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Synopsis
A blind retrospective MRI motion estimation and compensation algorithm is designed for arbitrary sampling trajectories.
Using the idea of natural images being sparsely representable, the algorithm is based on motion estimation between a
motion corrupted image and it’s sparse representative. Therefore, rigid motion models are designed and used in gradient
descent methods for image quality optimization. As the motion estimation and compensation work on arbitrary real valued
sampling coordinates, the algorithm is capable for all trajectories. Image reconstruction is performed by computationally
efficient gridding. The exact motion estimation results are shown for PROPELLER and radial trajectory simulation.

Introduction
Several motion compensation methods exist for each sampling trajectory, measuring modality, and imaging object, separately. Often
they are based on extra navigator measurements, reduction of patient comfort or extension of measurement time like in gating. But
at all, free non-periodic patient motion like swallowing is still not compensatable. There is a lack of a general blind motion estimation
algorithm retrospectively compensating free patient motion that is applicable to arbitrary sampling trajectories. A model for such an
algorithm is designed based on the sparsity of MR images, gradient descent and fast gridding. Simulations were driven on
PROPELLER  and radial trajectories.

Methods
One MRI k-space measurement is composed of several partial measurements  along specified trajectories within one readout per
different time intervals . Patient motion within one readout is assumed to be constant due to small intervals. A suitable image
reconstruction problem is given by

with the sampling operator  representing the trajectory at time ,  denoting the Fourier transform of the image  which is motion
corrupted by operator .

Sampling is described by  on arbitrary k-space trajectories and needs the computation with real-valued nonequidistant
frequency coordinates. It is calculated by the nonequidistant discrete Foruier transform (NDFT) .

Two motion models are combined in  for translation and rotation separately. Full and sub pixel translation shifts are
mathematically modelled by convolution matrices in image space . Rotation is described by applying a rotation matrix to the
sampling trajectory coordinates followed by a barycentric interpolation  combined with Delaunay triangulation  of the coordinates.
This delivers a differentiable motion model on arbitrary nonequidistant frequency coordinates.

A meaningful regularization on motion corrupted MR images is enforcing sparsity in the wavelet domain by  to give
advantage to clear natural structures.

For motion estimation, a three-step iteration algorithm is performed. A sparsifying ADMM  is evaluated in the first step. It solves the
minimization for fixed motion parameters by splitting it into a measurement fitting and a sparsifying problem which are iteratively
solved and updated by

The measurement fitting problem is solved by conjugate gradients  using the inverse NDFT . The sparsity of the solution for the
second problem is enforced by soft thresholding in the wavelet domain. In the second step, motion estimation is achieved by using
the sparsified reconstruction of the ADMM in the derivatives of the motion models with Newton’s gradient method . Thereby, the
parametrization of translation is improved with a Gaussian model. The last step updates the globally estimated motion on the k-space
frequency coordinates and coefficients.

Finally, image reconstruction is performed by gridding  to overcome blurring of the inverse NDFT. The frequency coefficients are
resampled onto a Cartesian grid. As the arbitrary trajectory coordinates were not equally dense over the whole k-space, the
coefficients are convolved with an area density compensation function. This weighting is computationally efficient calculated by
partitioning the k-space into rectangles around the sampling points and saving the structure in k-d trees .

Results
Representatively, PROPELLER and radial trajectories were simulated. The algorithm was tested on BrainWeb  and Shepp-Logan
phantom data in a FOV of 455 and 160 pixels, respectively. Smooth patient motion was modeled as an autoregressive moving
average process with maximum translation amplitudes up to 30 pixels and maximum rotation up to 45°.

Figure 1 shows motion corrupted images and the motion compensated results of the algorithm calculated with PROPELLER
trajectories. In the corrupted images, no structure or even no image is identifiable. The reconstructed images do not show motion
artefacts, but clear contours and details are visible. Only a few gridding artefacts appear due to low resolution. In Figure 2, the
progresses of the corresponding originally applied and by the algorithm estimated motion are shown. Their courses follow very
closely. The table in Figure 3 shows the mean percentage improvement of the PSNR and mutual information (MI) between motion
corrupted images and motion compensated reconstructions for different maximum translation and rotation amplitudes.

