributes one equation to a linear sys-

tem, which finally allows for a reconstruction of the sound

field inside the considered volume. This procedure is

described in Sec. III. Section IV characterizes potential sour-

ces of error and gives the error analysis for spectrally flat

excitation.

The proposed method is entirely different from the

dynamic measurement procedure proposed by Ajdler et al.19

The generic approach described in this paper places no spe-

cific demands on the speed of the microphone array or on

the excitation signal. However, a higher velocity of move-

ment may induce a higher noise level caused by air flow. A

potential application of the proposed method is the high-

precision measurement of sound fields using hand-held

microphones whose positions are continuously tracked, e.g.,

using gyroscopes.

In Sec. V we present three extensions for the general

method. We show that, by using perfect sequences, the sys-

tem of linear equation decomposes into smaller problems

with heavily reduced computational demand. Furthermore,

we introduce a multiresolution recovery scheme which ena-

bles us to reconstruct low-frequency content for the case in

which the wideband recovery problem is ill-conditioned. In

addition, it improves the performance in the presence of

noise. Section V C discusses prospects for incorporating the

dynamic sampling procedure into the framework of com-

pressed sensing, in order to allow for the reconstruction by

means of arbitrary trajectories which typically lead to an

underdetermined system of linear equations. However,

experiments discussed in Sec. VI focus on the determined

case.

The paper uses the following notations. Vectors and

matrices are represented in boldface characters, lower

and upper case, respectively. The superscript f � gT
means

transposition. k � k‘p
returns the ‘p-norm of a vector. The

operation diagf � g turns a set of scalars or matrices into a

diagonal matrix or block diagonal matrix, respectively. The

trace of a matrix is indicated by trf � g. The element at the ith
row and jth column of a matrix is given by ½ � �i;j. ID�D

denotes the D�D identity matrix and 0D�D means the

D�D zero matrix. The asterisk signifies the convolution

operation. The expectation operation is denoted by Ef � g.
The unit pulse is represented by d(n), which equals 1 for

n¼ 0 and 0 otherwise. The modulo operation is denoted by

a mod b, which gives the remainder after the division of a by

b. The sets of integer, real, and complex numbers are

denoted by Z; R, and C, respectively.

II. SOUND FIELDS IN CLOSED ROOMS

In this section, the underlying sound propagation model

for the simulations in Sec. VI is described. Furthermore, the

plenacoustic function is outlined, which is used in this paper

as representation of the spatio-temporal sound field.

A. Sound propagation model

Consider a fixed sound source that emits the continuous-

time sound signal s(t) depending on time t. In closed-room

scenarios, the received signal x(t) is a filtered version of s(t):
it consists of a succession of the first incoming direct sound,

the early reflections from the walls, and the diffuse late-field

reverberation with exponentially decaying energy. For a cer-

tain listener position in space, the room impulse response

h(t) characterizes the time dependent sequence of the

received sound pressure that would result from an emitted

Dirac pulse. Assuming a linear time-invariant (LTI) system

for a fixed emitter-receiver pair, the temporal connection

between the excitation signal and the observed signal is

given by

xðtÞ ¼
ð1
�1

hðsÞsðt� sÞds: (1)

Mathematically, the sound propagation and thus RIRs

are described by the solutions of the wave equation.

Anyway, assuming that the emitted wavelengths are much

smaller than the dimensions of the room, the sound propaga-

tion may be approximated in terms of geometrical acoustics.

In fact, this model restricts the original problem of wave

propagation to the much simpler description of energy prop-

agation. Accordingly, all effects involving phase differences

are neglected. However, for sound signals with many spec-

tral components, constructive and destructive phase effects

can be assumed to cancel out, i.e., the total energy at the lis-

tener position is obtained by simply adding the energies of

the components.21

The geometrical model considers sound rays as straight

lines of different directions along which the sound energy

travels with constant velocity. These sound rays can be

regarded as small sections of infinitely small solid angles

that are cut out of spherical waves.21 Before reaching the lis-

tener position and superposing there, the sound rays pass

possibly consecutive reflections and absorptions at the walls,
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except for the ray of the direct path. The image method22

provides an efficient algorithm for the ray-based simulation

of RIRs inside rectangular rooms. This method creates mir-

ror images of the sound source to calculate the reflected

paths as direct paths from the virtual sources to the receiver.

Each of these direct paths contributes a delayed and scaled

impulse to the RIR, depending on the distance, the order of

reflection, and the reflection coefficients of the walls. In

order to achieve a more realistic behavior of zero-mean

RIRs, the DC component has been removed by a low-

frequency high-pass filter in Ref. 22. The simulations in the

experimental part of this paper are based on an enhanced

version of the image method including an improved sam-

pling and phase accuracy of the simulated RIRs.23 This bal-

ances the positive and negative filter taps in a reasonable

way.

B. The plenacoustic function

Ajdler and co-workers17,18 introduced the concept of the

plenacoustic function (PAF), encapsulating all RIRs of a

room for a given source configuration. The PAF, denoted in

the following as pðr; tÞ, describes the sound field in space

depending on both time t and receiver location

r ¼ ½rx; ry; rz�T . In the simplest case, with a single point

source emitting a signal s(t) at fixed position, the PAF is

pðr; tÞ ¼
ð1
�1

hðr; sÞsðt� sÞds; (2)

where hðr; tÞ is the spatially varying RIR from the source

location to the point r. Through the LTI system model, the

PAF for multiple fixed sound sources consists of a sum of

integrals as given in (2). This means, the received sound

pressure is a superposition of single source signals, each of

them convolved with their specific spatio-temporal RIR.

Referring to Ajdler and Vetterli17 and Ajdler et al.18 we con-

sider the PAF, without loss of generality, only for the case

where a single source at fixed position emits a Dirac impulse

at t¼ 0. With this, the PAF is simplified to the spatio-

temporal RIR:

pðr; tÞ ¼ hðr; tÞ: (3)

C. The spatial sampling problem

Measuring the sound field is basically a sampling prob-

lem. Under the assumption that the PAF is bandlimited, it

can be reconstructed through equidistant sampling in time

and space dimensions. According to the Nyquist-Shannon

sampling theorem and considering the temporal cutoff fre-

quency fc, the sampling frequency has to fulfill the condition

fs > 2fc (4)

in order to avoid aliasing. Furthermore, the PAF requires

sampling in space, so the condition

Dn <
c0

2fc
8 n 2 x; y; zf g (5)

must hold, where c0 is the speed of sound and Dn denotes the

spatial sampling interval for each dimension x, y, z. This

allows for the reconstruction of sound waves in space with

the minimal wavelength

kmin ¼
c0

fc
: (6)

Because of the relationship in Eq. (5), the uniform sampling

of the sound field by use of equidistantly spaced micro-

phones often requires an extremely high effort. An array of

microphones will most likely never be dense enough to

enable measurements without significant problems for very

high audio frequencies. For example, the sampling of the

PAF with fc¼ 17 kHz inside a volume of 1 m3 requires at

least 106 spatial measuring points. In order to reduce this

infeasible effort, sampling schemes with quasi randomly

spaced microphones have been proposed, based on the prin-

ciple of compressed sensing.24 However, the maximum

admissible audio frequency within larger volumes is still sig-

nificantly reduced. To give an example, a 3D array with 120

microphones randomly positioned within a cube of edge

length 2 m is sufficient for a stable reconstruction of frequen-

cies up to 400 Hz using compressed sensing.24 For this, a

sparse plane wave approximation of the PAF in low frequen-

cies is exploited.

A specific problem of microphone arrays is the need of

calibration. This includes the compensation of spatio-

temporal deviations and the equalization of the frequency

responses of the individual microphones. The use of more

microphones involves an increasing expense for calibration.

As a remedy, methods for automatic calibration have been

proposed.25 In the following, we propose a dynamic sampling

procedure using a moving array with a number of micro-

phones that is small enough to allow proper calibration.

III. DYNAMIC SAMPLING PROCEDURE

To determine the sound field within a volume of inter-

est, we consider a scenario in which a single source emits a

pre-defined signal and one or more microphones are moved

through the volume while their signals are simultaneously

recorded together with the microphone-position information.

If, for example, a rigid microphone array is moved through

the volume, one particular position on the array and its orien-

tation need to be captured in order to recover the positions of

all microphones. Within the array, the microphones would

need to be calibrated as for the above-mentioned method.24

Of course, the number of microphones can be traded against

the total measurement time, allowing for compromises with

a reasonable number of microphones and measurement time.

To keep the following description and analysis simple, a sin-

gle microphone is considered. Extensions to multiple micro-

phones will be discussed in Sec. III C.

While the microphone trajectory may be quite arbitrary

during the measurement, the unknown values to be deter-

mined by the proposed procedure are the RIRs from the

source position to all locations within the volume of interest

on a Cartesian grid, as required by the sampling theorem.

