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Abstract. Motion estimation is essential in a variety of image process-
ing and computer vision tasks, like video coding, tracking, directional
filtering and denoising, scene analysis, etc. Transparent motions are ad-
ditive or multiplicative superpositions of moving patterns and occur due
to reflections, semi-transparencies, and partial occlusions. The estima-
tion of transparent motions remained a challenging nonlinear problem.
We here first linearize the problem in a way which makes it accessible
to the known methods used for the estimation of single motions, such as
structure tensor, regularization, block matching, Fourier methods, etc.
Theoretically, our solution does not limit the number of transparent lay-
ers. Finally, we present a way to categorize different transparent motion
patterns based on the rank of a generalized structure tensor.

1 Introduction

Motion estimation is essential in a variety of image processing and computer
vision tasks, like video coding, tracking, directional filtering and denoising, scene
analysis, etc. Transparent motions are additive or multiplicative superpositions
of moving patterns and occur due to reflections, semi-transparencies, and partial
occlusions.

An algorithm for the estimation of two transparent motions was first pro-
posed by Shizawa and Mase [10]. A layered representation of image sequences
was presented in [16] and approaches based on nulling filters and velocity-tuned
mechanisms have been proposed in [3, 2]. A phase-based solution for the estima-
tion of two transparent overlaid motions and separation of the image layers was
proposed by Vernon [15] and a solution for the separation of the image layers
using constrained least square was proposed in [14]. However, the estimation of
transparent motions remained a challenging nonlinear problem. Here we show
how the problem can be naturally split into linear and nonlinear parts. The
linear part is accessible to known methods used for the estimation of single mo-
tions, such as structure tensor, regularization, block matching, Fourier methods,
etc. The nonlinear part has fortunately closed form solution. For simplicity, we
restrict ourselves to the double transparent motion case, i.e., every point of the
image sequence presents at most two motion vectors. This is certainly the most
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interesting case but, theoretically, our solutions are not limited by the number
of transparent layers and they are presented in such a way that is easy to derive
the corresponding formulas to the general case [9, 8, 11, 12]. Even more, the solu-
tions allow for the categorization of different motion patterns and for automatic
detection of the number of moving layers. In summary, our approach for the es-
timation of transparent motion allows us to conclude that the difficulties in the
estimation of transparent motion are, in essence, the same as for the estimation
of single motion itself.

This paper is organized as follows. Section 2 introduces a differential con-
straint equation for transparent motion. The problem is then split into linear
and nonlinear parts. Two different algorithms to solve the linear part are pre-
sented and the nonliner part is solved analiticaly. Section 3 introduces a Fourier
domain constraint for transparent motion. The goal is to estimate the phase
shifts corresponding to the motion vectors. The problem is, again, solved by
splitting into linear and nonlinear parts. We show how to use the estimated
phase shifts for separation of the image layers. Finally, the Fourier constraint is
transformed back to space domain to obtain a block-matching constraint. Results
are presented for synthetic and real iamge sequences.

2 Differential Methods

Differentials methods are based on the well known constant brightness constraint
equation [6], i.e., the motion field u = (ux, uy)

T of an image sequence g(x, t) is
constrained by

uxgx + uygy + gt = 0 (1)

where gr = ∂g/∂r, r ∈ {x, y, t}. We write the above equation in short form as
α(u)g(x, t) = 0, where α(u) = ux∂/∂x+uy∂/∂y+∂/∂t. Next an additive model
for transparent motion is introduced and a similar constraint is derived.

Constraint Equation for Transparent Motion. We consider an additive
superposition of two image sequences (layers) f(x, t) = g1(x, t) + g2(x, t). If
the motion fields are smooth enough to be considered ‘locally constant’, the
layers can be modeled as g1(x, t) = ϕ1(x − tu) and g2(x, t) = ϕ2(x − tv) with
constant motion fields u and v respectively. In this case, the operators α(u),
α(v) commute and we obtain a constraint equation for the motion vectors [10]

α(u)α(v)f(x, t) = 0. (2)

