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Abstract— The paper examines multi-modulation schemes
(MMSs) to increase the rate of our two new Complex Orthogonal
Designs (CODs) proposed for eight transmit antennas, namely
C1 and C2, corresponding to the Amicable Orthogonal Designs
(AODs) (8;1,1,2,2;1,1,2,2) and (8;1,1,1,4;1,1,1,4), respectively. In
addition, the optimal inter-symbol power allocation in the pro-
posed codes in single modulation as well as in MMSs in flat
Rayleigh fading channels is considered. It turns out that, in
some modulation schemes, equal power transmission per each
symbol time slot is not only optimal from the technical point
of view, but also optimal in terms of achieving the best symbol
error probability. The principles examining the MMSs in order
to increase the rate of space-time block codes (STBCs) and the
optimal power allocation for multi-modulated STBCs mentioned
here can be generalized for STBCs of other orders without any
difficulty.

I. I NTRODUCTION

It is well known that STBCs of complex signals for more
than two transmit antennas with full diversity cannot provide
a full rate. The maximum rates of those STBCs for 4 and
8 transmit antennas are 3/4 and 1/2, respectively [1]. The
STBCs for more than two transmit antennas are attractive in
the sense that they provide more spatial diversity and temporal
diversity for transmitted symbols, and consequently, provide
better bit error performance than those for two transmit
antennas. Additionally, they provide full spatial diversity for
a given number of transmit antennas. To date, the existing
STBCs for eight transmit antennas have comprised various
unused symbol time slots (50% of symbol time slots are
unused in the code mentioned in [1]), where no useful
information is transmitted. The number of unused symbol
time slots in STBCs should be limited since, during those
slots, the transmit antennas must be turned off. This is
inconvenient from technical point of views, especially for the
systems transmitting a hight data rate, i.e., the symbol time
period is very small. In [2], two new orthogonal STBCs based
on the AOD theory [3] were proposed for eight transmit
antennas. In the proposed codes, namelyC1 and C2, the
number of unused symbol periods is only 25% and 12.5%,
respectively (see next section), compared to 50% in the
conventional designs mentioned in literature, such as [1]. In
addition, limiting the number of unused symbol time slots
results in providing more space and symbol time slots for
transmitting bits, i.e., providing more spatial and temporal
diversity for those bits, and consequently, providing better bit
error performance than the conventional code. This is clearly
shown in the simulation results presented later in this paper.
Moreover, the authors took advantage of the property that,

some symbols in the proposed codes appear more often than
the others, in order to increase the code rate by utilizing
higher level modulation schemes with higher transmission
power for those symbols appearing more times in the codes.
In this paper, the authors provide further research on these
codes. Particularly, we utilize an 8-ary Quadrature Amplitude
Modulation (8 QAM) scheme to further improve the bit error
performance of the proposed codes. In addition, we examine
the optimal inter-symbol power allocation in our proposed
codes with various modulation schemes. It is a simple task to
generalize the principles of the MMSs increasing the rate of
STBCs and the optimal power allocation in multi-modulated
STBCs mentioned in this paper to apply for STBCs of other
orders, and therefore, we do not carry out this task here.

The paper is organized as follows. In Section II, the
two new STBCs proposed for eight transmit antennas are
derived. In the next section, the MMSs increasing the rate
of the proposed codes are examined. The optimal ratios of
symbol power in different modulation schemes forC1 andC2

in flat Rayleigh fading channels are examined in Section IV.
Simulation results are presented in Section V and the paper
is concluded by Section VI. The formulas for symbol error
probability of M-ary PSK signals in flat Rayleigh fading
channels are derived in the Appendix.

II. T WO NEW ORTHOGONAL STBCS FOREIGHT
TRANSMIT ANTENNAS

Orthogonal STBCs that can be used with complex signal
constellations can be constructed by using CODs defined as
follows:

Definition 1: A complex orthogonal design (COD) X of
order n is ann × n matrix on the complex indeterminates
s1, . . . , st, with entries chosen from 0,±s1,. . .,±st, their
complex conjugates±s∗1,. . .,±s∗t , or their product with
i =

√−1, such that:

XHX =
[ t∑

k=1

|sk|2
]
In (1)

whereXH denotes the Hermitian transposition of X andIn

is the identity matrix of order n.