These grid locations are virtual sampling points from which
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the RIRs to any location within the volume of interest can be

computed via interpolation, including the locations on the

microphone trajectory. In fact, this interpolation is the key to

our method. Describing the samples recorded along the tra-

jectory based on the knowledge of the excitation signal and

the RIRs on the grid leads to a linear system of equations

that can be solved for the unknown grid RIRs.

A. Uniform sampling and reconstruction

First, consider the uniform time sampling of the PAF.

As usual, T¼ 1/fs denotes the sampling interval in the time

dimension with fs satisfying Eq. (4). This leads to measure-

ments at equidistant sampling points tn¼ nT, where

n 2 f0; 1; 2;…g denotes the discrete time variable of the

causal signal. Beforehand, the temporal bandwidth of the

PAF is limited with an analog low-pass filter blocking all

frequencies above fc. The model parameter fc is determined

by the requested application.

For the uniform sampling in the spatial dimensions, con-

sider a Cartesian grid where the equidistant sampling points

rg 2 G are given by the set

G ¼ frg j rg ¼ r0 þ gxDx; gyDy; gzDz

� �Tg (7)

with the grid origin r0 and the discrete grid variables in

g ¼ ½gx; gy; gz�T 2 Z3. The sampling intervals Dx, Dy, Dz

must follow Eq. (5), in order to avoid spatial aliasing.

As already mentioned above, the aim of our method is

to determine RIRs at equidistant positions by use of dynamic

measurements. For that purpose, a virtual sampling grid in

space that fulfills Eq. (5) is modeled, with integer indices in

g spanning the virtual grid coordinate system. The RIRs on

that grid are denoted as hðrg; tnÞ. In practice, the measuring

area is finite and the spatial sampling grid is limited to size

X� Y�Z. Overall, the recovery of hðrg; tnÞ inside the finite

volume of interest involves N¼XYZ RIRs at grid positions

g 2 G with

G ¼ f0;…;X � 1g � f0;…; Y � 1g � f0;…; Z � 1g:
(8)

The amplitudes of these grid RIRs are assumed to vanish

into the noise level beyond tL�1 for given fs, so each of the

RIRs is limited to length L. Hence, the uniform sampling of

the PAF covers U¼NL values in total. As from now, the

sought grid RIRs are denoted by hðg; nÞ using the discrete

variables.

The ideal reconstruction of the continuous sound field

hðr; tÞ from hðg; nÞ is accomplished by a 4D sinc filter with

infinite support. Due to the exponential energy decay of the

RIRs, finite length interpolation filters achieve reasonable

approximations for the time dimension. However, the finite

number of measurements in the space dimensions still tight-

ens the spatial sampling problem: to improve the spatial

reconstruction despite of finite support, either the measuring

area has to be chosen larger than the volume of interest, or

the spatial sampling grid has to be chosen finer, well below

the Nyquist rate. For both strategies, the number of spatial

measurement points increases.

B. Measurement setup and linear system model

In this section, we interrelate the virtual RIRs, modeled

on a uniform grid in space, with the samples of one moving

microphone to set up a system of linear equations. In gen-

eral, the sampling points are located at intermediate posi-

tions, so the key of our method is spatial interpolation. The

extension to Q microphones is straightforward and allows

for the acquisition of Q times more equations during the

same measuring time.

Let us consider a single moving microphone and let x(n)

denote the measured signal of the microphone which moves

along a tracked trajectory through the entire volume of inter-

est. The speed of the microphone is arbitrary. Let s(n) denote

the signal emitted by the sound source, and let g(n) be the

measurement noise, which is assumed to be statistically

independent of s(n). The choice of the excitation signal is

arbitrary concerning the reconstruction procedure. However,

s(n) should cover the entire spectrum of the bandlimited

PAF which is to be measured, so white noise and perfect

sequences are convenient.

The measurement procedure and a generic virtual sam-

pling grid are outlined in Fig. 1. The position of the dynamic

microphone is given by the time dependent vector rðnÞ
¼ ½rxðnÞ; ryðnÞ; rzðnÞ�T . In theory, any continuous position

could be interpolated by means of a spatial grid with inter-

vals Dx, Dy, Dz fulfilling the Nyquist-Shannon requirement.

However, the proposed method involves the reverse interpo-

lation problem: given the sound field at continuous positions

rðnÞ, the aim is to recover it at regular grid positions rg. So,

FIG. 1. Arrangement of a virtual 2D sampling grid in space with reference

to the grid coordinate system. The spatial sampling intervals Dx, Dy translate

the discrete variables gx, gy to the world coordinate system. The dots repre-

sent the positions of the virtual grid RIRs. This example sketches one

dynamic microphone moving along a Lissajous trajectory in between the

grid positions.
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the actual measurement signal x(n) already contains the

interpolation results, i.e., the weighted linear combinations

of pressure values on the spatial grid we are looking for. As

long as the moving microphone acquires samples within the

interpolation range of one particular grid position, it samples

an amount of sound pressure on that grid point. The amount

is determined by the corresponding weightings, and, thus, by

the trajectory rðnÞ. Consequently, the spatial distance of

samples taken by the moving microphone is not restricted to

Dx, Dy, Dz.

Each sample recorded by the dynamic microphone,

together with the knowledge of rðnÞ, s(n), and the positions

rg of the modeled grid RIRs, contributes one equation to a

system of linear equations. The basic concept is to interrelate

the measurement signal with the source signal according to

Eq. (2), so

xðnÞ ¼
XL�1

k¼0

hðrðnÞ; kÞ sðn� kÞ þ gðnÞ; (9)

where hðrðnÞ; kÞ is the spatially varying and therefore time

dependent RIR at the measuring position at time index n. Its

taps are indexed with k 2 f0; 1;…; L� 1g. The explicit taps

of hðrðnÞ; kÞ are unknown. They differ significantly for slight

variations of rðnÞ, due to the various reflection paths inside

the closed room. To interrelate each sample with the same

set of unknown variables, the spatially varying RIR is repre-

sented as weighted sums of the N modeled grid RIRs, so

hðrðnÞ; nÞ �
X
g2G

uðrðnÞ; rgÞ hðg; nÞ: (10)

The interpolation function uðrðnÞ; rgÞ weights the grid RIRs

at rg subject to the displacements rðnÞ � rg. It can be sepa-

rated into the product of three one-dimensional functions

unðrnðnÞ; rgnÞ with n 2 {x, y, z}, due to the equidistant sam-

pling grid. The interpolation (10) is not necessarily perfect in

practice, especially when the spatial sampling grid is mod-

eled with sampling intervals close to the upper limit c0/2fc.
Nevertheless, the interpolation is assumed to be ideal in the

following considerations. With adequate oversampling for

the spatial grid, an interpolation kernel which is maximally

flat in the frequency domain may provide sufficient results.

This is shown in the experimental part of this paper.

Substituting Eq. (10) into Eq. (9) and assuming perfect

interpolation leads to

xðnÞ ¼
XL�1

k¼0

X
g2G

uðrðnÞ; rgÞhðg; kÞ sðn� kÞ þ gðnÞ: (11)

This represents each sample as the weighted sum of the

same U unknown variables hðg; nÞ and constitutes the under-

lying system of linear equations for the recovery. For arrang-

ing this system, we define N vectors

hu ¼ hðgu; 0Þ; hðgu; 1Þ;…; hðgu; L� 1Þ½ �T (12)

with u 2 f1; 2;…;Ng. Each of them is of length L and con-

tains one RIR on the virtual sampling grid. The solution

vector h 2 RU of the modeled system of linear equations is

formed by the concatenation

h ¼ hT
1 ; h

T
2 ;…; hT

N

� �T
: (13)

Every value of hðg; nÞ covering the volume of interest is

included in h. In Eq. (13) a dimension-wise concatenation

along each spatial dimension is reasonable. For example, by

concatenating at first along the x dimension, and then along

the y and z dimensions in succession, each value of hðg; nÞ
can be assigned to a distinct element of h with index

lðg; nÞ ¼ gxLþ gyXLþ gzXYLþ nþ 1: (14)

A sampling vector /ðnÞ 2 RU is modeled as

/ðnÞ ¼ wT
1 ðnÞ;wT

2 ðnÞ;…;wT
NðnÞ

� �T
; (15)

where each of the vectors

wuðnÞ ¼ uðrðnÞ; rgu
Þ sðnÞ (16)

corresponds to the virtual grid RIR hu and consists of the

source signal vector

sðnÞ ¼ sðnÞ; sðn� 1Þ;…; sðn� Lþ 1Þ½ �T ; (17)

which is individually weighted by the interpolation function.

