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ABSTRACT

The success of skin transplantations depends on a proper
revascularization of the transplanted tissue. Angiogenesis
(vessel growth) in the transplanted dermal matrices can be
stimulated by administering different drugs. To evaluate the
effectiveness of different drug treatments in an experimen-
tal setting using laboratory animals, vessels in transplant
samples are visualized by so-called micro-angiograms, i.e.,
X-ray images after contrast agent injection. We describe a
framework for the acquisition of such micro-angiograms as
well as for the subsequent semi-automatic analysis of an-
giogenesis. Central to our analysis is the segmentation of
small fasciocutaneous vessels in the transplant sample.

1. INTRODUCTION

The success of skin transplantation operations depends cru-
cially on the adequate revascularisation of the transplanted
dermal matrix. To induce vessel growth or angiogenesis,
pharmacological substances may be seeded into the dermal
matrix [8]. The purpose of the system described in this pa-
per is to evaluate the effectiveness of different such sub-
stances. To this end, dermal matrices were transplanted to
cover two disk-shaped full-thickness skin defects (diameter:
15mm) on the backs of laboratory animals (nude mice, body
weight about 30g) [9].

1.1. Vessel imaging by micro-angiography

For vessel imaging after a given time interval (3 to 14
days), blood is withdrawn via the left carotid artery us-
ing micro-surgical instruments, and slowly replaced by a
contrast medium. The transplant sample is then harvested.
The collected transplant sample is imaged using an X-ray
mammography system (typical settings: 9mAs at 24kV). A
micro-angiogram thus obtained shows the fasciocutaneous
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vessels, potentially down to a size of about 20µm [9], and
is depicted in Fig. 1a.

1.2. Micro-angiography analysis

Once the micro-angiograms are acquired, we seek to quan-
tify the angiogenesis in the target tissue, e.g. by measures
such as the percentage of area covered by the blood ves-
sels in the target sample, the vessel length, or the micro-
vascular index (see [9] and the references in there). To this
end, the vessels need to be identified in the imaged trans-
plant. Since our system’s field of application is an exper-
imental laboratory setting for drug evaluation rather than
clinical routine, time-constraints are of less concern, and
also a certain degree of interaction is feasible. Apart from
the imaging setup described above, the central part of our
system is a semiautomatic micro-vessel segmentation algo-
rithm. The results are computed in several iterations starting
from an over-segmentation with practically almost no false
negatives. The over-segmentation is then thinned out step-
wise to produce a result. Since experience shows that these
results may contain some false positives and negatives, we
store the processing result of each iteration. In a final step
the user may then leaf through the different stages of the
algorithm, and select the vessel segments.

Our vessel segmentation algorithm first seeks to en-
hance vessels, before an iterative classification is carried out
[11]. Vessel enhancement is based on the following obser-
vation [1]: vessels are oriented tubular structures of a cer-
tain size with increased absorption relative to their immedi-
ate surroundings due to the contrast medium. In [6] tubular
structures are enhanced using the eigenvalues of the Hessian
matrix computed at different scales. In [13] multiple orien-
tated matched filters are used to enhance directional struc-
tures. The multi-scale approach in [1] employs a Laplacian
pyramid to analyze vessels in cardiac angiograms accord-
ing to shape, contrast, and motion while at the same time
preventing unacceptable noise boosting.

Vessel segmentation can be done using: region growing



[14], active contours [15], or tracking [3] as well as by other
methods [10]. We also distinguish between fully automatic
[3, 10], and semi-automatic [14, 15] vessel segmentation al-
gorithms where the latter typically need some user supplied
seed points (points which with a high probability belong to
the vessels).

In our micro-angiography problem, we start by enhanc-
ing vessel structures by individual methods for larger and
mid-sized to small vessels respectively. The results are
combined to construct a pixel feature vector space from
the analyzed micro-angiogram (Section 2). To segment the
vessels we use an iterative unsupervised segmentation al-
gorithm which improves an initial percentile based over-
segmentation result. Finally, the user is allowed to access
the results from each iteration step, and to select interac-
tively the desired vessels segments. Thus even the small
vessels which are hard to separate from the background can
be correctly segmented (Section 3). After segmentation,
measures such as the absolute or relative vessel area can
directly be computed. Since such area-based measures are
more influenced by larger vessels than smaller ones, length-
based measures such as the micro-vascular index mentioned
above can also be calculated after an additional skeletoniza-
tion procedure such as the one described in [5].

2. MICRO-ANGIOGRAPHY VESSEL FILTERING

The main purpose of the enhancement is to increase separa-
bility of the vessel and non-vessel classes. Since in micro-
angiograms the variability of the vessels, especially with re-
spect to their diameter, is particularly large, we represent
the classes by a three dimensional feature vector, which al-
lows to capture small, mid-sized and large vessel structures.
Another objective is to equalize the background, thus repre-
senting it by a narrower distribution.

