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ABSTRACT

In this paper, we consider the implementation of the pro-
totype filter of biorthogonal cosine-modulated filter banks
on processors with fixed-point arithmetic. The realization
is based on zero-delay and maximum-delay matrices. We
show that the perfect reconstruction property of the filter
bank is not affected by quantization, rounding and overflow.
We also demonstrate how the latter operations influence the
frequency selectivity of the filter bank.

1. INTRODUCTION

Cosine-modulated filter banks are popular because of their
low computational cost and their perfect reconstruction (PR)
property. However, when implementing such a filter bank
on a processor with finite-precision arithmetic, the proto-
type and the modulating sequences usually have to be quan-
tized and the PR property gets lost. Rounding the results of
- each multiplication and addition to the available wordlength
results in further reconstruction errors. It is therefore of sig-
nificant interest to have filter banks that allow PR also with
finite-precision arithmetic.

Biorthogonal cosine-modulated filter banks have been
studied in [1, 2, 3]. Other than paraunitary filter banks they
allow to design the system delay independently of the filter
length, thus, resulting in a better stopband attenuation and a
smaller transition bandwidth for a given system delay than
paraunitary filter banks. In audio coding applications, it has
been shown that biorthogonal filter banks can significantly
reduce pre-echoes [2, 3)].

In this paper, we concentrate on the implementation of
the prototype filter of biorthogonal cosine-modulated fil-
ter banks on a fixed-point digital signal processor (DSP).
For the realization of the modulation matrix, different al-
gorithms have been published in [4, 5, 6]. The design of
integer-coefficient prototype filters for paraunitary filter
banks has been treated in [7. 8]. In this paper. however,
we consider prototypes with real-valued coefficients and in-
clude coefficient quantization as part of the implementation
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structure.

The paper is organized as follows: First, we recall basic
properties of cosine-modulated filter banks and show how
they can be realized using zero-delay and maximum-delay
matrices. We then show that coefficient quantization and
rounding operations after each multiplication and addition
does not affect the PR property. Finally, we demonstrate
how these nonlinear operations affect the amplitude spec-
trum of the subband signals.

2. COSINE MODULATED-FILTER BANKS

We consider critical subsampling, an even number of bands
(M), use of the same FIR prototype p(n) for both, analysis
and synthesis, and an overall delay of D = 2sA{/ + 20/ — 1
with s being an integer. Note that these are the most com-
mon choices in the design of cosine-modulated filter banks.
The analysis and synthesis filters. denoted as h;(n) and
fr(n),k=0,...,M ~1,n=1,..., N —1, are derived as

hi(n) = 2p(n) cos(%(k +0.5)(n—D/2)+6,) (1)

Ji(n) = 2p(n) cos(==(k +0.5)(n — D/2) = 6x) ()

with 6, = (—1)"’—’,}. The traditional polyphase realization
of a cosine modulated filter bank [9] is given in Figure 1.
Ge(z) and Ko(z), £ = 0,...2A — 1, denote the type-1
and type-2 polyphase components [9] of the prototype filter
P(z), respectively, and the modulation matrices C; and Cz
write for0 < k < M and 0 < ¢ < 2A{:

D
[Culiee = 2cos((k +0.5) 7 (0~ ) +6:) 3)
T D
[C'_)]k’[ = 2COS((I\ + OS)H(QJ\I —-1-(- 5) - ek)
4)

In [10] we have shown that the computational cost of
the polyphase realization can be approximately halved when
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Figure 1: Traditional polyphase realization
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Figure 2: Efficient polyphase realization
taking into consideration symmetry properties of the modu- holds true. and for contiguous prototype filters. G ¢(z) and
lation matrices C; and C, which results in the implemen- K,(z) can always be realized in the following way [10, 31:
tation shown in Figure 2 with
[ G (=1)°Garmr—e(=2%) Jo io
Gele) = [(—1)3_1:—1G(+1\1(—:2) T Gapr—1-o(—27 Ge(z) =[] Des(:) [ Beal=) - Geni(2) ©)
(5) Jj=1 =1
| S Ry TR ) K] B O) [[ D), (0
Kelz) = [(—I)S:_lfi'e+l\1(—:2) Ko(—27) } T ~¢=i0 o ~)J:jo i L :
(6)
where jo = 2s for a fixed value of s in (8) and and 7 such
for(=0,...M/2—1and that the desired filter length NV is met. The matrices B¢ ;(z).
Dy j(z), and Gy 4,,:(2) are called zero-delay, maximum de-
C; (=0,...,M/2 -1 7 '
[Cllee = [Cilk.e =0,...,M/2 - ,i=1,2 lay, and initialization matrices, respectively, and have the
w (Cilkenr €=2/2,. .., M —1 following form:
(7
0 1 _ -b i:_l 1
Bei(z) = [ b A_J , By (2) = [ “ }
3. ZERO-DELAY AND MAXIMUM-DELAY 1 beis ‘ 1 0
MATRICES (1)
If the filter bank is PR, , de; =71 o 0 =t
D¢,(z) = [N—’{ R ED(,I(S) = —dgy
-1 s;—‘_’s—l s
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(=1 1 0111 geaj |1 O
G(?,ini ('-') 27/ ge,o ;—1 ~_1 0 1 §£,2 1
(13)

B 1 [ 1 0]t —ge =t 0
Kﬂ,zn’t(") m [—fw,z 11‘ [O 1 ] ["{7(,0:‘1 1
(14)

4. QUANTIZATION

Each of the matrices in (11)-(14) contains only one coef-
ficient which is subject to quantization. Since the inverse
matrix contains the same coefficient, coefficient quantiza-
tion does not alter the PR property of the filter bank as long
as the same quantization scheme is applied. However, co-
efficient quantization does affect the frequency response of
the prototype filter, as we will see in Section 5.