Using Eqs. (11), (13), and (15), each sample of the dynamic

microphone is coded by the projection

xðnÞ ¼ /TðnÞhþ gðnÞ: (18)

Generally, a larger support of the interpolation function

allows a sampling vector to cover a larger area in space, and,

thus, enables one sample to give information on a larger vol-

ume. The definitions of the measurement vector

x ¼ xð0Þ; xð1Þ;…; xðM � 1Þ½ �T ; (19)

the measurement noise vector

g ¼ gð0Þ; gð1Þ;…; gðM � 1Þ½ �T ; (20)

and the M�U sampling matrix

A ¼ / ð0Þ;/ð1Þ;…;/ðM � 1Þ
� �T

(21)

lead to the system of linear equations

x ¼ Ahþ g: (22)

In order to ensure a unique solution to Eq. (22) in the

least-squares sense, the matrix A must have full column rank

which means rankðAÞ ¼ U. This is equivalent to the require-

ment on A to have U linearly independent sampling vectors

in the rows, which, in turn, are specified by the excitation

signal, the position of the moving microphone, and the cho-

sen interpolation method. Thus, if rankðAÞ ¼ U, the linear

system (22) is not underdetermined and its unique least-

squares solution yields the estimate of hðg; nÞ.
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An equivalent and more detailed description for the

measurement vector is

x ¼
XN

u¼1

UuShu þ gðnÞ; (23)

where Uu 2 RM�M are diagonal matrices, each of them

stacking all M interpolation coefficients for the uth virtual

grid RIR,

Uu ¼ diagfuðrð0Þ; rgu
Þ;…;uðrðM � 1Þ; rgu

Þg; (24)

and S 2 RM�L is the convolution matrix of the source

signal,

S ¼ sð0Þ; sð1Þ;…; sðM � 1Þ
� �T

: (25)

This compact representation reveals that the sampling matrix

can be rewritten as highly structured block matrix

A ¼ U1S;U2S;…;UNS
� �

; (26)

consisting of N repetitions of S along the columns. The

Toeplitz structure of the uth convolution matrix is distorted

by the diagonal matrix Uu which scales the rows of S differ-

ently. Assuming that the chosen interpolation function satis-

fies the partition of unity condition

XN

u¼1

uðrðnÞ; rgu
Þ ¼ 1 (27)

for constant n, the diagonal matrices fulfill

XN

u¼1

Uu ¼ IM�M; (28)

where IM�M denotes the M�M identity matrix.

C. Extension to microphone arrays

The previous considerations regarding one moving

microphone can be easily extended to a sampling procedure

which involves one moving array with Q mounted micro-

phones. This requires the additional measurement of the

array orientation relative to the room axes, e.g., using a gyro-

scope, and also the tracking of the coordinates �rðnÞ ¼ ½�rxðnÞ;
�ryðnÞ; �rzðnÞ�T referring to one particular point on the array

which does not change its relative position to the micro-

phone positions rqðnÞ ðq 2 f1;…;QgÞ in case of motion. For

the purpose of describing the initial orientation of the array,

let

pq ¼ rqð0Þ � �rð0Þ (29)

define the vector originating in �rð0Þ and pointing to the posi-

tion rqð0Þ of microphone q on that array. Then, provided that

the array is rigid, the positions of the microphones during

the measurement process are given by

rqðnÞ ¼ �rðnÞ þ RzðnÞRyðnÞRxðnÞpq; (30)

where RxðnÞ; RyðnÞ; RzðnÞ are rotation matrices along each

spatial axis mapping pq from the initial state to the array ori-

entation at n, in order to cover the rotational degrees of free-

dom of the microphone array in 3D space.

The choice of Q depends on the application and deter-

mines the tradeoff between calibration effort and sampling

time. The microphones measuring at positions (30) allow for

building up Q sampling vectors /qðnÞ, in total contributing

Q equations to the linear system (22) for each instant of

time. However, each of these microphones requires addi-

tional equalization, synchronization, and specification of pq

subject to �rð0Þ.

IV. ERROR ANALYSIS

This section is devoted to an error analysis. We first

describe some potential error sources which may perturb the

modeled linear system (22), built up by the proposed sam-

pling procedure for one moving microphone. Further, we

give some considerations about the influence of the Doppler

effect in Sec. IV B. When the microphone is moved during

recording through the volume of interest, one may expect

that, under noisy conditions, also the choice of the trajectory

has a significant influence on the accuracy of the estimated

RIRs. In Sec. IV C we analyze how variations of the trajec-

tory affect the estimation error. Initially, we show under

some idealized conditions how the choice of the trajectory

directly influences the estimation error, though the interpola-

tion operation is assumed to be exact. Then we point out

that, for a given set of sampling positions in space, the tem-

poral order of taking measurements has no effect on the

accuracy.

A. Sources of error

The linear system (22) takes additive measurement

noise, caused by the microphone, into account. This is mod-

eled with the additive noise vector g.

Beyond that, some systematic errors may emerge

through inaccuracies during the positional tracking of the

microphone. This systematic perturbation leads to multipli-

cative noise and is taken into account by the formulation

A ¼ ðU1 þ ~U1ÞS;…; ðUN þ ~UNÞS
� �

(31)

with the error diagonal matrices ~Uu. Substituting Eq. (31)

into Eq. (22) reveals that the additional noise term is given

by
PN

u¼1
~UuShu. In case the chosen interpolation function

constitutes the partition of unity (28), then

XN

u¼1

~Uu ¼ 0M�M: (32)

Due to the finite number of N virtual sampling points to be

recovered in space, the spatial interpolation of hðrðnÞ; nÞ is

not ideal in practice, which also leads to systematic errors.

To keep the interpolation error small, spatial oversampling is

suggested in Sec. III A for the reverse interpolation problem
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of reconstructing continuous data hðr; tÞ from equidistant

samples.

B. Doppler effect

When considering a moving receiver, the Doppler effect

causes a frequency shift on the observed signal. For the emit-

ted frequency xs and the speed of movement �r of the

receiver, the sensed frequency is

xx ¼ xs 1þ �r

c0

� �
: (33)

Here, the sign of �r is positive when the receiver is moving

towards the source and negative when the receiver is moving

away from the source. In the following subsection, we

explain under which conditions the Doppler effect may be

considered negligible for the reconstruction. However, a

higher velocity of the moving microphone will induce more

noise caused by air flow in practice.

For the dynamic measurement procedure proposed in

Ref. 19, the measurement signal of the moving microphone

is processed at one stretch. The whole observed signal is

transformed into frequency domain, where, taking the

Doppler effect into account, an inverse projection yields the

spectrum of spatio-temporal RIRs along the trajectory. The

key factor for the reconstruction in Ref. 19 is the speed of

movement which has to be constant in order to obtain consis-

tent frequency shifts. In contrast, the general reconstruction

method proposed in this paper treats each sample of the mea-

surement signal x(n) independently. For a certain sampling

time n, the value sampled at tracked position rðnÞ is assumed

to be the same value that would be sampled simultaneously

by a stationary microphone at that particular position. The

duration of the process in the microphone for taking one

sample may be assumed to be so small that the actual effect

of integration over space induced by the movement, i.e., spa-

tial averaging of the measured sound pressure, is negligible

for velocities performed by a human or robot. This means

that each measured value x(n) is considered to be one snap-

shot in time and space which contributes one equation, Eq.

(18), to the linear system (22). Accordingly, the values of

the measurement vector x can even be arbitrarily permuted,

provided that the same permutation is applied to the sam-

pling vectors in the rows of the system matrix A.

Of course, the Doppler effect affects the highest fre-

quencies that fall beyond the cutoff frequency of the anti-

aliasing prefilter in case the microphone moves toward the

source. Vice versa, when the microphone is receding from

the source, frequencies beyond the actual cutoff would pass.

For both cases, a little amount of oversampling, which will

be present in practice anyway, is the solution. For example,

when the microphone is moving away from the source with

up to �r¼ 17 m/s and c0¼ 340 m/s, then, considering Eq.

(33), in addition to temporal oversampling by factor 1.05,

also spatial oversampling by the same factor is required for

the virtual grid in order to avoid aliasing.

When a multiresolution scheme is used for the recovery

of the spatial grid as described in Sec. V B, the Doppler

effect is also existent. Here, the aim is to recover distinct sub-

bands of the PAF which requires band-pass filtering of the

measurement signal x(n). The individual frequency bands are

successively recovered by solving one linear system for each.

The motion of the microphone toward and away from the

sound source leads to frequency displacements between

adjoining frequency bands according to Eq. (33). Analogously,

in case of appropriate oversampling in space, the subsequent

synthesis of the entire PAF spectrum from the distinct sub-

bands obtains the full recovery result respecting all concerned

frequencies without aliasing.

