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ABSTRACT
Wavelets are often characterized through their

number of vanishing moments. The more vanish-
ing moments a wavelet has the better are the
compaction properties for low-order polynomial
signals. However, when bounding wavelets on in-
tervals in order to define wavelet transforms over
regions of arbitrary support, some of the moment
properties get lost. This is typically accompanied
with a loss of compaction gain and other unwanted
effects. In this paper, we present methods for re-
covering the moment properties in the boundary
regions. The approach recovers the moments step
by step, requires a low number of computations
and is well suited for the implementation with
finite-precision arithmetic.

1 INTRODUCTION

The discrete wavelet transform (DWT) is known
to be one of the most efficient tools for image com-
pression [1]. The principle of this transform is to
hierarchically decompose a signal into a multires-
olution pyramid, where the signal is split into a
coarse approximation and some detail information
at each resolution level [2]. This decomposition
is carried out with perfect reconstruction (PR)
two-channel filter banks as shown in Figure 1.
The approximation will be further decomposed in
the next stage. The attractiveness of the DWT
results from the fact that it provides very good
compaction properties for many classes of natural
images while the implementation cost is low.

Since images mainly contain low-frequency
content and typically have a large DC compo-
nent, it is important for compression, that the DC
value of an input signal only affects the lowpass
band. Moreover, it is desirable that polynomial
signals of first and higher order can be represented
via the lowpass component only. For signals of
infinite support this is easily achieved by choosing
wavelets with a sufficiently high number of vanish-
ing moments. For example, if the wavelet  (t) has
N vanishing moments, then

R
1

�1
tn (t)dt = 0

for n = 0; : : : ; N � 1. Thus, polynomial input

signals up to order N � 1 are represented by
the lowpass band only. Similar moment properties
hold for the discrete filters, which are used to
carry out the DWT [2]. For example, the analysis
highpass h1(n) satisfies

P
n n

k h1(n) = 0 for
k = 0; : : : ; N � 1.
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Figure 1. Two-channel filter bank.

It is important to notice that the above con-
siderations regarding perfect reconstruction and
vanishing moments only hold for infinitely sized
signals. For signals of finite size, special pro-
cessing steps have to be applied in the boundary
regions in order to result in a support preservative
transform [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The
problem of recovering moment properties in the
boundary regions has been raised in [10], where
boundary filters were designed in such a way that
several moment conditions are satisfied by the
analysis filters, resulting in wavelets that allow
time-scale image analysis with low boundary dis-
tortion. For compression purposes, however, the
properties of the synthesis functions are as im-
portant as those of the analysis ones. Thus, both
sides should be considered jointly when designing
boundary filters. This has been done in [12], where
the recovery of moments was combined with the
energy-normalization of the boundary filters, re-
sulting in almost-unitary shape adaptive wavelets
with arbitrary approximation order. The almost-
unitary behavior is important in order to equalize
the propagation of quantization errors from the
subbands to the output.

In this paper, an approach to the problem of
optimizing boundary filters is proposed that allows
step-wise recovering of moments. The method
only requires a low number of computations and
can be implemented with low-precision arithmetic.



The wavelets under consideration are biorthog-
onal linear-phase wavelets generated from odd
and even-length filters, respectively. However, the
method can also be applied to non-linear phase
wavelets.

2 BOUNDING WAVELETS ON INTERVALS

The wavelet transform of 2-D signals is typi-
cally carried out in a separable form, where hor-
izontal and vertical filtering alternate. The same
principle can be used for 2-D SA-DWTs, so that
one mainly has to concentrate on the decomposi-
tion of arbitrary-length 1-D signals. However, the
alignment of the wavelets used for the decompo-
sition of the rows/columns is of importance. A
SA-DWT should be defined in such a way that the
wavelets in the interior region of an object are not
affected by the actual object shape. This means
that different processing schemes are needed de-
pending on the start and stop position (even or
odd) of the rows and columns.