2.1. Background equalization

Since the vessels absorb stronger than their immediate
neighborhoods, background may be equalized by a morpho-
logical tophat-like operator [5]. This operator is defined as
the difference between the original image and its closing.
If the filter window size is chosen slightly larger than the
largest vessel diameter, the (dark) vessels will be suppressed
after image closing, leaving only the background. Subtract-
ing this result from the original yields then predominantly
vessel information. The effect of this morphological op-
erator on the separability is twofold. First, it successfully
increases the homogeneity of the background pixels. At the
same time, assuming an additive image model (which may
be obtained by logarithmation) it reduces also the variance
of the vessel pixels as their intensities depend not only on
the own absorption but also on the absorption of their sur-

rounding background to which they are superimposed. A
result is shown in Fig. 1b.

2.2. Homomorphic filter

In angiography, the attenuation of the contrast-agent filled
vessels adds to the attenuation of the background. Due to
the exponential absorption of X radiation, this addition is
turned into a multiplicative relationship between the back-
ground tissue image and the contrasted vessel image. The
homomorphic filter for multiplicatively combined signals
[12] appears therefore suited for vessel enhancement. Af-
ter initial logarithmation, the two sub-images are additively
combined. To eliminate the background and enhance the
vessels we apply then a linear, shift-invariant high-pass fil-
ter specifically designed to increase the vessel structures.
The high frequency components are obtained after subtract-
ing from the original sum its low-pass filtration result. To
increase the vessel contrast an amplification of the high-pass
channel by a factor larger than one follows. Finally, the ex-
ponential of the high-pass filtration result is computed. A
result is shown in Fig. 1c. By attenuating the background
further, the homomorphic filter can improve the homogene-
ity of the background and increase the contrast between ves-
sels and background. It is however not especially designed
to improve the homogeneity of the vessel class.

2.3. Hessian-based micro-vessel enhancement

To improve the homogeneity of the vessel class, we address
the problem of the small to mid-size vessels by means of the
eigenvalues of the Hessian matrix [6]. Since vessels are dark
tubular structures of limited diameter, we use for enhance-
ment the largest eigenvalue of the Hessian matrix, which
takes prominent values only over such structures, within an
appropriate range of scale. The size of the structures to
which the eigenvalue is sensitive depends on the size of the
derivative kernels used as well as on the scale at which the
image is analyzed. We seek to capture only the small to mid-
sized vessels, since the large vessels do already exhibit suf-
ficient contrast. The vessel map is obtained by seeking the
largest Hessian eigenvalue over different scales and com-
bining the results by the maximum rule. By targeting only
smaller vessels, the variability between vessels of different
sizes is reduced, as is evident from the result in Fig. 1d.

3. VESSEL CLASSIFICATION

We segment the vessels by a fuzzy clustering algorithm
which yields better results in comparison to other similar
methods [2]. It iteratively improves a clustering perfor-
mance measure computed on a fuzzy set decomposition,
starting from an initial partition (Section 3.1). The algo-
rithm may iterate either until no pixel changes its class



anymore or until a certain number of iterations is reached.
After the iteration stops, the user may optionally browse
through the results obtained at the end of each iteration,
and choose the desired vessel segments (Section 3.2) as de-
scribed above.

Before classification each component of the pixel fea-
ture vector is normalized to the interval [0, 1] to avoid unde-
sired bias toward a certain feature component.

3.1. Fuzzy clustering

The unsupervised classification algorithm [2] separates a
feature space by iteratively improving a measure of the par-
tition’s quality starting from an initial partition. The ini-
tial partition is in our case an over-segmentation result com-
puted by thresholding the vessel map obtained after apply-
ing the morphological filter described in Section 2.1 to the
original angiogram. Empirically, the vessel covered area is
always less than 50% of the image area, thus we choose the
50th percentile as threshold. We ensure thus that in the ini-
tial segmentation, practically all vessels are present.

The fuzzy class membership coefficients are computed,
using a function which measures how closely related the in-
vestigated vector is to a certain class. This function is called
affinity. The affinity of a feature vector ~x out of a feature
space U = {~x1, ~x2, . . . , ~xN} with N feature vectors, with
respect to ωi, which is a subset of U obtained from an ini-
tial hard partition {ω1, ω2, . . . , ωM} with M classes, is a
numerical indicator defined as:

r(~x, ωi) = 1 − 1

N

∑

~y∈ωi

hβ(‖ ~x − ~y ‖) (1)

with hβ : [0,∞) → [0, 1] and:

hβ(ν) =

{

ν2

β
if ν ≤

√
β

1 if ν >
√

β
(2)

Using the affinity function, the class belonging coef-
ficient for vector ~x and class ωi is defined as: ui(~x) =

pi
r(~x,ωi)
r(~x,U) , with pi the prior on ωi.
The parameter β actually defines a certain region in the

feature space within which the feature vectors are allowed
to contribute to the affinity computation. In our experiments
β was chosen such that max ‖ ~x − ~y ‖=

√
β for ~x, ~y ∈ U

so that all feature space vectors are used to compute the
affinity.