C. Error analysis for spectrally flat excitation

Let us consider the following scenario. The source sig-

nal s(n) is either white noise with variance r2
s or a perfect

sequence with period length L and autocorrelation

rssðmÞ ¼ r2
s dðm mod LÞ; (34)

where r2
s represents the signal power. For white noise, the

signal matrix S satisfies

EfSSTg ¼ Lr2
s IM�M: (35)

For one period of a perfect sequence, we have

SST ¼ Lr2
s IM�M: (36)

The additive measurement noise g is modeled as independent

and identically distributed white noise with covariance matrix

Rgg ¼ EfggTg ¼ r2
gIM�M. The noise term is uncorrelated to

the parameters in h. The parameters in h are assumed to have

zero mean (cf. Sec. II A) and variance r2
h, so the autocovar-

iance matrix of h is Rhh ¼ EfhhTg ¼ r2
hIU�U . Regarding this

model, the use of the linear MMSE estimator for a system

matrix A yields the error covariance matrix26

Ree ¼ E ĥ � h½ � ĥ � h½ �T
n o

¼ r2
h IU�U þ

r2
h

r2
g

ATA

" #�1

:

(37)

The variances of the estimated parameters ĥ are located at

the principal diagonal of Ree and the mean squared error

(MSE) of the estimation is given by

MSE ¼ trfReeg: (38)

Substituting Eq. (37) into Eq. (38) and using the relationship

trf IS�S þ BCT
� ��1g ¼ trf IW�W þ CTB

� ��1g � ðW � SÞ
(39)

for matrices B and C of size S�W, the MMSE for the model

with M¼U can be described as

MMSE ¼ r2
htr IM�M þ

r2
h

r2
g

AAT

" #�1
8<
:

9=
;: (40)
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Exploiting the block representation (26), the square matrix

AAT is given by

AAT ¼
XN

u¼1

UuSSTUu: (41)

Due to Eqs. (35) and (36), respectively, the estimation error

becomes

MMSE ¼ r2
htr IM�M þ

r2
h

r2
g

Lr2
s

XN

u¼1

U2
u

" #�1
8<
:

9=
;: (42)

With reference to Eq. (24), the estimation error in Eq. (42)

corresponds to

MMSE ¼ r2
h

XM�1

n¼0

1

1þ r2
h

r2
g

Lr2
s

XN

u¼1

u2 r nð Þ; rgu

� � : (43)

In presence of measurement noise, the following observa-

tions can be made by reference to the expression (43), inde-

pendent from the actual interpolation accuracy.

• The MSE depends on the interpolation coefficients

uðrðnÞ; rgu
Þ, and, thus, on the trajectory rðnÞ, the modeled

grid G, and the chosen interpolation function.
• The larger the sum of the squared coefficients,

XN

u¼1

u2ðrðnÞ; rgu
Þ; (44)

becomes for any measurement position, the smaller the

error will be.
• Given that

PN
u¼1 uðrðnÞ; rgu

Þ ¼ 1 according to Eq. (27)

and assuming nonnegative coefficients as for the linear

interpolation, the term (44) will be maximal when the

coefficients are either zero or one. This means that it

would be optimal to sample only on the virtual grid posi-

tions. The worst case occurs when the partition of unity

yields consistently equal coefficients, which corresponds

to sampling on the middle between the grid positions.
• Consider an interpolation with positive and negative coef-

ficients, e.g., the Lagrange interpolation. Then, a larger

support of the interpolation function may increase the

amount of Eq. (44), and, thus, reduce the estimation error.
• Using the sinc function with infinite support and assuming

N ! 1, then, the estimation error is independent of the

trajectory, since Eq. (44) always equals 1. A truncation of

the sinc function leads, again, to a larger estimation error

for larger distances of the measuring positions to the next

virtual grid points.

Moreover, the position-dependend terms (44) may also

be used to determine the condition number of the resulting

system matrix A. By applying the singular value decomposi-

tion A ¼ URVT , Eq. (41) leads to

AAT ¼ URVTVRTUT ¼
XN

u¼1

UuSSTUu (45)

and thus

UR2UT ¼ Lr2
s

XN

u¼1

U2
u; (46)

where U;V 2 RM�M are orthogonal matrices with UT

¼ U�1; VT ¼ V�1 and R 2 RM�M is a diagonal matrix con-

taining the singular values of A. Obviously, the spectrally

flat excitation sequence forms the right-singular vectors of A
according to V ¼ 1=

ffiffiffiffiffiffiffiffi
Lr2

s

p
S. Following Eq. (46), U is the

identity matrix or a permutation matrix, respectively, since it

must be orthogonal and must not change the diagonality of

R2 correspondent to the right-hand term of the equation.

Further, the set of singular values in R is

K ¼ f 2 R>0 j f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr2

s

XN

u¼1

u2ðrðnÞ; rgu
Þ

vuut
8<
:

9=
;: (47)

Accordingly, the condition number of A is

j Að Þ ¼ maxfKg
minfKg ; (48)

which is determined by the trajectory, the modeled grid in

space, and the interpolation method. Let us consider the

worst case for a simple trilinear interpolation on a 3D grid.

This consists of a trajectory including both extreme posi-

tions, which are exactly on one grid point, and exactly in the

middle between eight grid points. The upper bound for the

condition of the problem is then given by

jlin Að Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 0:1252ð Þ

p ¼
ffiffiffi
8
p
� 2:83: (49)

With Eqs. (15) and (16), the sampling vector of each

sample covers a certain section in space depending on the

microphone position. For an excitation sequence s(n) with

uncorrelated samples, the temporal order of measurement

positions rðnÞ could be arbitrarily permuted without affect-

ing the sound-field reconstruction. This will be shown in the

following paragraph.

A permutation P : f0;…;M � 1g ! f0;…;M � 1g of

rðnÞ leads to a shift of the interpolation function in Eq. (16)

and modifies the weighting vectors to

wuðnÞ ¼ uðrðPðnÞÞ; ruÞ sðnÞ: (50)

The order of the diagonal elements in Uu is changed accord-

ing to P, consistently for all u 2 f1;…;Ng. Both the MMSE

according to Eq. (42) and the condition number (48) are

unaffected by this permutation of diagonal elements.

Consequently, the order of spatial measuring points is arbi-

trary concerning the quality of reconstruction. However, sev-

eral permutations P might lead to numerically induced

differences in solving the linear system (22).

As an example, consider for the same statistical model

the simplest case with no interpolation, i.e., the microphone

samples exactly on the grid positions for all n, so rðnÞ 2 G.

According to this, the weighting vectors are
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wuðnÞ ¼ dðrðPðnÞÞ � ruÞ sðnÞ: (51)

Independent of permutation P, each sampling vector /ðnÞ
contains (U – L) zeros and only one instance of the excita-

tion vector sðnÞ. Only the one virtual position, where the

microphone is located at n, is weighted by 1, all the others

are zero-weighted. A variation of P simply induces a posi-

tion shift of sðnÞ in /ðnÞ by blocks of length pL with

p 2 Z. So the MMSE is constant for a varying P, since

AAT ¼ /TðnÞ/ðnÞ is always a diagonal matrix where the

i-th diagonal element is given by

AAT½ �i;i ¼ sTði� 1Þsði� 1Þ: (52)

V. RECOVERY ON LARGE SPATIAL GRIDS

When applying Eq. (22) for recovery on large spatial

grids with high bandwidth, the linear system might become

too large for practical applications due to limitations in com-

putational power and memory. According to Eqs. (4) and

(5), the number of unknowns grows proportionally to f 4
c for

the 4D case where the time dimension and each of the three

space dimensions are involved. For example, to recover the

sound field up to 8 kHz with RIR length L¼ 1000 inside a

cube of 0.2 m edge length, the system to be solved involves

at least 106 unknowns.

In Sec. V A, we propose a strategy to decouple the time

dimension from the problem (22) by using perfect sequences

and solving for a time filtered version of the PAF. This sub-

stantially reduces the computational complexity for recov-

ery. In Sec. V B, we present a multiresolution recovery

scheme which exploits the inherent dependence of the spatial

spectrum on the spectrum of the time dimension. Finally, in

Sec. V C we briefly demonstrate that our dynamic approach

for sound-field recovery is particularly suited to the

compressed-sensing framework.

A. Excitation using perfect sequences

For sound-field recovery on large spatial grids, we pro-

pose the periodic excitation by pseudo-random noise s(n)

with perfect autocorrelation according to Eq. (34). This cor-

responds to s(n) having ideally flat magnitude spectrum. Let

~sðnÞ be one period of the perfect sequence with length L. In

order to fit in with the period length of the chosen pseudo-

random sequence, the assumed length of the grid RIRs is

also set to L. Anyway, the RIRs can be truncated to arbitrary

size after recovery.