CODs are strongly connected to the AODs [3]. The detailed
theory of AODs, including limitations on the number of
different variables for a given design order can be found in [4].
Drawing from the presented theory of the existence of AODs,
we found two new CODs of order 8, namelyC1 andC2 (see
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Fig. 1. Two new STBCs proposed for eight transmit antennas.

Figure 1), corresponding to the AOD(8;1,1,2,2;1,1,2,2) and
AOD(8;1,1,1,4;1,1,1,4), respectively. It is easy to realize that,
C1 andC2 satisfy the following equation:

CH
i Ci =

[ 4∑

j=1

|sj |2
]
I8 i = 1, 2

With single modulation, the proposed codes provide a code
rate of 1/2 as the conventional one.

III. MMS TO INCREASE THECODE RATE

It is visible that, inC1 andC2, some symbols are transmitted
in more than a single time slot per given antenna. In fact, in
C1, symbolss3 and s4 are transmitted twice as often ass1

or s2. In C2, the symbols4 is transmitted four times as often
as s1, s2 or s3. Thus, by associatings3 and s4 in C1 and
s4 in C2 with symbols from multilevel complex modulation
schemes and the remaining symbols in each ofC1 andC2 with
QPSK symbols, the overall code rates can be increased (there
is, certainly, a tradeoff between the rate increase and the bit
error performance). Particularly, if the MMSs (QPSK+8 PSK)
and (QPSK+16 QAM) are used, then the code rate increases
from 1/2 to 5/8 and 3/4 forC1, and to 9/16 and 5/8 forC2,
respectively [2]. The transmission power in each symbol time
slot is equally allocated and normalized to 1. It means that,s3

ands4 in C1 are derived from a 2-power 8 PSK or 16-QAM
signal constellation, whiles4 in C2 is derived from a 4-power
8 PSK or 16-QAM signal constellation. All other symbols
modulated by a QPSK signal constellation in the codes have
unit power. Additionally, the MMS employing a QPSK signal
constellation associated with an 8 QAM signal constellation
(see Figure 2) can be utilized to further improve the bit error
performance of the proposed codesC1 and C2 at the same
bandwidth efficiency (same code rate) as when an 8 PSK signal
constellation is used. Particularly, the symbolss3 and s4 in
C1 are modulated by a 2-power 8 QAM constellation, while
s4 in C2 is modulated by a 4-power 8 QAM constellation.
Other symbols in the codes are derived from a unitary QPSK
constellation. The coordinates of the 8 QAM signal points,
presented as functions of the factorA, are given in the figure.
It is easy to realize that, if the Euclidean distance between the

Fig. 2. 8 QAM signal constellation and bit mapping scheme.

two closest symbols in the constellation isDmin=2A then the
average transmitted signal power isPav=4.73A2 [5]. For the 2-
power and 4-power constellations, the value ofA in Figure 2 is
0.65 and 0.9196, respectively. An 8 QAM signal constellation
provides a better error property than an 8 PSK one, because,
in order to have the same average power per symbol as in
the former case, the Euclidean distance between the closest
signal points in the later casedmin is smaller than that of
the former case. Specifically,dmin=1.665A, i.e., dmin

Dmin
=0.83.

Clearly, the orthogonality of the signals has been partially
relaxed in the 8QAM constellation to increase the Euclidean
distance between the closest signal points.

