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Abstract

In a pattern classification setup, image segmenta-
tion is achieved by assigning each pixel to one of two
classes: object or background. The special case of ves-
sel segmentation is characterized by a strong dispro-
portion between the number of representatives of each
class (i.e. class skew) and also by a strong overlap be-
tween classes. These difficulties can be solved using
problem-specific knowledge. The proposed hysteresis
classification makes use of such knowledge in an effi-
cient way. We describe a novel, supervised, hysteresis-
based classification method that we apply to the seg-
mentation of retina photographies. This procedure is
fast and achieves results that comparable or even supe-
rior to other hysteresis methods and, for the problem of
retina vessel segmentation, to known dedicated methods
on similar data sets.

1. Introduction

Photographies of the retina showing the vasculature
are used, for example, to support medical diagnosis and
for intervention planning. To this end, the retinal vessels
need to be segmented to compute measures like vessel
area and length, vessel width, abnormal branching, and
also to provide a localization of vascular structures.

The contrast of vessels in the analyzed images is re-
lated to the quantity of blood found therein. Hence,
small vessels have a weak contrast. Also differences
between vessels and background pixels are localized in
the vicinity of the vessel. The background is usually in-
homogeneous and can be locally similar to the vessels.
Such characteristics make the problem of vessel seg-
mentation difficult, and many solutions have been pro-
posed for it [8]. They can be divided into supervised and
unsupervised methods. In many applications, a set of la-
beled examples is difficult to obtain, and therefore, un-
supervised methods are used. However, there are some

important applications in which supervised methods are
well suited and automatic methods are needed, like e.g.,
screening for diabetic rethinopathy [9].

The hysteresis classification paradigm [3], [1] makes
use of prior knowledge to yield solutions to binary clas-
sification problems. For vessel segmentation, it uses
the connectivity of vessels. Two classifiers are defined:
the first one, called the pessimist, works with a practi-
cally zero false positives rate, which with overlapping
classes implies a high false negatives rate; the second
one, called the optimist, works with a practically zero
false negatives rate and a high false positives rate. Then,
using the connectivity property of vessels, the pessimist
results can be used to select true vessels from among
the optimist results.

The hysteresis paradigm can yield both supervised
[3], [5] and unsupervised [2], [10] classifiers, for scalar
and vectorial inputs, which are all accurate and very
fast. In this contribution, we describe a new type of
supervised relative hysteresis classifier that we use for
the segmentation of retina images with application to
screening for diabetic rethinopathy. We obtain results
superior to both previous supervised hysteresis meth-
ods described in [3], [5] and state-of-the-art methods
[6], [7], [11], [12].

2. A novel type of relative hysteresis classi-
fier

Hysteresis classification If the supports of two
classes in a binary classification problem overlap
strongly but not completely in the original feature space
A, then error-free classification is impossible there. If
the components of one class do exhibit some type of
connectivity in a different feature space B, where there
is also no overlap, then the hysteresis paradigm is used
to design methods that may achieve error-free classi-
fication. Two classifiers working in feature space A
(i.e. the pessimist and the optimist), coupled over the



connectivity constraint in B, build a hysteresis classi-
fier. The pessimist and the optimist are called base clas-
sifiers. For image segmentation, A is given by the gray
levels of the analyzed image. B is then the 2D space
of image coordinates. In this paper the connectivity in
B is defined by the eight neighborhood. True objects
are considered all optimist object points linked to a pes-
simist object point by a chain of neighbors.

The absolute and the relative hysteresis classifier
In [3] a supervised hysteresis classifier is described,
where the pessimist and the optimist are two Fisher’s
classifiers with parameters 〈~w, Tp〉 and 〈~w, To〉 respec-
tively. Feature vectors of all pixels from all training im-
ages built a pixel-feature vector space, that was then
used to compute the parameters of the hysteresis clas-
sifier (i.e. 〈~w, Tp, To〉). These parameters remain con-
stant for all analyzed images. We call this an absolute
hysteresis classifier.

In [5], we proposed a relative hysteresis classifier,
where the parameters change from image to image, thus
better adapting to the analyzed data and providing better
results. The pessimist and the optimist are in this case
defined relative to each image. For scalar inputs this
can be done by means of percentiles, for vectorial in-
puts we have introduced the linear-classifier percentile.
A linear-classifier percentile is defined by a linear sepa-
rating surface that selects percentages of the total num-
ber of realizations in the sample, and by its position on
an axis perpendicular to it.

In this contribution we introduce a new type of rel-
ative hysteresis classifier where the input data is first
transformed to a line by means of LDA (which will
always yield 1D outputs for binary classification prob-
lems) and then the percentiles corresponding to the base
classifiers are defined in the resulting feature space.