Corresponding to Eq. (17), we define L excitation

vectors

~sðnÞ ¼ ~sðn mod LÞ;…; ~sððn� Lþ 1Þmod LÞ½ �T (53)

for n 2 f0;…; L� 1g for a steady-state situation. The vec-

tors (53) cover all different circularly shifted versions of the

chosen pseudo-random noise and build up the circular con-

volution matrix S 2 RL�L for one period of excitation as

S ¼ ~sð0Þ;~sð1Þ;…;~sðL� 1Þ
� �T

: (54)

The excitation by R periods of ~sðnÞ allows for measuring

M¼RL samples and leads to the RL� L convolution matrix

SR ¼ ST ;…; ST
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

R times

T
: (55)

Corresponding to Eq. (23), the resulting measurement pro-

cess is formulated as

x ¼
XN

u¼1

UuSRhu þ gðnÞ: (56)

In order to decouple the time dimension, a diagonal structure

in the system matrix is needed. Unfortunately, using the sys-

tem matrix A
^

¼ ½U1;…;UN� and solving for h
^

¼ ½½SRh1�T ;
…; ½SRhN�T �T is not sufficient, but this representation may

give useful insights for the following derivation. Indeed, this

way of partitioning decomposes the large problem into

smaller ones. The vector h
^

2 RMN then contains

xuðnÞ ¼ sðnÞ � hðgu; nÞ (57)

for all u 2 f1;…;Ng, i.e., the ideally observed signals at the

positions on the modeled grid in space. According to Eq.

(34), the circularly shifted versions of one period ~sðnÞ are

uncorrelated to each other. Equivalently,

sðnÞ � ~sð�nÞ ¼ c
XR�1

k¼0

dðn� kLÞ; (58)

where c is the energy of one period with

c ¼ Lr2
s ¼

XL�1

n¼0

j~sðnÞj2: (59)

Using Eqs. (57) and (58), R repetitions of the sought grid

RIRs could be obtained by calculating

hR ¼ c�1diagfST ;…; STgh
^

; (60)

since

~sð�nÞ � xuðnÞ ¼ ~sð�nÞ � sðnÞ � hðgu; nÞ

¼ c
XR�1

k¼0

dðn� kLÞ � hðgu; nÞ: (61)

The correlation step involving xu(n) and ~sðnÞ and resulting in

Eq. (61) is the same as for the stationary measurement of

hðgu; nÞ using perfect sequences: in practice, the subsequent

averaging over all obtained repetitions would lead to an esti-

mate of the particular RIR under noisy conditions. However,

for the proposed dynamic procedure, the samples xu(n) are

available not by themselves, but only indirectly by the pro-

jection results (18): the dynamic samples x(n) are considered

to be composed of weighted sums of uniformly taken sam-

ples x1ðnÞ;…; xNðnÞ that ideally would be measured on the

virtual grid in space. Therefore, the block diagonal structure
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of A
^

2 RM�MN inherently leads to an underdetermined prob-

lem. Nevertheless, the periodicity of s(n) allows for solving

the system for a solution respecting only one period of exci-

tation instead of R. Then, due to sub-block shifts inside the

diagonal matrices Uu, the averaging step over R periods, as

mentioned above for the stationary measurement of one

RIR, may be embedded into the problem of the dynamic

measurement of N RIRs. A determined problem for the

dynamic procedure is possible for R	N. An illustration of

the considered shifts is given in Fig. 2(a).

The mathematical derivation of the time-decoupling is

based on the orthogonality of the excitation vectors (53)

forming the matrix S. Following Eq. (58),

STS ¼ cIL�L: (62)

Relating to the periodic excitation in SR, this ensures the

central property

SRST ¼ c IL�L;…; IL�L

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
R times

T
; (63)

which is the key to the decoupling of the time dimension.

Note that SR must be set up for the steady state avoiding

zero-padding for the beginning and the end of the sampling

procedure. Using Eqs. (56) and (62), the measurement pro-

cess can be reformulated as

x ¼
XN

u¼1

UuSRSTc�1Shu þ gðnÞ: (64)

By defining the modified RL�NL system matrix

~A ¼ U1SRSTc�1;…;UNSRSTc�1
� �

(65)

¼ U1 IL�L;…; IL�L

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
R times

T

;…;UN IL�L;…; IL�L

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
R times

T

2
4

3
5

(66)

and concatenating the transformed grid RIRs Shu to the solu-

tion vector

~h ¼ Sh1½ �T ;…; ShN½ �T
h iT

; (67)

the new system of linear equations

x ¼ ~A~h þ g (68)

is obtained. This way of proceeding inherently requires of

the trajectory to fulfill

rðnÞ 62 frðn� LÞ; rðn� 2LÞ; rðn� 3LÞ;…g; (69)

in order to avoid linearly dependent rows in ~A. According to

Eq. (67), the solution of the new problem is the PAF filtered

by S along the time dimension, i.e., the ideally observed sig-

nals on the spatial grid for one period of excitation. As

sketched in Fig. 2, the system matrix ~A is the intended block

shifted and clipped version of A
^

consisting of R�N blocks of

L� L diagonal matrices. Each of these diagonal matrices car-

ries the interpolation coefficients of one grid RIR for one of

the R periods of excitation. In relation to h
^

, the dimensionality

of the solution vector ~h 2 RNL is reduced by factor R.

In total, ~A possess only up to MN nonzero elements,

which means a saving of the entire time dimension. By com-

parison, the system matrix A of the original problem formu-

lation (22) contains up to MNL nonzero elements. The sparse

block structure of ~A allows to decouple the time dimension

by decomposing the large system of size RL�NL into L
smaller problems

x‘ ¼ ~A‘
~h‘ þ g‘; ‘ 2 f1;…Lg; (70)

with the partial vectors

x‘ ¼ xð‘� 1Þ; xð‘� 1þ LÞ;…; xð‘� 1þ RLÞ½ �T ; (71)

~h‘ ¼ ~sTð‘� 1Þh1;…;~sTð‘� 1ÞhN

� �T
; (72)

g‘ ¼ gð‘� 1Þ; gð‘� 1þ LÞ;…; gð‘� 1þ RLÞ½ �T ; (73)

each of length R and containing every Lth value of the

corresponding complete vectors, and the sub-system

matrix ~A‘ 2 RR�N whose element in row i and column j
is given by

~A‘

� �
i;j ¼ ~A½ �ði�1ÞLþ‘;ðj�1ÞLþ‘ (74)

¼ uðrðði� 1ÞLþ ‘Þ; rgj
Þ: (75)

The size of the sub-problems (70) is independent of L. The

length L only determines the number of sub-problems to be

solved. Hence, the number of unknowns in each partial sys-

tem grows proportionally to only f 3
c . The saving of the one

dimension reduces the computational cost for recovery

significantly.

The solving of all L problems (70) determines the vector
~h that consists of the representation of each grid RIR hu by

means of the orthogonal basis in S which comprises each cir-

cularly shifted version of ~sðnÞ. Subsequently, according to

Eq. (62) the virtual grid RIRs in h are obtained by calculat-

ing the inverse transformations,

h¼c�1diagfST ;…; STg~h: (76)

FIG. 2. Illustration of system matrices. (a) The system matrix A
^

consisting

of the column-wise concatenation of interpolation matrices Uu and (b) the

system matrix ~A consisting of shifted segments of Uu that allow for the

decoupling of the time dimension.
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This two-step recovery of the PAF does not suffer from col-

oring of observation noise when solving for least-squares,

since, for each RIR, S only changes the phases in the spec-

trum and scales its magnitude by constant factor
ffiffiffiffiffiffiffi
c�1

p
.

B. Multiresolution recovery

From a physical point of view, propagative sound waves

follow the dispersion relation

k2
x þ k2

y þ k2
z ¼

x2

c2
0

; (77)

which gives a relationship between the spatial frequencies

kx, ky, kz in rad m–1 and the temporal angular frequency

x¼ 2pf in rad s�1 for the continuous case.18 The velocity

of the waves is c0 ¼ x=k
^

with the angular wavenumber

k
^

¼ jkj and the wave vector k ¼ ½kx; ky; kz�T . Since air is a

non-dispersive medium for frequencies within the human

hearing range, c0 is independent of x. So, the speed of sound

is only a function of atmospheric conditions inside the closed

room, e.g., temperature and pressure, which are assumed to

be constant during the measurement process according to the

LTI model. In consequence, Eq. (77) reveals a direct connec-

tion between the temporal and spatial frequencies.

Moreover, when the PAF is bandlimited in time domain to

xc, then it is also bandlimited in the spatial domain to

k
^

c ¼ xc=c0. This may be exploited for a multiresolution

recovery scheme of the virtual grid in space.

Consider a very coarse virtual grid with large spatial

intervals allowing for the reconstruction of very large wave-

lengths. This grid only involves a little number of RIRs

inside a bounded area, so the recovery of the sound field at

low spatial frequencies is already possible, using just a few

samples acquired after a short measurement time. Or con-

versely, by fixing the sampling time, at the cost of being

restricted to lower frequencies a coarser virtual grid allows

for more samples per grid RIR than a finer one, which makes

the recovery more robust against noise. Therefore, we pro-

pose a multigrid recovery by solving for subbands of the 4D

spectrum of the PAF.