IV. OPTIMAL INTER-SYMBOL POWER ALLOCATION IN
SINGLE MODULATION AND MMSS

Allocating equally the power transmitted in each symbol
period is optimal in terms of equal transmission among trans-
mit antennas. However, in order to make sure whether the
best error performance of the codes in different modulation
schemes can be achieved, the dependence of the error proba-
bilities of the proposed codes on the ratio between the power
of the symbols in the codes must be examined. In this section,
the symbol error rates (SERs) of QPSK single modulation,
(QPSK+8PSK) and (QPSK+16 QAM) MMSs are examined.
The SERs of QPSK, 8PSK and 16 QAM symbols in flat
Rayleigh fading channels are (see (9), (11) in the Appendix at
the end of this paper and (10.16), (10.35) and (10.42) in [6]):

PQPSK ≈ 3
4

[
1− µ√

2− µ2

]
(2)



2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

Sy
m

bo
l E

rr
or

 P
ro

ba
bi

lit
y

Code C
1
: P

QQQQC1

γ=5 dB

γ=30 dB
2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

Code C
2
: P

QQQQC2

γ=5 dB

γ=30 dB

2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

Code C
1
: P

QQ88

γ=5 dB

γ=30 dB

2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

Sy
m

bo
l E

rr
or

 P
ro

ba
bi

lit
y

Code C
2
: P

QQQ8

γ=5 dB

γ=30 dB

10 20 30
10

−4

10
−3

10
−2

10
−1

Code C
1
: P

QQ1616

γ=5 dB

γ=30 dB

10 20 30
10

−4

10
−3

10
−2

10
−1

Code C
2
: P

QQQ16

γ=5 dB

γ=30 dB

r 

r 

Fig. 3. SER v.s. r in single modulation and MMSs depending onγ.

P8PSK ≈ 7
48γ8sin2 π

8

(3)

P16QAM ≈ 1
4γ16

∫ ∞

0

[Q(
√

y

5
) + Q(3

√
y

5
)]e

−y
4γ16 dy

+ (1−
√

2γ16

2γ16 + 5
) (4)

whereQ(x)= 1√
2π

∫∞
x

e−
t2
2 dt; µ=

√
2γ

1+2γ ; γ, γ8 and γ16 are
the signal-to-noise ratio (SNR) per bit of QPSK, 8 PSK and
16 QAM symbols, respectively.
Next, we calculate theSERs of C1 and C2 in different
modulation schemes. Let us consider the case where the
symbolss1 ands2 in the codeC1 are QPSK modulated, while
s3 and s4 are 8 PSK modulated as an example. It is noted
that, in each row (or column) inC1, the power of the symbol
sj (j=3,4) transmitted is|sj |2, i.e., only one symbolsj is
transmitted, although, it may appear multiple times. Therefore,
among four transmitted symbols, the probability when QPSK
symbols are transmitted inC1 is 50%, and that when 8 PSK
symbols are transmitted is 50%, and consequently, the average
SER of the codeC1 is:

PQQ88 =
1
2
PQPSK +

1
2
P8PSK (5)

Let Esk
be the average power of the symbolsk, (k=1. . .4) and

r be the inter-symbol power ratio of the proposed codes, which
is definedr=

Esi

Esj
, wherei=3,4;j=1,2 forC1 andi=4; j=1,. . . ,3

for C2. Clearly, in MMSs,r is the ratio between the power of
the higher level modulated symbols (8 PSK or 16-QAM) and
that of the QPSK modulated ones. If we denoteN0 to be the
variance of noise at the receive antenna,γs the average SNR
per symbol andγb the average SNR per bit, then the power
ratio can be rewritten as follows:

r =
Esi/N0

Esj /N0
=

γsi

γsj

whereγs=γblog2M for an M-ary modulated symbol. Partic-
ularly, in the (QPSK+8PSK) MMS,r = γsi

γsj
, (i = 3, 4; j =

1, 2), or:
r =

3γ8

2γ
(6)

Therefore, if average symbol error probabilities are presented
as functions ofr and γ (SNR per bit of QPSK modulated
symbols), then from (2), (3), (5) and (6), we have the average
SER of C1 as given below1:

PQQ88 =
3
8
(1−

√
γ

γ + 1
) +

7
64rγsin2 π

8

(7)

Similarly, the averageSER for C2 is:

PQQQ8 =
3
4
PQPSK +

1
4
P8PSK

=
9
16

(1−
√

γ

γ + 1
) +

7
128rγsin2 π

8

Following this method to calculate symbol error probabilities,
we derive the averageSERs of QPSK single modulation and
(QPSK+16QAM) MMSs in flat Rayleigh fading channels as:
• (QPSK+16QAM) multi-modulation:

PQQ1616 =
3
8
(1−

√
γ

γ + 1
) +

1
2
(1−

√
rγ

rγ + 5
)

+
1

4rγ

∫ ∞

0

[Q(
√

y

5
) + Q(3

√
y

5
)]e

−y
2rγ dy

PQQQ16 =
9
16

(1−
√

γ

γ + 1
) +

1
4
(1−

√
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rγ + 5
)

+
1

8rγ

∫ ∞

0

[Q(
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y

5
) + Q(3
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)]e
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2rγ dy

• QPSK single modulation:

PQQQQC1 =
3
8
(1−

√
γ

γ + 1
) +

3
8
(1−

√
rγ

rγ + 1
)

PQQQQC2 =
9
16

(1−
√

γ

γ + 1
) +

3
16

(1−
√

rγ

rγ + 1
)

Figure 3 presents the theoretical relation betweenSERs and
r depending onγ for the above modulation schemes. In this
figure, γ runs from 5 dB to 30 dB with the pace of 5 dB.
We can realize that, whenr is small, then the higherr is,
the better the performance is. However, whenr increases, the
curves become flat gradually. The value at which the curves
become flat is the (smallest) optimal power allocation ratio
ropt. The optimal inter-symbol power ratiosropt for C1 and
C2 in different modulation schemes are presented in Tables I.
It is clear that the best symbol error performance can be
achieved by the codeC2 in the QPSK single modulation and
(QPSK+8 PSK) MMS, since, the power ratio of this code
is r=4 while the (smallest) optimal power ratios areropt=3
and 4, respectively. For the remaining modulation schemes,
r<ropt and, consequently, there exists the gap between the

1The channelSNR, which is used to simulate in this paper and is defined in

Section V asSNR =

∑4

k=1
Esk

N0
, is a linear function ofγ (for a given value

r). Additionally, the symbol error probability is a monotonically decreasing
function with respect to (w.r.t.)γ for a given valuer (see (7) for instance).
Hence, if the best error performance w.r.t.γ is achieved, then that w.r.t.SNR
is also achieved. Based on these notes, in the paper, the authors search for the
optimal inter-symbol power ratioropt w.r.t. γ, i.e., we search for the optimal
power of the higher level modulated symbols corresponding to a given power
of the QPSK modulated symbols.



TABLE I
THE OPTIMALITY OF POWER ALLOCATION IN SINGLE MODULATION AND

MMSS

Modulation scheme Min. ropt
C1 C2

Single QPSK 6 3
QPSK + 8 PSK 8 4
QPSK + 16 QAM 25 20

5 10 15 20 25
10

−3

10
−2

10
−1

γ (dB)

Sy
m

bo
l E

rr
or

 P
ro

ba
bi

lit
y

Code C
1
: P

QQQQC1

5 10 15 20 25
10

−3

10
−2

10
−1

γ (dB)

Code C
1
: P

QQ88

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

γ (dB)

Sy
m

bo
l E

rr
or

 P
ro

ba
bi

lit
y

Code C
1
: P

QQ1616

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

γ (dB)

Code C
2
: P

QQQ16

r=2 

r=2 

r=2 

r=4 

r
opt

=6 r
opt

=8 

r
opt

=25  r
opt

=20  

Fig. 4. SER v.s. γ with the inter-symbol power ratior=2 for C1, r=4 for
C2 and with the optimal valuesropt.

error performance curves corresponding tor and ropt, which
is presented in Figure 4. From that figure, we realize that,
the potential improvement for the codeC1 is 1 dB in both
QPSK single modulation scheme and (QPSK+8PSK) MMS.
The potential improvements forC1 andC2 in the (QPSK+16
QAM) MMS are 6 dB and 1.75 dB, respectively. The potential
improvement is evaluated atSER = 10−2. The potential im-
provement indicates that the error performance of the proposed
codes, specially forC1 in the (QPSK+16 QAM) MMS, can
be much more improved by selectingr closed toropt with the
penalty of unbalanced power transmission per symbol time
slot at a given transmit antenna. In addition, it is observed
from Figure 3 that, in the same MMS, the codeC1 may
provide a higher code rate with a lower error probability than
C2 for large r (r ≥ 6 in (QPSK+8PSK) MMS andr ≥ 15
in (QPSK+16QAM) MMS) at anyγ in the considered range
(5-30 dB). Hence, it is preferable to selectC1 if r is large
enough, provided that the balanced power transmission is not
the necessary requirement of the system.