Since the transparent motion constraint is nonlinear, trying to estimate the
motion vectors directly by using Equation (2) leads to non-convex problems.
Instead, we overcome this difficult by splitting the solution into a linear and a
nonlinear part. Expanding Equation (2), we obtain

cxxfxx + cyyfyy + ftt + cxyfxy + cxtfxt + cytfyt = 0 (3)



where frs = ∂2f/∂r∂s, r, s ∈ {x, y, t}; and

cxx = uxvx cxt = ux + vx cxy = uxvy + uyvx

cyy = uyvy cyt = uy + vy (4)

are the so called mixed motion parameters. In case of a multiplicative super-
position f(x, t) = g1(x, t)g2(x, t), the constraint is the same except for frs =
f∂2f/∂r∂s − ∂f/∂r ∂f/∂s [7]. The introduction of the mixed motion parame-
ters splits, in a natural way, the problem of transparent motion estimation in
two parts: a linear part where we look for the parameters crs, r, s ∈ {x, y, t};
and a nonlinear part where we solve Equation (4) for the motion vectors. Since
Equation (3) is linear we can use different methods for the estimation of the
mixed motion parameters. We will describe some of such methods in Section 2.1
of this work.

2.1 Linear Part: Estimation of the Mixed Motion Parameters

The Structure Tensor. This method consists in first supposing that time is
parameterized such that Equation (1) reads

ũxgx + ũygy + utgt = 0. (5)

with a unity parameter vector ue = (ũx, ũy, ut)
T . Second, if the variables gx, gy, gt

are independent with same variance and ue is constant, the best fit ûe, in least
square sense, is the minimizer of the functional

E(ue) =

∫
|ue · ∇g(x, t)|2ω(x, t) dΩ, (6)

where Ω is a neighborhood of the point of interest and ω(x, t) is an weighting
function. Therefore, ûe is the minimal eigenvector of the structure tensor [5]

J1 =

∫
∇g(x, t)⊗∇g(x, t)ω(x, t) dΩ. (7)

The motion vector is then recovered from ûe/ût.
For the mixed motion parameters, we proceed in analogy and look for a unity

minimizer ce = (cxx, cyy, ctt, cxy, cxt, cyt)
T of the functional

E(ce) =

∫
|ce · f(2)(x, t)|2ω(x, t) dΩ, (8)

where f(2) = (fxx, fyy, ftt, fxy, fxt, fyt)
T . Note that ctt replaces 1 as the coef-

ficient of ftt in Equation (3). Again, the optimal estimator ĉe is the minimal
eigenvector of

J2 =

∫
f(2)(x, t) ⊗ f(2)(x, t)ω(x, t) dΩ (9)

and the mixed motion parameters are recovered from ĉe/ĉtt [9].



Moving Pattern rankJ1 rankJ2

◦ 0 0
| 1 1
|+ | 2 2
• 2 3
•+ | 3 4
•+ • 3 5
others 3 6

Table 1. Different motion patterns (first col-
umn) and the ranks of the generalized struc-
ture tensors for 1, 2 motions (table rows). The
correspondence between the different motion
patterns and the tensor ranks that can be used
to estimate the confidence for a particular pat-
tern, i.e., a proper motion model. The rank of
JN , N = 1, 2 induces a natural order of com-
plexity for patterns consisting of N additive
layers.

Confidence Measures. Clearly the estimator ĉe (ûe) is reliable only if the minimal
eigenvalue of J2 (J1) is small compared to the others (ideally, exactly one zero
eigenvalue). Therefore, confidence on the estimators can be accessed from the
eigenvalues of Jn, n = 1, 2. Alternatively, it is interesting to have confidence
even before the estimation be carried out. Let Hn,Kn, Sn represent the trace,
the determinant, and the sum of the central minors of Jn respectively. These
numbers scale as K1/m ≤ (S/m)1/(m−1) ≤ H/m and, for a ideal model, we had
K = 0, S 6= 0. Hence, they can be used as confidence measures [9].

Local Categorization of the Moving Patterns. Besides allowing for motion es-
timation, the structure tensor allows for a local categorization of the moving
pattern ϕ : rankJ1 = 0 corresponds to the motion of regions with constant
intensity (◦) and any motion vector is admissible in this region; rankJ 1 = 1
corresponds to the motion of a straight pattern (|), in this case admissible mo-
tion vectors are constrained by a line; other moving patterns (•) correspond to
the rankJ1 = 2; and non-coherent motion like noise, popping up objects, etc.
correspond to rankJ1 = 3. Surprisingly, in the case of transparent motion, the
categorization of the moving patterns is again accessible trhough the rankJ 2.
Table 1 summarizes these correspondences. For more details see [8].