Hysteresis classification and percentiles Next, if not
otherwise specified, we assume that vessels are darker
than background. The image investigated can be either
the original image or a vessel map, which represents the
result of different vessel enhancement methods applied
to the original image.

In [2] it was shown how to compute the base classi-
fiers by hypothesis testing. Then, they are chosen such
that the probability of a certain event is very small, i.e.,
at most equal to the significance. This can also be ex-
pressed in terms of quantiles.

For the pessimist, the null hypothesis is that the pixel
under investigation belongs to the background class,
hence we impose P (xb < tp) = α, with xb being a
pixel gray level in the background class, tp a threshold
and α the significance. We have then P (xb < tp) =

∑tp
i=vbmin

nbi

Nb
= α with vbmin denoting the minimum

gray level on the histogram of the background gray lev-
els, nbi being the number of background pixels with
gray level i, and Nb being the total number of back-
ground pixels in the image. The value tp is then the
α’th quantile of the histogram of the background.

The histogram of the image is the discrete approxi-
mation of the mixture of vessel and background class-
conditional probability density functions (pdfs). There-
fore, tp is also a quantile of the histogram of the image
and can be found via

P (x < tp) =

tp∑
i=vmin

ni
N

= αim (1)

where x is a pixel gray level in the image, vmin is the
minimum gray level on the histogram, ni is the num-
ber of pixels with gray level i and N denotes the total
number of pixels in the image. The threshold tp is then
the αim’th quantile of the histogram of the image, and
it should be chosen such that it selects practically only
vessel pixels.

Similarly, the optimist is computed using the object
class-conditional pdf. This time we hypothesize that the
pixel under consideration is an object pixel. To com-
pute the threshold, we impose again a small significance
level β, P (xo > to) =

∑vomax

i=to
noi

No
= β, where xo is a

pixel gray level in the object class, vomax is the maxi-
mum gray level on the histogram of the object gray lev-
els, noi is the number of object pixels with gray level i,
andNo is the total number of object pixels in the image.
to is some quantile of the histogram of the object gray
levels and it is also a quantile of the histogram of the
image. It can be found from

P (x < to) =

to∑
i=vmin

ni
N

= βim (2)

The threshold to is then the βim’th quantile of the his-
togram of the image, and it should be chosen such that
it selects practically all vessel pixels. For the purpose of
hysteresis classification we use percentiles – i.e. 100’th
quantiles.

2.1. LDA-based relative hysteresis classifier

The relative hysteresis classifier of [5] uses two
linear-classifier percentiles hp = bTx + cp and ho =
bTx + co as pessimist and optimist respectively. The
parameters cp and co represent the positions of the cor-
responding linear separation surfaces along the axis de-
fined by b such that they separate certain percentages
of the available sample from the rest.



The scalar product bTx can also be seen as applying
a transformation b to the data vector x that maps it to
a scalar value. To compute b we have made the rather
restrictive assumptions that the class-conditional pdfs of
the object and the background are Gaussian with equal
covariance matrices and thus obtained b = 2Σ(mb −
mo) with mb the mean of the background class and mo

the mean of the object class.
We propose here to use the LDA to compute a map-

ping from the initial multidimensional feature space to
a scalar feature space, where, for the purpose of hys-
teresis classification we then compute the percentiles
corresponding to the base classifiers. As we have a bi-
nary classification problem, the LDA will always yield
a transformation that maps a multidimensional input to
a scalar value.

During LDA, one looks for a transformation such
that in the transformed space, the separability criterion:
F = (µ1−µ2)

2

σ2
1+σ

2
2

, where µ1,2 and σ1,2 are the means and
variances in the transformed space, is optimized. Us-
ing a labeled input feature space, the transformation
weights are:

w = (m1 −m2)
T
(n1
n

Σ1 +
n2
n

Σ2

)−1

(3)

where m1,2 and Σ1,2 are the class-conditional means
and covariance matrices respectively, n1,2 is the number
of components in each class and n the total number of
components.

The base classifiers are now Fisher classifiers, but
in contrast to [3], they are defined in a relative man-
ner as the corresponding thresholds are computed from
percentile values set during training. The vector wi is
computed for each image i in the training set and then w
is computed as the mean over all wi. Alternatively, w
can be computed in the pixel-feature vector space (see
Section 2)

The training To find the two percentiles for the base
classifier in the LDA-transformed feature space, we use
the iterative training procedure from [5]. First the ROC
of a percentile-based decision is used to initialize the
optimist as that percentile corresponding to the point
most distant from the baseline. This ROC is constructed
from the fp and correct classification (cc) rates of each
percentile from zero to 100. Then a hysteresis ROC is
built using the previously established optimist and all
possible pessimist classifiers corresponding to the per-
centiles from zero to 100. The pessimist correspond-
ing to the point that is most distant from the baseline
is selected. The procedure is repeated this time for the
optimist and so on for a predetermined number of steps
or until the base classifiers remain unchanged for two
consecutive iterations.