Alternatively if each class ωi is simply represented by its
mean vector alone, the fuzzy class membership coefficients
are:

ui(~x) =
β− ‖ ~x − µi ‖2

βM − ∑M
j=1 ‖ ~x − µj ‖2

(3)

and
∑M

i ui(~x) = 1.

To measure the quality of a certain fuzzy partition (i.e.
the amount of incertitude (fuzziness) present), the following
function is used:

Ψ =
1

N(M − 1)

M−1
∑

i=1

M
∑

j=i+1

∑

~x∈U

(ui(~x) − uj(~x))2 (4)

with Ψ ∈ [0, 1] and Ψ = 0 indicating the highest possi-
ble degree of fuzziness. Using this measure, the algorithm
converges properly to an optimal partition only for highly
separable feature spaces. If this is not exactly the case (e.g.
for vessel segmentation), an additional stopping criterion is
needed [4]. In our experiments the algorithm was allowed
to iterate for a maximum of five steps.

3.2. Vessel selection

Commencing with the initial over-segmentation, each iter-
ation step attempts to remove false positives while keeping
true positives. Since practically the removal of all falsely
detected segments as well as the preservation of true vessel
segments is not guaranteed, the user may choose the desired
vessel segments from each intermediary segmentation result
by specifying (by mouse click) a point on the vessel. This
point is then used as seed and all segmented vessel points
connected to it (by an eight points neighborhood) are se-
lected in the final segmentation. Results are shown in Fig. 1f
and Fig. 2c.

4. RESULTS AND EXPERIMENTS

As of present we have used 11 micro-angiograms from our
data base to evaluate our algorithm both with respect to the
quality of the feature extraction process and the segmenta-
tion results. Before processing, to increase the computa-
tions’ speed, and because generally, the size of the smallest
interesting vessel is larger than the minimal attainable res-
olution, the analyzed images were downsampled from the
original 512x512 pixels to 256x256. As reference we have
used manual segmentation results performed by the first au-
thor. The outcome of the vessel filtering procedure should
be a separable feature space. The separability is measured
by the J1 criterion [7, p. 446]. Table 1 shows the results
obtained for each vessel map (feat1-3), for the entire pixel
feature vector space (3D-feat sp) and for the original micro-
angiogram (org). Clearly, the pixel feature space yields
good results. The size of the morphological filter window
was 13 pixels. For the homomorphic filter we have used a
multiplication factor of two and a Gaussian low-pass ker-
nel of size seven with a standard deviation of 1.5. The
eigenvalues of the Hessian matrix were calculated at four
scales. The segmentation performance is evaluated by the
mean percentages of correct classifications (CC) and false
positives (FP). In Table 2 we present the results obtained



Table 1. Separability measured by the J1 criterion.
feat1 feat2 feat.3 3D-feat sp org

J1 0.6510 0.2012 0.5737 0.8025 0.1506

Table 2. Segmentation results.
CC-user FP-user CC-no user FP-no user
81.0345 3.6682 60.3175 2.5061

by the semi-automatic algorithm (-user) as well as the re-
sults obtained without user intervention (-no user). In the
latter case, we have used an additional separability based
stopping criterion [4] and the algorithm iterated for four to
six steps. Results are shown in Fig. 1e and f respectively
and in Fig. 2. Most of the false positives, for the semi-
automatic algorithm, appear in the vicinity of vessels. At a
repeated visual inspection some of these were reclassified as
real vessels not captured in the initial “ground truth”. Thus
the values of Table 2 should be regarded as the lower and
upper bounds for the percentages of correct classifications
and that of false positives, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Original micro-angiogram (a), result of morphological
processing (b), homomorphic filtration (c), analysis of the eigen-
values of the Hessian matrix (d), automatic segmentation (e) and
segmentation, after selection by user supplied seed points (f).

5. CONCLUSIONS AND DISCUSSION

We have presented a novel framework for imaging and
analysis of micro-vessels in skin transplants in laboratory
environments for drug testing. For imaging, a specific
micro-angiography technique was described, followed by
an analysis algorithm which provides automatically a rea-
sonable, though in general not error-free, result. This result
may then be edited comfortably and quickly by the exper-
imenter by stepping through a low number of intermediate
results. Central to the analysis part is a micro-vessel seg-
mentation algorithm, the results of which will be used for
vessel area and vessel length measurements in skin trans-

(a) (b) (c)

Fig. 2. Original micro-angiogram (a), automatic segmentation (b)
and user supported segmentation (c).

plant micro-angiograms. Our system is now in routine use,
results obtained from larger numbers of transplant samples
will be reported in the near future.
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