Discussion
The results prove the ability of the algorithm to estimate rigid motion very exactly. Even from images corrupted with motion shifts
about one fifth of the FOV very detailed images are reconstructed. Small differences between the original and estimated motion just
shift the position of the image centroid but do not effect the image quality. The high improvements of the image quality measures
emphasize the impression given by the reconstructed images. The method is easily adaptable to other motion models and with it
expandable to physical descriptions of elastic motion. As sampling is mathematically described for real-valued nonequispaced
frequency coordinates the algorithm quality is largely independent of the design of MRI trajectories.

Acknowledgements
This work has been supported by the German Research Foundation under Grant No. ME 1170/11-1.

References
1. J.G. Pipe. Motion Correction With PROPELLER MRI: Application to Head Motion and Free-Breathing Cardiac Imaging. Magn
Reson Med, 42(5):963-969, 1999.

2. J. Keiner, S. Kunis, D. Potts. Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms. ACM Trans
Math Softw, 36(4):19:1-19:30, 2009.

3. A. Möller, M. Maass, A. Mertins. Blind Sparse Motion MRI with Linear Subpixel Interpolation. Proc BVM, 510-515, 2015.

4. K. Hormann. Barycentric Interpolation. In: G.E. Fasshauer, editor. Approximation Theory XIV: San Antonio 2013. Springer, Cham,
197-218, 2014.

5. F. Aurenhammer, R. Klein, D.T. Lee. Voronoi Diagrams and Delaunay Triangulations. WORLD Scientific, 2013.

6. N. Parikh, S. Boyd, Proximal Algorithms. Found Trends Optim, 1(3):127-239, 2014.

7. J. Nocedal, S.J. Wright. Numerical Optimization-2nd ed. Springer, New York, 2006.

8. O.K. Johnson, J.G. Pipe. Convolution Kernel Design and Efficient Algorithm for Sampling Density Correction. Magn Reson Med,
61(2):439-447, 2009.

9. J.L. Bentley. Multidimensional Binary Search Trees Used for Associative Searching. Commun ACM, 18(9):509-517, 1975.

10. C.A. Cocosco, V. Kollokian, R.K.S. Kwan, E.C. Evans. BrainWeb: Online Interface to a 3D MRI Simulated Brain Database.
Neuroimage, 5(4):425, 1997.

1 1 1 1

1

1

yn
n

= + Φ(x)x̂ arg min
x

∑
n=1

N

∥ F x − ∥Sn Dn yn
2
2

1

σ2

Sn n F x

Dn

SFx
2

Dn
3

4 5

Φ = ∥Wx∥1

6

= ∥ F x − + , = − ,x̂d+1 arg min
x

∑
n=1

N

Sn Tn yn∥2
2

1

λ2
∥x − ∥x̄d+1

2
2 x̄d+1 v̂d ud

= + , = + ,v̂d+1 arg min
v

∥Wv∥1

σ2

λ2
∥v − ∥v̄d+1

2
2 v̄d+1 x̂d+1 ud

= + − .ud+1 ud x̂d+1 v̂d+1

7 2

7

8

9

10

Figures

Figure 1: Top line: Motion corrupted images of
the BrainWeb and Shepp-Logan phantom.

Bottom line: Corresponding motion
compensated reconstructions. Original motion
with maximum shift of 30 pixels per dimension
and maximum rotation of 45° was applied. It is

correspondingly shown with the estimated
motion used for motion compensation in

Figure 2.

Figure 2: Original and estimated absolute
motion for the corresponding images in Figure

1 per measurement time .

Figure 3: Mean percentage improvement of
the image quality measures MI and PSNR for
different images and maximum translation and

rotation amplitudes over five runs each.
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