In this paper, we concentrate on linear-phase
wavelets, which are known to yield better coding
results than non-linear phase ones [13]. As the
initial method for a support-preservative decompo-
sition (prior optimization), we consider symmetric
extension, which already allows to maintain the
DC behavior of the boundary wavelets in a sim-
ple and efficient way. Both odd and even-length
linear-phase filters will be addressed.

2.1 Initial Scheme for Odd-Length Filters
Odd-length filters allow the simplest bound-

ary processing, because symmetric reflection can
be applied at any start and stop position without
further modification. The principle is depicted in
Figure 2(a) for a length-8 signal x0; x1; : : : ; x7
and symmetric filters with impulse responses
fA;B;C;B;Ag for the lowpass and f�a; b;�ag
for the highpass. The upper row shows the ex-
tended input signal, where the given input samples
are shown in solid boxes. The lowpass and high-
pass subband samples, cn and dn, respectively, are
computed by taking the inner products of the im-
pulse responses in the displayed positions with the
corresponding part of the extended input signal.
Note that only four different lowpass and highpass
coefficients, named as c0; : : : ; c3 and d0; : : : ; d3,
occur. Only these eight different coefficients need
to be stored or transmitted. At the receiver side, the
subband signals can be extended accordingly, and
the complete analysis/synthesis scheme is support
preservative and it provides PR. A second scheme
is depicted in Figure 2(b). As in Figure 2(a) we get
four lowpass and four highpass coefficients, but
the impulse responses have a different alignment
relative to the signal. The processing of odd-length
segments starting at even or odd positions is car-
ried out by combining the schemes in Figures 2(a)
and (b).

2.2 Initial Scheme for Even-Length Filters
Symmetric reflection for even-length filters is

depicted in Figures 2(c) and (d). As before, de-
composition schemes for odd-length segments are
derived by combining the shown reflection meth-
ods. Although both schemes in Figures 2(c) and
(d) are support preservative, the one in Figure 2(d)
normally results in more lowpass than highpass
coefficients. This can be avoided by introducing
an additional highpass coefficient d0 = c1�c0 and
neglecting c0.

3 VANISHING BOUNDARY MOMENTS

An advantage of the symmetric extension meth-
ods described in the previous section is the con-
tinuity for DC signals. Clearly, such a signal is
extended as a DC signal, so that all highpass out-
puts will be zero for a DC input if the highpass
has zero mean.1 This holds even in the boundary
regions. Moreover, the schemes for odd-length fil-
ters in Figures 2(a) and (b) also preserve a zero
of the analysis lowpass at z = � in the boundary
regions. All further moments usually do not vanish
at the boundaries.

We now describe how the number of vanishing
moments in the boundary regions can be increased.
For this, let us consider the following matrix rep-
resentation of the analysis operation (two-channel
decomposition):

y =Hx (1)

The rows of the matrix H contain the time-
shifted analysis impulse responses in reversed or-
der while the vectors x and y contain the input
and the subband samples in increasing order (e.g.
yT = [c0; d0; c1; d1; : : :]). In the upper left and
the lower right corner of H we find the bound-
ary filters, which are generated by folding back
the original impulse responses according to the
reflection schemes in Figure 2.

The operations required in order to recover
some of the vanishing moments in the boundary
regions may be written in the following matrix
form, where v contains the new subband samples:

v =

"
U 1 0 0
0 I 0
0 0 U 2

#
H x (2)

This means, apart from the boundaries the signal
is processed as usual (indicated by the identity
matrix). In the boundary regions, the impulse
responses of the boundary filters are linearly com-
bined (U 1 and U 2) in order to result in better
boundary filters with more vanishing moments.
Note that the inverse operation is required on the
synthesis side.

1
H1(1) = 0 is a minimum requirement for regularity [14]

and is thus assumed throughout this paper.
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Figure 2. Symmetric reflection for even-length signals. (a) odd-length filters, segment starting at an
even position; (b) odd-length filters, segment starting at an odd position. (c) even-length filters, segment
starting at an even position; (d) even-length filters, segment starting at an odd position.