Regularization. Here we show how to apply a Horn-Schunck-type regular-
ization method for the estimation of the mixed motion parameters. To em-
phasize the dependency on c, we rewrite Equation (3) as c · f(2)r + ftt = 0,
where f(2)r = (fxx, fyy, fxy, fxt, fyt)

T . At a given time, we the look for a field
c = (cxx, cyy, cxy, cxt, cyt)

T that minimizes the functional
∫

1

λ2
|c · f(2)r + ftt|2 + |∇c|2 dΩ , (10)

where λ = λ(x). The Euler-Lagrange equation is

(c · f(2)r + ftt)f(2)r = λ2∆c (11)

Using the approximation h2∆c ≈ č − c, where h is a normalization constant
assimilated by λ, and solving for c, we obtain a Gauss-Seidel iteration step

ck+1 = čk − čk · f(2)r + ftt

λ2 + |f(2)r|2
f(2)r. (12)



This iteration step can be implemented either directly [13], in a simple
method like successive overrelaxation or in more sophisticated methods like
multigrid. Next, we show how to solve for the motions vectors given c.

2.2 Solving for the Motion Vectors.

The key to our solution is the interpretation of the motion vectors as complex
numbers [9], i.e., u = ux + juy, and v = vx + jvy and the observation that

uv = cxx − cyy + jcxy = A0, u+ v = cxt + jcyt = A1. (13)

In the above equations, the last equalities are just the definitions of A0 and
A1. Hence, the motion vectors can be recovered as the roots of the complex
polynomial

Q2(z) = (z − u)(z − v) = z2 −A1z +A0 (14)

since the coefficients of Q2(z) depend only on the mixed motion parameters.
However, Equation (4) is a overdetermined system of equation for the motion
vectors. Consequently, not all possibles values for the mixed motion parameters
vector c correspond to motion vectors. To better understand this issue, we look
at Equations (2) and (3) in the Fourier domain where they become

(uxξx + uyξy + ξt)(vxξx + vyξy + ξt)F(ξx, ξy, ξt) = 0 (15)

and

(cxxξ
2
x + cyyξ

2
y + cttξ

2
t + cxyξxξy + cxtξxξt + cytξyξt)F(ξx, ξy, ξt) = 0 (16)

respectively. F(ξx, ξy, ξt) represents the Fourier transform of f(x, y, t). Therefore,
to fit a motion vectors u,v to Equation (2) is equivalent to fit two planes to the
support of F(ξx, ξy, ξt) while to fit a parameter vector c to Equation (3) is equiv-
alent to fit a quadric to the support of F(ξx, ξy, ξt). Such a quadric represents
two planes if and only if its matrix has exactly two nonzero eigenvalues of oppo-
site signs. Therefore, we conclude that a vector c of mixed motion parameters
correspond to two motion vectors if and only if

∣∣∣∣∣∣

cxx
cxy
2
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2cxy

2 cyy
cyt
2

cxt
2

cyt
2 ctt

∣∣∣∣∣∣
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∣∣∣∣
cyy
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2 ctt

∣∣∣∣ < 0. (17)

The role of the above Equations is to exclude the case when Equation (3) is valid
but the Fourier transform of the motion signal is not restricted to two planes.

2.3 Experimental Results.

Figure 1 shows results for a synthetic image sequence shown transparence. We

first look for one motion using J1 if confidence fails (H1 > ε0, K
2/3
1 > ε1S1), we

look for two motions using J2. If confidence for two motion fails (K
5/6
2 > ε2S2)



(a) (b) (c)

Fig. 1. Shown are: (a) the central frame of a synthetic sequence shown additive trans-
parence (SNR 35 dB); (b) the estimated motion fields; (c) the segmentation corre-
sponding to single and double motion fields. The mean/standard-deviation for the
components of the estimated motion fields are (0.0002/0.0029, 1.0001/0.0043) and
(1.0021/0.0134, 0.0003/0.0129).

zero is assigned to the motion vector. The values ε0 = 0.001, ε1 = 0.2, ε2 = 0.3
were used for the confidence parameters. We used [1, 0,−1]T [1, 1, 1] as first order
derivative filter, an integration window of 5 × 5 × 5 pixels and weight function
ω = 1. Second order derivatives are obtained by applying the first order filter
two times. Figure 2 show results for synthetic and ‘real’ sequences. The Gauss-
Seidel iteration (Equation 12) was applied to estimate the motion fields for both
sequences. Gaussian derivatives with σ = 1 and size of 7 pixel were used for first
order derivatives. As before, second order derivatives were obtained by applying
the first order filter twice. The parameter λ = 1 and 200 iterations were used.

3 Extensions

3.1 Phase Based Approach

Frequency-domain based approaches to transparent motions are based on the
observation that motion induces a phase shift [4, 15, 12].