3. Experimental setup and results
We have applied the hysteresis classifier to the seg-

mentation of vessels in images of the retina from
two databases that are publicly available: the Utrecht
database [12] and the Hoover database [6]. The first
contains 40 images, divided into a training and a test
set with 20 images each. For the test images there are
two different sets of hand-labeled ground-truth images,
marked as first and second observer. For the training
images, there is just one set of ground-truth images,
marked first observer. The Hoover database contains
20 images that we have divided into a test set contain-
ing the first ten images and a training set with the rest.
The Hoover database contains two sets of hand-labeled
ground-truth images, again marked as first and second
observer respectively. For both databases, we have used
the first-observer set as ground truth in our experiments.
Before processing, the images of the Hoover database
were cropped to a size of 512×512 pixels.

Feature extraction To generate feature vectors, so-
called vessel maps [4] are computed from the green
channel of each original image by applying a set of
processing steps aimed at improving the separability
of vessels and background. Each vessel map, which
is an image of the same size as the original vessel im-
age, makes use of other vessel properties to improve the
separability. All maps are used jointly during segmen-
tation. For this purpose, feature vectors were formed
by stacking the values of the vessel maps for each
pixel position to a vector. Originally, five vessel maps
were computed, and after feature selection [3] three-
dimensional feature vectors are obtained.

Results We have compared the LDA-based relative
hysteresis classifier with the linear-percentile-based rel-
ative hysteresis classifier from [5]. Their performance
was measured by the area under the ROC (AROC). For
a perfect system AROC=100. The corresponding ROC
is computed by holding the pessimist fixed and modify-
ing the optimist such that it assigns to the vessel class
between 0% and 100% of the available test samples. We
have also computed accuracy (Ac), sensitivity (Se) and
specificity (Sp).The parameters of the LDA transform
were computed using the pixel-feature space. Table 1
contains the results for the two databases. All results
are average values over all test images in the respective
database. Some classification examples are shown in
Figure 1.

4. Discussion and conclusions
For applications where supervised methods can be

used, we have introduced a novel relative hysteresis



AROC Ac Se Sp

Utrecht
LDA 97.26 95.16 90.94 95.91

lin.-prc. 97.13 95.09 90.86 95.8

Hoover
LDA 95.6 89.46 88.37 89.71

lin.-prc. 95.56 89.44 89.76 89.45

Table 1. Results.

(a) (b) (c) (d)

Figure 1. Ground truth from the Hoover (a) and
Utrecht (c) database, and segmentation result (b)
and (e) respectively.

classifier for vectorial inputs. Rather than using linear-
classifier percentiles as base-classifiers for vectorial in-
puts, we now map the input to a line by means of LDA
and use there the usual percentiles as base-classifiers.
We leave thus the restrictive Gaussian assumption made
while computing the linear-classifier percentiles and re-
sort instead to improving the separability as computed
by F (see Section 2.1).

For comparison, in [11] the following results
are obtained by the method proposed there, on the
Utrecht database: AROC=96.14 with an accuracy of
94.66%. In [12] their own primitive-based method
yields AROC=95.20 with an accuracy of 94.41%, and
the verification-based multithreshold probing [7] yields
AROC=93.27 and an accuracy of 89.11%. On a dual
core Pentium E6700 processor under Matlab, the train-
ing time for the new classifier was about one and a half
hours on the Utrecht data set, half an hour less than the
linear-percentile based relative hysteresis classifier. The
time needed to reach a result in the test-phase is 0.8
seconds for an image from the Utrecht database. The
time needed to compute the pixel-feature vector set for
the same image is six seconds. Therefore a new image
is segmented every 6.8 seconds. In comparison, seg-
mentation of one image by the primitive-based methods
takes more than 10 minutes.

The relative LDA-based hysteresis classifier yields
results that are comparable or slightly better (for the
Utrecht database) than the relative classifier introduced
in [5], but it does so under less restrictive conditions and
it can be trained faster. With respect to some other state-
of-the-art vessel segmentation algorithms, it is both bet-
ter and faster. Hysteresis segmentation can successfully
segment objects of inhomogeneous gray-level represen-
tation found on an inhomogeneous background, as long

as there is a slight difference between object and back-
ground at a local level around the object’s borders and
the supports of the two classes in the pixel feature space
do not overlap completely. These conditions should be
enforced during feature extraction also.
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