In order to describe a general approach to the
optimization problem, let us partition v and H

such that

vk = UkHk x; U 2 = I : (3)

If certain moment properties should be met by
the optimized filters, the matrices U 1 and U 3 have
to be restricted in a certain way. For this, let us
formulate the requirements as

V k = Uk Y k (4)

where Y k = Hk [t
(1); t(2); : : : ; t(I)] contains the

actual responses to specific input signals t(i),
i = 1; 2; : : : ; I and V k = [v

(1)
k ;v

(2)
k ; : : : ;v

(I)
k ]

contains the desired responses to these signals. For
example, if we simply want to preserve the zeros
of the boundary highpass filters at ! = 0, which
are already present due to the reflection method,
we choose V k = Y k = Hk [t

(1)] where t(1) =
[1; 1; 1; 1; : : :]T . If we want to add conditions on
the response to linear polynomial signals, the
vector t(3) = [1; 2; 3; 4; : : :]T has to be included

and the desired response v(3)k has to be specified.
The matrixU k can be parameterized as follows:

Uk = V kY
+
k +P kZ

T
k (5)

where Zk contains the basis of the nullspace of
Y k such that ZT

k Y k = 0. The matrix Y +
k is

the pseudo inverse of Y , and P contains the free
design parameters, which can be chosen in order to
optimize U k. As long as the number of conditions
I is small enough to ensure that Y +

k Y k = I ,
the requirements (4) are fulfilled exactly. If more
conditions are added, such that Y +

k Y k 6= I , (4)

is satisfied in the least squares sense, but there are
no further free design parameters for optimization.

For extremely short segments, the boundary fil-
ters for the left and right boundary merge and H 2

vanishes. In these cases, we replace the matrices
U 1 and U 3 by a common matrix U , such that
v = UHx, where U = V Y ++PZT . Then, for
each segment length and starting position (even or
odd), a different matrix UH will be implemented.
The optimization of the matrices U is carried out
in the same way as the optimization of U k.

For real-time implementations of the optimized
boundary filters, the above scheme with fully
parameterized matrices U 1 and U 3 may be too
complex. Therefore, it is of interest to describe
almost optimal matrices U k with a few sparse
matrices. This can be done by first recovering the
moment properties with minimal effort and then
optimizing the filters by exploiting the remaining
design freedom. In order to explain this, let us
consider the processing of the left boundary with
the scheme depicted in Figure 2(a) and let us write
the standard analysis operations as

c0 = hT0;0x; d0 = hT1;0x; c1 = hT0;1x; : : :

where hT0;k and hT1;k are the rows of H.
In order to recover the first vanishing moment

for the first highpass filter, we may combine filters
in the following way to a modified highpass:

f1;0 = h1;0 � �(h0;0 � h0;1) (6)

with

� =
hT1;0t1

(hT0;0 � h
T
0;1)t1

: (7)



It is easily verified that f T1;0t0 = fT1;0t1 = 0.
The subtraction in (6) can be carried out prior
the multiplication, which decreases the number of
multiplications.

If we want also the second moment to vanish,
we can add a linear combination of (h0;0 � h0;1)
and (h0;0 � h0;2) to h1;0. Using this principle
successively, an arbitrary number of vanishing
moments can be recovered, as long as the signal
length N and thus the number of available impulse
responses is sufficiently high.

The operations for recovering the moment con-
ditions may be written as operators Ai

V
(0)
k = U

(0)
k Y k; (8)

where U (0)
k has the structure

U
(0)
k =

Y
i

Ai (9)

with

[Ai]j;k =

8<
:

1; j = k
ai;k; j = i; k 6= i

0; otherwise:
(10)

The inverses are given by

[A�1i ]j;k =

8<
:

1; j = k
�ai;k; j = i; k 6= i

0; otherwise;
(11)

which shows that the inverse always exists. Fur-
thermore, an implementation of quantized weights
ai;k will cause no numerical instability.