The Constraint Equation For transparent motions, this translates to

Ftk (ω) = φk1G1(ω) + φk2G2(ω), k = 0, . . . (18)

To obtain the phase shifts, we first simplify notation by setting Φk = (φk1 , φ
k
2) and

G = (G1, G2). We then obtain the following expressions for the above system :

Ftk = Φk ·G, k = 0, . . . (19)



(a) (b) (c)

(d) (e) (f)

Fig. 2. Shown are: (a) the central frame of a synthetic sequence shown transparence;
(b) the result of applying α(û) to (a); (c) the result of applying α(v̂) to (a); (d),
(e) and (f) as in before but for a ‘real’ sequence. For the sequence in the first
row, the error/standard-deviation of the estimated motion components after are
(0.9956/0.0106, −0.0032/0.0101) and (−0.0101/0.0129, 0.9868/0.0144).

Our goal now is to obtain the phase-components vector Φ1 = (φ1, φ2) by can-
cellation of the unknown Fourier-transforms vector G of the image layers in the
system above. First, we define the polynomial

p(z) = (z − φ1)(z − φ2) = z2 + a1z + a2 (20)

with unknown coefficients a1 = −(φ1 + φ2), a2 = φ1φ2. Now the phase terms
φ1, φ2 are the roots of p(z), i.e., p(φn) = 0, for n = 1, 2. Second, we observe that

Ftm+2 + a1Ftm+1 + a2Ftm = (Φm+2 + a1Φm+1 + a2Φm) ·G (21)

= (φm1 p(φ1), φm2 p(φ2)) ·G = 0 (22)

and
Ftm+2 = −a2Ftm − a1Ftm+1 m = 0, . . . (23)



Solving for the Phase Shifts. To solve for the phase shifts we apply again the
strategy of splitting the problem into linear and nonlinear parts. First, we solve
Equations (23) for a1, a2 (linear part). Second, we obtain the unknown phase
changes φ1, φ2 as the roots of p(z) (nonlinear problem).

Since we have two unknowns, we need at least two equations for solving for
a1, a2. Therefore (

Ft2
Ft3

)
= −

(
Ft0 Ft1
Ft1 Ft2

)(
a2

a1

)
(24)

Clearly, we can obtain a1, a2 only if the matrix in the above equation is
nonsingular. Nevertheless, in case of a singular but nonzero matrix, we can still
obtain the phase shifts. To understand why, we will discuss all the cases in which
A is singular. First note that the matrix A nicely factors as

A =

(
Ft0 Ft1
Ft1 Ft2

)
= B

(
G1 0
0 G2

)
BT (25)

where

B =

(
1 1
φ1 φ2

)
. (26)

Therefore,
det A = G1G2(φ1 − φ2)2. (27)

It follows that there are only two non-exclusive situations where the matrix A
can become singular: The Fourier transform of at least one layer vanishes at the
frequency ω; The phase shifts are equal. Therefore, we have

1. rank A = 1: the possible cases are G1 = 0, G2 6= 0; G1 6= 0, G2 = 0 or
φ1 = φ2, G1 +G2 6= 0 and we can compute the double phase or one of the
two distinct phases from

Ft1 = Ft0φ. (28)

2. rank A = 0: in this case G1 = G2 = 0 or φ1 = φ2, G1 + G2 = 0 and all
equations in (18) degenerate to

Ftk = 0, k = 0, . . . (29)

Finally, Equation 27 implies that rankA ≤ 1 everywhere if and only φ1 = φ2

everywhre, i.e., the image sequence does not show transparence.

3.2 Layer Separation.

Once the phase shifts are known it is possible to obtain the transparent layers
as follows (

Ft0
Ft1

)
=

(
1 1
φ1 φ2

)(
G1

G2

)
(30)

Note, however, that the separation is not possible at all frequencies. The
problematic frequencies are those where two or more phase values are identical



(a) (b) (c)

Fig. 3. Layer separation. Shown are: (a) the central frame of a synthetic image se-
quence shown transparence; (b) and (c) the corresponding layers. The errors due to
the interpolation of missing frequencies are seen as oriented patterns.

because the rank of the matrix B is then reduced. This is an important obser-
vation because it defines the support where multiple phases can occur by the
following equation:

φ1 = φ2 ⇐⇒ ej(u−v)·ω∆t = 1 ⇐⇒ (u− v) · ω = 2kπ, k = 0, . . . (31)

On the above defined lines, the Fourier transforms of at the transparent layers
cannot be separated. A possible solution would be to interpolate the values on
these lines from the neighboring frequency values of the separated layers.