V. SIMULATION RESULTS

In this section, the bit error properties of the codesC1 and
C2 in single modulation as well as MMSs are presented. A
system comprising eight transmit antennas and one receive
antenna is considered.SNR here means the channelSNR,
i.e., the ratio between the total power of the received signals
and the power of noise during each symbol time slot.
Channels are assumed to be flat Rayleigh fading ones. The
transmission gains and noise are assumed to be independent
complex Gaussian random variables. In all simulations, the
power of the signal transmitted in each symbol time slot
in C1 and C2 is normalized to one. Figure 5(a) indicates
that, at bit error rateBER=10−3, C1 provides 0.4 dB bit
error performance better thanC2, and 0.65 dB better than

the conventional code [1], when QPSK single modulation is
considered. This is intuitively interpreted as follows. Code
C1 provides more diversity (temporal and spatial) for four
bits embedded in the symbolss3 and s4, while C2 provides
more diversity for only two bits ins4. In other words,C1

has a higher resistance to burst errors thanC2. Therefore,
it is preferable to selectC1 for the case when QPSK single
modulation is utilized for eight transmit antennas.

Figures 5(b) and 5(c) present theBERs of C1 and C2

in (QPSK+8PSK), (QPSK+8QAM) and (QPSK+16 QAM)
MMSs. As mentioned in Section III, for the same MMS,
C1 provides a higher code rate thanC2. The performance
of the conventional code [1] with those MMSs is presented
here as the reference to evaluate the superiority of our codes
(evaluation must be carried out in the same MMS, i.e., at
the same bandwidth efficiency). It is noted that, for the
conventional code, both symbolss3 and s4 are 8PSK or 16
QAM modulated in Figure 5(b), while only the symbols4

is 8PSK or 16 QAM modulated in Figure 5(c). The power
transmitted per each symbol time slot is also normalized to
one. Clearly, the MMS using an 8 QAM signal constellation
provides better bit error performance than other schemes.
Particularly, for the proposed codes, theSNR gains achieved
by the (QPSK+8 QAM) MMS are 0.15 dB forC2, and 0.8
dB for C1, respectively, to have the sameBER=10−4 as
in the (QPSK+8PSK) MMS. Additionally, at the same code
rate, the proposed codes provide better bit error performance
than the conventional code by around 1 dB in (QPSK+8PSK)
MMS and 1 dB in (QPSK+16 QAM) MMS for case of
C1, and around 1.5 dB in (QPSK+8PSK) MMS and 2.7
dB in (QPSK+16 QAM) MMS for case ofC2, respectively,
at BER=10−4. Therefore, atBER=10−4, the SNR gains
achieved by the (QPSK+8QAM) MMS are 1.65 dB forC2

and 1.8 dB forC1, compared to the conventional code with
the (QPSK+8PSK) MMS.

VI. CONCLUSION

In this paper, the MMSs are examined to increase the rate
of our proposed codes for eight transmit antennas. In addition,
the authors derive the optimal inter-symbol power ratios for
the proposed codes in various modulation schemes. Based
on the above consideration, the following conclusions can be
derived. Firstly, when QPSK single modulation is utilized,
it is recommended to select the codeC1 for eight transmit
antennas as it provides the bestBER. Secondly, the (QPSK+8
QAM) MMS can be used to improve the performance of the
codes proposed for eight transmit antennas, especially forC1.
Thirdly, it turns out that selecting the power ratior=4 for C2