Further optimization is carried out as follows.
We first write the overall modifications to the
boundary filters as

Uk = [I +P kZ
T
k ]U

(0)
k ; (12)

where Zk now contains the basis of the nullspace
of U (0)

k Y k such that ZT
kU

(0)
k Y k = 0. Then we

optimize the elements of P k with respect to an
arbitrary criterion and implement the boundary
processing as

v(0) = U
(0)
k Hkx;

v = v(0) +P k[Z
T
k v

(0)]

The computational cost of the implementation is
influenced by the choice of Z k and by the number
of non-zero entries of P k. Minimizing the cost is
thus possible through choosing a sparse basis Z k.
Such a sparse matrix can for instance be generated
from a given Zk by applying Givens rotations
or Householder reflections. Further reduction can
be achieved by implementing only those columns
of Zk, which yield a significant performance
improvement.

4 FILTER OPTIMIZATION

As we have seen in the last section, restoring
some of the moment properties still leaves freedom
of further optimization. This freedom can for
example be used for optimizing the properties
within a 2-D SA coding scheme. The following
two points are of major importance:

1. Boundary filters operating on adjacent rows
(columns) which start or stop at different
positions should be well aligned in the vertical
(horizontal) direction.

2. The energies of the boundary filters should
be equal to the energies of the original filters
which are used in the interior. Otherwise,
white quantization noise may occur at the
output as highly colored noise.

An objective function which includes both require-
ments can be stated as follows:

Ck(P k) = �1C
(1)
k

(P k) + �2C
(2)
k

(P k)

+ �3 C
(3)
k (P k)

(13)

with

C
(1)
k (P k) =




diag
n
UkHkH

T
kU

T
k

o
� 1




2
C
(2)
k (P k) =




diag
n
(U�1k )TGT

kGkU
�1
k

o
� 1




2
C
(3)
k (P k) = Efkvk �wkk

2
g

Here, 1 is a vector containing ones, and diagf�g
is a vector containing the diagonal elements of a
matrix. The first term in (13) refers to the energies
of the analysis boundary filters, which should be
close to one. The second term states the same
requirement for the synthesis side (Gk are the
partitions of the synthesis operation G = H�1).
The third term states that the output vk should
be as close as possible to a desired output wk

where both v and w are generated from the
same stochastic input. Choosing an appropriate
wk and minimizing C (3)

k (P k) allows to optimize
the alignment of different boundary filters in the
vertical/horizontal direction. The �i are arbitrary
weighting factors, which allow to balance the three
criteria in (13).

5 CODING RESULTS

Coding results for the cameraman image of size
256 � 256 are shown in Figure 3. Especially in
the vicinity of sharp transitions we see that the
optimized scheme does not suffer from ringing-
like artifact, which occur due to coloration of
the quantization noise. In this example, the 6-10
filters from [13] were used. The matrices U k were
optimized under the restriction that only the 0th
moments are preserved. The matrices Z k were
chosen to allow only a subset of all possible linear
combinations of lowpass and highpass filters to
yield better lowpass filters and simple scale factors



(a) (b) (c)

Figure 3. Coding results for the cameraman image (0.3 bpp, 6-10 filters from [13]); (a) segmentation;
(b) without optimization; (c) with optimization.

for equalizing the energies of the highpass filters.
The implementation cost is only one third of the
cost for a full parameterization of U k. The PSNR
improvement compared to the non-optimized case
is 0.6 dB and the loss compared to the full
parameterization is only 0:04 dB. For odd-length
filters the improvement through optimization is
about 0:3 dB, while for both even and odd length
filters the PSNR results are equal in the optimized
case.

6 CONCLUSIONS

In this paper, we have presented methods for
optimizing the boundary filters in shape adaptive
wavelet transforms. Especially, we have presented
a structured approach that allows to find almost-
optimal solutions which require much less com-
putations than a fully parameterized scheme, but
which yield comparable coding performance.
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