3.3 Block-Matching

The Block-Matching Constraint. Transforming Equation (23) back to the
space domain, we obtain the block-matching constraint equation for transparent
motion [11]

e(f,x,u,v) = f0(x− u− v)− f1(x − u)− f1(x− v) + f2(x) = 0. (32)

From this constraint a number of different algorithms for the estimation of multi-
ple motions could be derived. We here present a hierarchical algorithm based on
a combination of statistical model discrimination and hierarchical decision mak-
ing. First, a single-motion model is fitted to the sequence by exhaustive search.
If the fit is poor, the single-motion hypothesis is rejected and the algorithm tries
to fit two transparent motions.

The stochastic image sequence model. Apart from distortions and occlu-
sions the non zero results of the block-matching constraint may be caused by
noise. Additional information about the distribution of the noise hence helps to



determine whether or not the observed error signals after the block-matching
process is explainable by the noise model. Different motion types lead to differ-
ent noise distributions of the error signals which is helpful for selecting the most
likely motion model.

We model the observed image intensity at each spatial location and time step
as

fk(x) = f̄k(x) + εk(x) , εk(x) ∼ N (0, σ2) , k = 0, 1, . . . (33)

Therefore, from Equation (32) and the noise model, we have

e(f,x,u,v) = e(f̄ ,x,u,v) + ε(x), (34)

where ε(x) = ε0(x−u−v)− ε1(x−u)− ε1(x−v)− ε2(x). Hence, for a perfect
match of the transparent motion model the motion compensated residual can
be modeled as

e(f,x,u,v) = ε(x) ∼ N (0, 4σ2). (35)

Consequently, the sum BM2 of squared differences over the block obeys the χ2

distribution with |Ω| degrees of freedom, i.e.,

BM2(x,u,v) =
1

4σ2

∑

y∈Ω
e(f,y,u,v)2 ∼ χ2(|Ω|), (36)

whereΩ is the set of pixels in the block under consideration and |Ω| is the number
of elements in Ω. A block-matching algorithm can be obtained by minimization
of the above expression.

If there is only one motion inside Ω, i.e. f1(x) = f0(x− v), the value of

BM1(v) =
1

|Ω|
∑

x∈Ω
(f1(x)− f0(x− v))2 (37)

will be small for the correct motion vector v. On the other hand, if Ω includes
two motions, the value BM1 will tend to be far from zero for any vector v,
because one vector cannot compensate for two motions.

Motion-Model Discrimination. There are several possibilities to find the
most likely motion model. To save computation time, we opt for a significance
test which allows a hierarchical estimation of the motion vectors. If we allow
a percentage α of misclassifications, we can derive a threshold TN for BMN

N = 1, 2 as follows ( [1]): let the null-hypothesis H0 mean that the model of N
transparent motion is correct. TN is determined by

prob(BMN > TN |H0) = α. (38)

H0 is rejected if BMN > TN . The threshold can be obtained from tables for the
χ2 distribution.



(a) (b)

Fig. 4. Shown are: (a) the central frame of an image sequence presenting regions of
single and transparent motion. (b) estimated motion fields. The area corresponding to
the transparent object has been depicted in (b) for better visualization.

3.4 Experimental Results

Figure 3 shows the separation of a synthetically additive overlaid image sequence.
The missing phase shifts were interpolated by averaging the neighbors values.
The interpolation errors are visible as oriented structures. A better interpolation
method can help to reduce the errors. Figure 4 shows the results of a block-
matching search using 5× 5 blocks. Full search has been performed to find the
best match according to the confidence test described by Equation (38).

4 Discussion

We show how to split the problem of estimating motion in sequences shown trans-
parencies into a linear and a nonlinear part. This strategy allow us to extend
classical but powerful algorithms for the estimation of motion in such sequences
were standard single motion estimation methods fail. By doing so, we reduced
the difficulties in estimating transparent motion to well known difficulties in the
standard single motion case: noisy images, aperture problem, occlusion, etc. The
algorithms presented here are in no way limited to two transparent motions. The
methods were presented in a way that is easy to derive correspondingN−motions
formulas. The presented methods have, as always, vantages and disadvantages.
The structure tensor is fast but usually does not produce dense flows; The phase
based suffer under windowing and fast Fourier transform artifacts; The regular-
ization approach has dense flows as its main advantage by is usually slow; The
block-matching algorithm is very robust to noisy but slow and does not allow
for sub-pixel accuracy.
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