is not only optimal in terms of equal power transmission per
each symbol time slot, but also optimal in terms of achieving
the best symbol error property in the QPSK single modulation
and in the (QPSK+8 PSK) MMS in flat Rayleigh fading
channels. Fourthly, the performance of the proposed codes
can be remarkably improved, especially for the codeC1 in
(QPSK+16 QAM) MMS, if the power ratior is selected closed
to the optimal ratioropt, with the penalty of unbalanced power
transmission per symbol time slot at a given transmit antenna.
Fifthly, in the same MMS, the codeC1 may provide a higher
code rate with a better error performance thanC2 if the inter-
symbol power ratio is large enough, provided that the balance
power transmission per each symbol time slot is not necessary
property of the system. Finally, the principles examining the
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Fig. 5. (a): Comparison between the proposed codes and the conventional one in [1]; (b) and (c): Bit error performance of the codeC1 andC2 with different
MMSs.

MMSs in order to increase the rate of STBCs and the optimal
power allocation for multi-modulated STBCs mentioned in this
paper can be generalized for STBCs of other orders, such as
for the 4-ordered STBC in [1][7], without any difficulty.

VII. A PPENDIX

In this section, we derive the approximated symbol error
probability of M-ary PSK signals in flat Rayleigh fading
channels whenSNR per symbol is large enough. The symbol
error probability of M-ary PSK signals inL-path Rayleigh
fading channels is given below (see equation (14.4-38) in [5]):

PM =
(−1)L−1(1− µ2)L

π(L− 1)!
× ∂L−1

∂bL−1

{
1

1− µ2

[π(M − 1)
M

− µsin( π
M )√

1− µ2cos2( π
M )

cot−1
( −µcos( π

M )√
1− µ2cos2( π

M )

)]}

(8)
where, by definition:

µ =
√

γ̄c

γ̄c + 1
=

√
(γ̄blog2M)/L

(γ̄blog2M)/L + 1
and γ̄c and γ̄b are the average SNR per channel and per bit,
respectively. In flat Rayleigh fading scenario, we haveL = 1.
Note thatcot−1[cot(−φ)]=π − cot−1(φ), (0 ≤ φ ≤ π), then
we have:

PM =
(1− µ2)

π

{
1

1− µ2

[π(M − 1)
M

− πµsin( π
M )√

1− µ2cos2( π
M )

+
µsin( π

M )√
1− µ2cos2( π

M )
cot−1

( µcos( π
M )√

1− µ2cos2( π
M )

)]}

When theSNR per symbol satisfies:̄γc À 1, such asγ̄c ≥ 10
(i.e., 10 dB), thenµ ≈ 1. Therefore, we have:

PM ≈ (1− µ2)
π

{
1

1− µ2

[
π(M − 1)

M
− πµsin( π

M )√
1− µ2cos2( π

M )

+
µsin( π

M )√
1− µ2cos2( π

M )
cot−1

(
cot

( π

M

))]}

=
(M − 1)(1− µ2)

M

{
1

1− µ2

[
1− µsin( π

M )√
1− µ2cos2( π

M )

]}

(9)

=
(M − 1)(1− µ2)

M

[√
1− µ2cos2( π

M )− µsin( π
M )

(1− µ2)
√

1− µ2cos2( π
M )

]

(10)

We can further simplify the above equation by noting that:

1− µ2 =
[√

1− µ2cos2(
π

M
)− µsin(

π

M
)
]

×
[√

1− µ2cos2(
π

M
) + µsin(

π

M
)
]

Hence, (10) becomes:

PM ≈ (M − 1)(1− µ2)
M

1[√
1− µ2cos2( π

M ) + µsin( π
M )

]

× 1√
1− µ2cos2( π

M )

≈ (M − 1)(1− µ2)
M

1[
2µsin( π

M )
]
µsin( π

M )

=
(M − 1)(1− µ2)
2Mµ2sin2( π

M )
=

(M − 1)
2Mγ̄csin2( π

M )
Therefore, we have:

PM ≈ (M − 1)
2M(log2M)γ̄bsin2( π

M )
(11)
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