For each of V grid stages v 2 f1;…;Vg, a separate lin-

ear system of equations

xðvÞ ¼ AðvÞhðvÞ þ gðvÞ (78)

is built up, where hðvÞ 2 RLNðvÞ contains successively more

RIRs on a successively finer spatial grid gðvÞ 2 GðvÞ inside a

constant volume of interest with origin r0. Thus, it follows

jGðv�1Þj < jGðvÞj and Nðv�1Þ < NðvÞ. The PAF is still assumed

to be bandlimited to xc and sampled with xs> 2xc in the

time dimension. Some positions on the finest grid respecting

the entire bandwidth up to xc might be disregarded by the

chosen trajectory leading to an underdetermined system of

linear equations. Due to the proposed multiresolution tech-

nique, at virtual grid positions which are underdetermined

for the full bandwidth due to insufficient sampling, the

recovery of the RIRs is possible at least for some stages at

lower frequencies.

For simplification and without loss of generality, in the

following, we set D ¼ Dx ¼ Dy ¼ Dz. Let D(1) denote the ini-

tial spatial sampling interval for the coarsest grid at stage

v¼ 1, with N(1)¼ 2d RIRs for the d-dimensional case. These

initial grid positions frame the entire volume of interest. The

virtual grid for each subsequent stage v> 1 is modeled with

halving intervals

D vð Þ ¼ 1

2
D v�1ð Þ

; (79)

so NðvÞ ¼ ð2v�1 þ 1Þd . At the final stage, D(V) is supposed to

fulfill the spatial Nyquist-Shannon condition for xc. The

grids in all other stages are spatially undersampled for xc.

According to Eq. (77), shrinking the temporal bandwidth

involves inherently the reduction of the spatial bandwidth.

Thus, we propose to recover the PAF hðgðvÞ; nÞ on the spatial

grid gðvÞ at temporal frequencies x in the subband

xðv�1Þ
c � x < xðvÞc ; (80)

where

x vð Þ
c ¼

pco

D vð Þ (81)

denotes the maximum temporal frequency according to Eq.

(77). With Eq. (79), it follows that xðvÞc ¼ 2xðv�1Þ
c . In order

to solve for these consecutive subbands, the measurement

signal in xðvÞ is chosen to be the filtered version of x(n) ful-

filling Eq. (80) with initial lower limit x(0)¼ 0.

Due to the Doppler effect discussed in Sec. IV B, the

cutoff frequencies xðvÞc must be smaller than required by Eq.

(81), in order to avoid spatial aliasing. Anyway, as men-

tioned in Sec. IV A, spatial oversampling is advisable in

practice, which is equivalent to choosing additionally

smaller limits xðvÞc for the band-pass filtering of x(n).

Solving for hðvÞ in Eq. (78) yields the PAF at temporal

frequencies (80) and at spatial frequencies kx, ky, kz resulting

in wavenumbers k
^ðvÞ of the subband

x v�1ð Þ
c

c0

� k
^ðvÞ <

x vð Þ
c

c0

: (82)

The solutions of the V stages represent distinct temporal sub-

bands of the PAF on spatial grids with different resolutions.

The fusion of these subbands yields the broadband PAF

spectrum up to xc and is achieved by applying the recursion

hðgðvÞ; nÞ ¼ hðgðvÞ; nÞ þ hðgðv�1Þ
"2 ; nÞ � uðgðvÞÞ; (83)

where g
ðvÞ
"2 denotes the upsampled virtual grid of stage v by

factor two along each spatial dimension and uðgðvÞÞ is a

d-dimensional low-pass filter for interpolating the zero-

padded intermediate positions on the finer grid.

Note that the proposed subband recovery scheme on

multigrids is similar to the dyadic tree structure of filter

banks with two-band frequency split: the stage-wise filtering

of x(n) is for subband analysis and uðgðvÞÞ is equivalent to a

subband synthesis filter. In Fig. 3, an illustration of the
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spatial multigrids and the corresponding PAF subbands is

given. Due to the halving grid intervals, the temporal band-

width is exponentially increasing for subsequent stages.

C. Incorporation into the compressed-sensing
framework

Due to the consecutive reflections at the walls, the sound

fields in closed rooms inherently exhibit only a few nonzero

values for the early part of the time dimension. Furthermore,

according to the dispersion relation (77), the sound fields

hold highly structured sparsity in frequency domain. Since

c0 is assumed to be constant, Eq. (77) reveals that the entire

spectrum of the PAF in 3D space is ideally restricted to the

3D surface of a 4D hypercone along the temporal frequency

axis x.18 This property is an excellent prerequisite to com-

bine our proposed dynamic measurement procedure with

compressed sensing based recovery techniques.

The original system of linear equations (22) is devoted

to the problem of recovering the signal hðg; nÞ in vector h 2
RU from M samples x(n) in measurement vector x 2 RM.

The link between both signals is given by the sampling

matrix A 2 RM�U. The principle of compressed sensing27,28

(CS) allows us to find a unique solution for the underdeter-

mined case M<U by merging sampling and compression

into one step. From a point of view of signal processing, CS

enables the reconstruction of an unknown signal even in the

case where the Shannon-Nyquist requirements are not

directly met. The general assumption is that h lives in a sub-

space of dimension K 
 M with respect to an appropriate

basis. For instance, a frequency representation of the sound

field in h allows one to explicitly reconstruct frequency quar-

tets on the spectral cone according to Eq. (77) which defines

the subspace in which the signal actually lives.

Let W 2 C
U�U

denote the transformation matrix lead-

ing to

h ¼ Wc (84)

with vector c 2 C
U

being K-sparse, which means that only a

small number of, at most, K coefficients in c is nonzero.

Then, the regularized problem

argmin
c2C

U

kx� AWck‘2
s:t: kck0 � K (85)

gives the K-sparse problem, with the pseudo norm kck0

counting the number of nonzero elements in c. Solving Eq.

(85) requires an extensive combinatorial search over all sub-

sets of c and is NP-hard.29 However, provided that the meas-

urements are incoherent,30 the relaxation into an equivalent

‘1-norm minimization problem31–33 enables the solution by

convex optimization tools.

VI. EXPERIMENTS AND RESULTS

For the following experiments, we simulated RIRs and

microphone measurements by use of the image source

method,22 considering a room of size 5.8 m� 4.15 m� 2.55 m.

The reverberation time of the room was chosen as RT60¼ 0.3 s.

The temporal sampling frequency was fs¼ 8 kHz, correspond-

ingly, the cutoff frequency of the simulated RIRs was

fc¼ 4 kHz. According to the Nyquist-Shannon sampling theo-

rem (5), spatial intervals D� 0.04 m are required for the virtual

grid. The position of the sound source was set to [1.4, 1.6, 1.0]T

in a world coordinate system with unit 1 m. The origin of vir-

tual grid G, as in Eq. (7), was set to r0 ¼ ½2:75; 1:4; 0:8�T .

Binary MLSs with power r2
s ¼ 1 and period lengths of Lp

2 {511, 1023}, depending on the lengths of the sought RIRs,

were designed, and the positive and negative coefficients were

scaled to yield zero DC offset and to obtain a perfect autocorre-

lation function according to Eq. (34). In real world experi-

ments, however, this adjustment is not necessary, since audio

recordings are DC free by themselves. The measurements were

simulated in a steady-state room, assuming periodic excitation

starting at n¼ –Lp. We sampled the PAF on a plane at height

0.8 m by setting Z¼ 1 in Eq. (8). The 3D problem can be seen

as a stack of multiple plane grids.

Similar to the definition in Ref. 34 but allowing no scal-

ing of the estimate, we used the normalized system
misalignment

NSM ¼
khu � ĥuk2

‘2

khuk2
‘2

(86)

as evaluation criterion for the quality of a recovered RIRs,

with hu 2 RL containing the true RIR and ĥu 2 RL being

the reconstructed RIR at grid index u. For a quantitative

description of the recovered PAF involving N RIRs, we use

the mean NSM,

MNSMN ¼
1

N

XN

u¼1

khu � ĥuk2
‘2

khuk2
‘2

: (87)

A. Experiment 1

The first experiment is devoted to a proof of concept of

the general validity of the new approach. For this, we com-

pare the best possible dynamic sampling with the conven-

tional static technique. This is achieved by constraining the

sampling positions of the dynamic procedure to the points of

the spatial grid. In doing so, we avoid all interpolation errors

and additionally obtain optimal interpolation coefficients

according to Eq. (43).

FIG. 3. Outline of multiresolution recovery. (a) The virtual grids gðvÞ in two-

dimensional space and (b) the corresponding PAF subbands HðvÞðk;xÞ to be

recovered.
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The spatial grid was modeled with sampling interval

D¼ 0.02 m and X¼Y¼ 5. The lengths of the RIRs were set

to L¼ 500. An MLS with R¼ 10 periods and period length

Lp¼ 511 was used.