When multiplying two fixed-point numbers the word-
length of the product equals the sum of both wordlengths
and rounding becomes necessary to reduce the wordlength
to the desired one (usually the wordlength of the input data).
Figure 3 shows the realization of a zero delay matrix with
Matlab Simulink Fixed-Point Blockset. Figure 4 shows the
structure for an inverse zero-delay matrix.
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Figure 3: Zero-delay matrix using Matlab Simulink Fixed-
Point Blockset. Wordlength: 16 bit for both signal and co-
efficient.

sfix16_En15 sfix16_Ef 1% 1 sfix16_En1g |
ED '_‘5 z ® - sfxte Ens g7
In1

FixPt FixPt g M Outt

Gain Unit Delay FixPt

8162715 Sum

516 27-15

e » D
@sﬁ)ﬂ& nd Out2

n2

Figure 4: Inverse zero-delay matrix using Matlab Simulink
Fixed-Point Blockset. Wordlength: 16 bit for both signal
and coefficient.

In Figures 3 and 4, we used signed fixed point repre-
sentation with a wordlength of 16 bit for both the signal
as well as the coefficients. As long as we apply the same
rounding scheme (i.e. towards ceiling. floor, nearest) in the
zero-delay matrix and its inverse, the PR property of the fil-
ter bank is not affected by the rounding operation, since we
first add the rounded signal in the analysis and then subtract

exactly the same signal in the synthesis. For the same rea-
son, a possible overflow in the adder is harmless to the PR
property as long as the adder does not saturate in this case.
The same holds true for maxmimum-delay as well as the in-
tialization matrix since they have a similar structure. Note
that the same argumentation has been followed in [11] for
the design of integer-to-integer wavelet transforms.

5. DESIGN EXAMPLES

Although nonlinear operations such as quantization, round-
ing and overflow do not affect the PR property of the fil-
ter bank they can severely alter its frequency selectivity.
In the following we give design examples using a white
i.i.d. input signal. An estimate for the amplitude spectrum
of the subbands prior to subsampling is obtained by aver-
aging the DFT of non-overlapping rectangular signal win-
dows of length 1024. We only consider the influence of the
polyphase realization of the prototype and assume that the
modulation matrix is perfect. The prototype implementa-
tion is simulated using the Fixed Point Blockset from Mat-
lab Simulink.

5.1. Example 1

For a filter bank with A/ = 8 subbands, we implement a
lowdelay prototype filter of length N = 32 that causes an
overall system delay of D = 15. For this setting. G¢(2)
according to (9) consists of the initialization matrix and two
zero-delay matrices. The coefficients of the original proto-
type filter are given in Table 1.

Table 1: Coefficients of the floating-point prototype filter

Go1 | —0.74788545432548 | goy | —0.87530466500673
Go2 | 0.91446400442459 | Goo | 0.69704618303368
o3 | —0.91180806866778 | o3 | —0.93566919243152
bor | 0.33375425198257 | bay | 0.66057082567363
boe | 0.47272551599654 | bao | 0.18343353117840
g1 | —0.77512756844701 | g3 | —1.16561172679350
G120 | 0.81046800456288 | gzo | 0.57772283002570
G13 | —0.92816707422974 | gs3 | —0.93364838915293
b | 0.45863225672890 | by; | 1.05192917158651
b | 0.31703578350340 | by | 0.07966367878380

Figure 5 shows the normalized amplitude spectrum of

the lowpass band prior to subsampling. The white i.i.d. in-
put signal is in the range € [—1,1] and is linearly quan-
tized to a wordlength of 16 bit. The filter coefficients are
also quantized to 4, 8, and 16 bit wordiength. We can see
from Figure 5 that the filter coefficients are not very sensi-
tive to quantization. The result for 8, 16 bit and the ideal
case (no quantization, ideal white noise) superpose. Only
when quantizing the coefficients to 4 bit wordlength an in-
crease of the power in the stopband can be observed.

I1-471



Normalized lowpass amplitude spectrum

- - ideal lowpass spectum (no quantization)
coefficients of wordlength 16 b

— coefficients of wordiength 8

-~ coefficients of wordlength 4

dB

—40¢f
_50 ......................
CBOE e L b
i
-70 i i i P
0 0.1 0.2 0.3 0.4 0.5
o/2n

Figure 5: Influence of coefficient quantization on the low-
pass amplitude spectrum

5.2. Example 2

The variance of the input signal in Example 1 was chosen
such that hardly any overflow occurred in the analysis filter
bank. The influence of overflow can be observed in Figure
6 where the normalized lowpass spectrum is given for dif-
ferent ranges of the input signal without changing the scal-
ing of the quantization. For z € [—2, 2] occational overflow
could be observed during simulation. This does not alter the
frequency behavior compared to the ideal case. However,
when severe overflow occurs as in the case for x € [—3, 3]
the power in the stopband increases dramatically.
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Figure 6: Influence of overflow on the lowpass spectrum

6. CONCLUSIONS
We have given a structure for the implementation of biorthog-

onal cosine-modulated filter banks with fixed-point arith-
metic. Our approach is based on zero-delay and maximum

delay matrices and keeps the perfect reconstruction prop-
erty despite quantization, rounding and overflow. Design
examples demonstrate that the influence of overflow on the
frequency selectivity is much greater than that of quantiza-
tion and rounding.
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