For the static method, we measured the 25 RIRs on the

spatial grid by correlating each measurement signal with one

period of the MLS and averaging over all R periods.6,7 For

estimation of the baseline of the recovery quality, different

noise conditions were considered. The MNSMs for different

signal-to-noise ratios

SNR ¼ r2
s

r2
g

(88)

can be seen in the first line of Table I. For the dynamic

method, five different setups were considered. The first one

used also Qmax¼ 25 microphones. The dynamic sampling

was achieved by random rotations of the microphone array

around its center. After taking a sample, the array was

rotated by a multiple of p/2. This method fulfills the require-

ment rqðnÞ 2 G for all n and all microphones q. The other

setups used a smaller number Q 2 {20, 15, 10, 5} of micro-

phones which allowed additional translations with a multiple

of D.

For the dynamic recovery, we tested both, the least-

squares solution of the large system (22), and the least-

squares solutions of the 511 time-decoupled systems (70).

The least-squares solutions were obtained by using the

Moore-Penrose pseudoinverses. Both strategies led to the

same recovery results, which are also given in Table I. The

comparison with the first line shows that the dynamic sam-

pling with 25 microphones is as good as the static one for all

noise levels. Slight variations are attributed to the random-

ness of the measurement noise.

The reduction of the number of microphones leads to a

smaller number of samples and therefore a smaller number

of equations describing the sought RIRs. The reduced quality

of reconstruction follows closely

DMNSM ¼ 10 � log10

Qmax

Q

� �
(89)

for all noise levels.

B. Experiment 2

In the second experiment, we investigated the effect of

spatial oversampling on the recovery results for both the lin-

ear and the Lagrange interpolation. The linear interpolation

formula provides the weighting coefficients (24) for the grid

RIRs at very low computational cost, considering a neigh-

borhood of only two in each dimension. For the uniform grid

in space, the Lagrange interpolator is equivalent to a maxi-

mally flat fractional delay filter with finite impulse response,

as both obtain the same coefficients.35 The maximally flat fil-

ter approximates the ideal interpolation at low frequencies.

In order to reduce oscillations as effect of Runge’s phenome-

non, the degree of the Lagrange polynomials was limited by

restricting the maximum distance between a measuring posi-

tion and the corresponding grid points for interpolation to

5D.

We tested the dynamic recovery technique on a plane of

size 0.12 m� 0.12 m considering different sampling inter-

vals D 2 f0:01 m; 0:015 m; 0:02 m; 0:03 mg for the virtual

grid in space. Accordingly, the number of grid positions to

be recovered varied with N 2 {169, 81, 49, 25}. The lengths

of the RIRs were limited to L¼ 1000 taps. An MLS with

Lp¼ 1023 was used for excitation. Solving the system (22)

for recovery would involve 1.69� 105 unknowns for the fin-

est grid. Hence, we decoupled the time dimension and solved

the linear systems (70) for least-squares, each comprising

only 169 unknowns for the finest grid.

The dynamic measurements were taken over R¼ 1000

periods by only one moving microphone. For the micro-

phone trajectory we used the Lissajous figure

r nð Þ ¼ r0 þ l þ A sin
2pnfx
RLp

� �
;A cos

2pnfy

RLp

� �
; 0

" #T

(90)

with l ¼ ½0:06; 0:06; 0�T , A¼ 0.06, and frequency ratio fx/
fy¼ 32/33. Lissajous trajectories for measurement are typi-

cally used in magnetic particle imaging.36 They provide a

high density of sampling points in curves at the edges of the

sampling area. This is promising to improve the sound-field

recovery at outer grid positions, which suffer the most from

the interpolation on the finite grid.

For evaluation we use RIRs at common points in space

which appear on all grids for any D considered. The results

are presented in Fig. 4 for SNRs of the measurements by 60

and 40 dB, respectively. On the one hand, Fig. 4(a) shows

the MNSM4 values for the RIRs on the four grid positions at

the corners of the spatial grids. Here, the Lissajous trajectory

achieved a high density of sampling points. On the other

hand, Fig. 4(b) gives the quality of recovery for the central

position of each spatial grid, where a significantly lower

number of samples was provided. In the middle area, the

density of sampling points is so low that virtual grids with

D< 0.01 m would lead to underdetermined RIRs.

Although a finer spatial grid leads to more unknowns in

the linear systems of equations, the quality of sound-field

recovery improves with spatial oversampling up to factor

TABLE I. MNSM25 [dB] of the RIRs on a 5� 5 grid, depending on levels

of measurement noise. Results for the static method with 25 microphones

and the new proposed dynamic method using Q 2 {25, 20, 15, 10, 5} micro-

phones. Measurements are performed exactly on grid positions.

SNR [dB]

Sampling 10 20 30 40 50 60 70

Static 0.43 �9.55 �19.53 �29.57 �39.45 �49.45 �59.51

Dyn-25 0.49 �9.60 �19.61 �29.49 �39.47 �49.58 �59.52

Dyn-20 1.71 �8.28 �18.28 �28.37 �38.29 �48.40 �58.26

Dyn-15 3.10 �6.94 �16.98 �26.98 �37.00 �46.97 �56.97

Dyn-10 4.72 �5.31 �15.26 �25.31 �35.27 �45.33 �55.27

Dyn-5 7.51 �2.49 �12.59 �22.47 �32.47 �42.50 �52.58
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two (D¼ 0.02 m) for both interpolation methods and noise

levels in our scenario. As can be seen in Fig. 4, additional

oversampling might lead to a diverging quality of the recov-

ered RIRs, depending on the interpolation method, the noise

level, and the number of samples for the grid positions con-

cerned. Especially the Lagrange interpolation raises perfor-

mance on adequately fine grids. However, for too fine grids

the performance of the interpolation does not improve signif-

icantly, but the ratio between number of unknowns and num-

ber of samples still grows, which impairs the recovery using

noisy measurements.

C. Experiment 3

In the third experiment, we tested the multigrid recovery

scheme presented in Sec. V B and compared it to the direct

recovery on one single grid without band-pass filtering of the

measurement signal. The lengths of the RIRs were set to

L¼ 1000 and an MLS with Lp¼ 1023 and R¼ 1000 was

used for excitation.

The volume of interest was a plane of size 0.3 m

� 0.3 m. For the dynamic measurement, a microphone array

with Q¼ 4 microphones arranged on a quadratic grid with

spacing 0.15 m was applied. Referring to the central position

�rðnÞ of the microphone array, the Lissajous figure according

to Eq. (90) with l ¼ ½0:15; 0:15; 0�T , A¼ 0.075, and fre-

quency ratio fx/fy¼ 16/17 was chosen as trajectory, involving

no rotations of the array.

For the multiresolution approach we considered six grid

stages with spatial intervals ranging from D(1)¼ 0.3 m for the

coarsest grid with N(1)¼ 4 to D(6)¼ 0.0094 m for the finest

grid with N(6)¼ 1089. Hamming windowed band-pass filters

of order 1000 were used for the filtering of x(n). The cutoff

frequencies of the subbands were chosen to be lower than

required by Eq. (81), in order to achieve spatial oversampling

by factor 4.5. Correspondingly, the limiting frequencies

were about f
ð1Þ
c ¼ 125 Hz; f

ð2Þ
c ¼ 250 Hz; f

ð3Þ
c ¼ 500 Hz; f

ð4Þ
c

¼ 1000 Hz; f
ð5Þ
c ¼ 2000 Hz, and f

ð6Þ
c ¼ 4000 Hz. For synthesis

of the subbands we tested the linear interpolation and the

Lagrange interpolation with maximum sample distance 5D(v),

i.e., the same methods as used for interpolating the dynamic

measurements.

The quality of the recovered PAF is presented in Fig. 5

for various levels on measurement noise. By contrast with

the direct recovery on the finest grid with N¼ 1089, the mul-

tigrid approach improves the performance by about 3 dB for

SNR� 50 dB.

For very low noise levels, the error of the non-perfect

subband decomposition and synthesis is relatively higher

than the actual benefit of the multiresolution approach. This

is shown by frequency analysis of the error. Therefore, we

define the mean energy spectral density of the error, denoted

with ME-ESD and calculated as

ME–ESD fð Þ ¼ 1

N

XN

u¼1

jHu fð Þ � Ĥu fð Þj2; (91)

FIG. 4. Dynamic recovery on different virtual grids inside a constant plane using a Lissajous trajectory. Recovery quality of (a) the RIRs at the corners on the

virtual grids and (b) the RIR at the center position on the virtual grids.

FIG. 5. Comparison of recovery quality with and without multigrid approach

for different interpolation methods and levels of measurement noise.
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where Hu(f) and Ĥuðf Þ are the Fourier transforms of the true

RIR and the corresponding reconstructed RIR, respectively.

In Fig. 6, the ME-ESD values are presented for the

recovery with and without the multigrid technique, regard-

ing three noise levels and both interpolation methods.

The left-hand sided plots in Fig. 6 show the resulting

recovery errors by use of the linear interpolation, at

the right-hand side are the results for the Lagrange interpo-

lation. Figures 6(a) and 6(b) present the frequency-

dependent error for measurement noise with SNR¼ 40 dB,

Figs. 6(c) and 6(d) for SNR¼ 50 dB, and Figs. 6(e) and

6(f) for SNR¼ 60 dB.

For SNR� 50 dB, the multigrid recovery scheme

obtains much better results in lower frequency bands up to

2000 Hz than the direct recovery on one single grid that

involves the whole set of unknowns for all frequencies. In

the highest band from 2000 to 4000 Hz, the number of

unknowns in hðvÞ equals the number of unknowns in h, thus

both strategies obtain nearly the same errors.

We observe two types of frequency errors induced by

the multiresolution technique: errors due to the spatial syn-

thesis step and errors caused by the non-perfect subband

decomposition of the chosen filters. However, as mentioned

above, both of them are clearly below the error level of the

direct recovery on one single grid for SNR� 50 dB.

Using the linear interpolation for spatial synthesis of the

subband RIRs effects that each subband recovery suffers

from the typical decrease of performance in high frequen-

cies. Due to the close connection between the temporal and

the spatial frequencies, the accuracy of the linear interpola-

tion in space directly affects the recovery quality of the cor-

responding temporal frequencies. This can be explicitly seen

in Fig. 6(e).

In Figs. 6(b), 6(d), and 6(f), the spectral flatness prop-

erty of the Lagrange interpolation can be observed. Here, the

error for the recovery on the single grid is constant over all

frequencies, and the error for each multigrid stage is constant

inside the considered frequency band beyond the transition

frequencies. Instead, the synthesis step via Lagrange interpo-

lation obtains two significant peaks of transition errors, one

at the lowest transition frequency f
ð1Þ
c ¼ 125 Hz with ME-

ESD¼ 6.8� 10�10, and one at the highest transition fre-

quency f
ð6Þ
c ¼ 2000 Hz with ME-ESD¼ 4.3� 10–10. These

error peaks caused by subband filtering exceed the actual

FIG. 6. Frequency-dependent error with

and without using the multigrid recovery

scheme for different noise levels. (a), (b)

SNR¼ 40 dB, (c), (d) SNR¼ 50 dB, and

(e), (f) SNR¼ 60 dB. On the left-hand

side, the linear interpolation was used,

the right-hand side depicts the results of

using the Lagrange interpolation.
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error level of the direct recovery on the single grid for

SNR¼ 60 dB and SNR¼ 70 dB. However, the error is so

narrow banded that the overall quality of recovery in the

sense of the NSM is not impaired when using the multigrid

scheme with Lagrange interpolation in the synthesis step.

VII. CONCLUSION

In this work, we proposed a new method for the mea-

surement of sound fields using moving microphones. With

known trajectory and excitation signal, a system of linear

equations can be set up that leads to the estimation of spa-

tially dependent RIRs on an equidistant virtual grid. A

potential application of the proposed method is the high-

precision measurement of sound fields using hand-held

microphones whose positions are continuously tracked. In

order to reduce the computational complexity, perfect

sequences have been used. Following the dispersion relation

of propagative sound waves, a multiresolution recovery

scheme has been suggested for the spatial grid, allowing for

both the enhancement of recovery quality under noisy condi-

tions and the fast reconstruction of low frequencies at minor

computational cost. We showed that, for the best-case trajec-

tory, our dynamic approach is as good as conventional sam-

pling using static microphones. For non-optimal trajectories,

we demonstrated that the use of an oversampled virtual grid

substantially improves the recovery results. For trajectories

that lead to ill-conditioned linear systems, the extension of

the dynamic method to the theory of compressed sensing has

been outlined. Relating to this, further approaches that

exploit sparse representations of sound fields and use

compressed-sensing reconstruction are currently under

investigation.

ACKNOWLEDGMENTS

This work has been supported by the German Research

Foundation under Grants Nos. ME 1170/8-1 and ME 1170/

10-1.

1J. N. Mourjopoulos, “Digital equalization of room acoustics,” J. Audio

Eng. Soc. 42(11), 884–900 (1994).
2D. Talagala, W. Zhang, and T. Abhayapala, “Efficient multi-channel adap-

tive room compensation for spatial soundfield reproduction using a modal

decomposition,” IEEE/ACM Trans. Audio Speech Lang. Process. 22(10),

1522–1532 (2014).
3M. Schneider and W. Kellermann, “Adaptive listening room equalization

using a scalable filtering structure in the wave domain,” in Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing
(2012), pp. 13–16.

4V. P. Ipatov, “Ternary sequences with ideal periodic autocorrelation prop-

erties,” Radio Eng. Electron. Phys. 24, 75–99 (1979).
5H.-D. L€uke, “Sequences and arrays with perfect periodic correlation,”

IEEE Trans. Aerosp. Electron. Syst. 24(3), 287–294 (1988).
6J. Borish and J. B. Angell, “An efficient algorithm for measuring the

impulse response using pseudorandom noise,” J. Audio Eng. Soc. 31(7/8),

478–488 (1983).
7D. D. Rife and J. Vanderkooy, “Transfer-function measurement with

maximum-length sequences,” J. Audio Eng. Soc. 37(6), 419–444 (1989).
8A. Farina, “Advancements in impulse response measurements by sine

sweeps,” in 122nd AES Convention (2007), pp. 1–21.
9A. Telle, C. Antweiler, and P. Vary, “Der perfekte Sweep—Ein neues

Anregungssignal zur adaptiven Systemidentifikation zeitvarianter akus-

tischer Systeme” (“A perfect sweep–A new excitation signal for the

adaptive system identification of time-variant acoustic systems”), in

Proceedings of the German Annual Conference on Acoustics, Berlin

(2010), pp. 341–342.
10M. Sondhi, “An adaptive echo canceller,” Bell Syst. Tech. J. 46(3),

497–511 (1967).
11J. Benesty, Y. Huang, J. Chen, and P. Naylor, “Adaptive algorithms for

the identification of sparse impulse responses,” in Topics in Acoustic Echo
and Noise Control, edited by E. H€ansler and G. Schmidt (Springer, Berlin,

2006), pp. 125–153.
12D. L. Duttweiler, “Proportionate normalized least-mean-squares adaption

in echo cancelers,” IEEE Trans. Speech Audio Process. 8(5), 508–517

(2000).
13Y. Kaneda, S. Makino, and N. Koizumi, “Exponentially weighted step-

size NLMS adaptive filter based on the statistics of a room impulse

response,” IEEE Trans. Speech Audio Process. 1(1), 101–108 (1993).
14P. A. Naylor, J. Cui, and M. Brookes, “Adaptive algorithms for sparse

echo cancellation,” J. Sign. Process. 86(6), 1182–1192 (2006).
15K. Helwani, H. Buchner, and S. Spors, “Multichannel adaptive filtering

with sparseness constraints,” in International Workshop on Acoustic
Signal Enhancement (2012), pp. 1–4.

16J. Benesty, D. R. Morgan, and M. Sondhi, “A better understanding and an

improved solution to the specific problems of stereophonic acoustic echo

cancellation,” IEEE Trans. Speech Audio Process. 6(2), 156–165 (1998).
17T. Ajdler and M. Vetterli, “The plenacoustic function, sampling and

reconstruction,” in Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (2003), pp. 616–619.

18T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function and its

sampling,” IEEE Trans. Sign. Process. 54(10), 3790–3804 (2006).
19T. Ajdler, L. Sbaiz, and M. Vetterli, “Dynamic measurement of room

impulse responses using a moving microphone,” J. Acoust. Soc. Am.

122(3), 1636–1645 (2007).
20T. Ajdler, “The plenacoustic function and its applications,” Ph.D. thesis,

�Ecole Polytechnique F�ed�erale de Lausanne (2006).
21K. H. Kuttruff, “Sound in enclosures,” in Handbook of Acoustics, edited

by M. J. Crocker (Wiley-Interscience, New York, 1998), pp. 935–938.
22J. Allen and D. Berkley, “Image method for efficiently simulating small-

room acoustics,” J. Acoust. Soc. Am. 65(4), 943–950 (1979).
23P. Peterson, “Simulating the response of multiple microphones to a single

acoustic source in a reverberant room,” J. Acoust. Soc. Am. 80(5),

1527–1529 (1986).
24R. Mignot, L. Daudet, and F. Ollivier, “Interpolation of room impulse

responses in 3d using compressed sensing,” in Proceedings of Acoustics,
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