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ABSTRACT

In this paper, we present a new algorithm for solving the pgam
tion ambiguity in convolutive blind source separation. Argoon
approach for separation of convolutive mixtures is thedfama-
tion to the time-frequency domain, where the convolutiocdmees a
multiplication. This allows for the use of well-known instaneous
ICA algorithms independently in each frequency bin. Howetrés
simplification leads to the problem of correctly aligningse sin-
gle bins previously to the transformation to the time domadiere,
we propose a new criterion for solving this ambiguity. Thevrag-
proach is based on the sparsity of the speech signals ardb yael
robust depermutation algorithm. The results will be showrreal-
world examples.

Index Terms— Blind source separation, convolutive mixture,
frequency-domain ICA, permutation problem.

1. INTRODUCTION

Blind Source Separation (BSS) of linear and instantaneadxtires
can be performed using the Independent Component AnalgAg (
For this case, numerous algorithms have been proposed3L, 2,

When dealing with real-world recordings of speech, thisgén
approach is not effective anymore. As the signals arrivetipial
times with different delays, the mixing procedure beconmmwolu-
tive. These characteristics can be modeled using FIR filtE
realistic scenarios these filters can reach lengths of upeveral
thousand coefficients. In this case, the separation is oodgiple
when the unmixing system is again a set of FIR filters with aste
the same length.

The calculation of such filters directly in the time domainésy
demanding [4, 5]. Furthermore these algorithms often geipted
in local minima. Due to these problems, another approaciftés o
used. When transformed to the time-frequency domain theoson
lution becomes a multiplication [6], and the separation larper-
formed in each frequency bin independently by using an imata
neous algorithm.

However, this simplification has a major disadvantage. Hpe s
arated signals usually have arbitrary scaling and are ralydper-
muted across the frequency bins. Without the correctioh@tal-
ing, only filtered versions of the signals are restored. &hibiguity
is often solved using the minimal distortion principle [#]ioverse
postfilters [8]. This method accepts the filtering done by rttie-
ing system without adding new distortions. Newer approscuve
the scaling ambiguity with the aim of filter shortening [9]sraping
[10].

different approaches for solving this problem have beempgsed.
One class of algorithms make use of the properties of thexingni
matrices. In [11] the authors propose to use these as beaerf®r
This allows for the calculation of direction of arrival. Byranging
the single frequency bins to these directions, depernmutatould
be achieved for most of the bins. An alternative formulatidth
the use of directivity patterns has been proposed in [12][&8H
The major drawback of this approach is the assumption ofcesur
originating from specific directions, which is only validlow rever-
berant rooms with no diffuse background noise. In [14] thihaus
proposed to utilize the sparsity of the unmixing filters. Hwoer, in
case of real world examples, this assumption is only valicsfoall
parts of the filters.

The other group of algorithms uses the time structure oféipe s
arated bins. Here, a common idea is the assumption of higle-cor
lation between neighboring bins. This has been used for pkeam
in [8] and [15]. In [16] the authors use the amplitude modalat
correlation for getting a separation criterion which agotte per-
mutation problem. Other approaches include a statisticalating
of the single bins using the generalized Gaussian distoibuSmall
differences of the parameters lead to a depermutationrioritén
[17] and [18].

In low reverberant environments the algorithms from thet firs
group usually perform better. With longer reverberationets the
assumption of a single direction for the single sources féréint
frequencies is no longer valid. In this case the algorithramfthe
second group have to be used.

In this work, we propose a new criterion which is based on the
sparsity of the time domain representation of speech sigfalr im-
proved robustness a dyadic depermutation scheme as irs[t5¢d.
The improved performance will be shown on real world example

2. MODEL AND METHODS

2.1. BSS for instantaneous mixtures

In this section, we describe the instantaneous unmixingga®
that we use in frequency bins of the convolutive one. The in-
stantaneous mixing process & sources intoN observations

is modeled by anN x N matrix A. With the source vector
s(n) [s1(n),...,sn(n)]T and negligible measurement noise,
the observation signals(n) = [z1(n),...,zn(n)]" are given by

z(n) = A - s(n). (1)

The random permutation of the single frequency bins has arfhe separation is again a multiplication with a maiix

even bigger impact. Without a correct alignment, differgighals
appear in the single outputs causing the whole processltd/fany

y(n) = B a(n) @)
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Fig. 1. BSS model with two sources and sensors.

with y(n) = [y1(n),...,y~(n)]*. The single source of informa-
tion for the estimation oB is the observed proceagn). The sep-
aration is successful whda can be estimated so thBtA = DII
with IT being a permutation matrix afld being an arbitrary diago-
nal matrix. These two matrices stand for the two ambigudfd3SS.
The signals may appear in any order and can be arbitrarilgdca

where II(w) is a frequency-dependent permutation matrix and
D(w) an arbitrary diagonal scaling matrix.

Without correction of scaling, a filtered version of the smsis
recovered. The already mentioned minimal distortion ppiecuses
unmixing matrix

W' () =dg(W ™! (w) - W (w) 9)
with dg(-) returning the argument with all off-diagonal elements set
to zero.

The correction for permutation is essential, as otherwiferd
ent signals will be restored at different frequencies arwhnole
process will fail. In the next section we will review the oala-
tion approach for solving the permutation problem and thadaty
scheme improvements.

3. DEPERMUTATION ALGORITHM

There exist many algorithms that relay on the statistichefgep-

For the separation we use the well known gradient-basedepdaarated signals. Usually the high correlation of neightptins is

rule [1]
Bi+1 = Br + ABg 3)
with

ABy = (I — E {g(y)yT})Bk- 4

The termg(y) =
tor function of nonlinear score functions(s;) = —p;(s:)/pi(si)

wherep;(s;) are the assumed source probability densities. Thes

should be known or at least well approximated in order toehi
good separation performance [19].
2.2. Convolutive mixtures

When dealing with real-world acoustic scenarios it is nsagsto
consider reverberation. The mixing system can be modeldelRy

filters of lengthL. Depending on the reverberation time and sam-
pling rate, L can reach several thousand. The convolutive mixing

model reads

L—-1

x(n) =H(n) xs(n) = Y H()s(n - 1)

1=0

®)

(g1(y1),---gn(yn)) is @ component-wise vec-

assumed [8]. WitV (w,7) = |Y (w, 7)|, the correlation between
two binsk and! is defined as

T-1

_o Vo(wr, 7)Vp(wi, T

Pap (W, wy) = T_‘?T—;) a(Wk, 7) I;(_ll )2
\/ZT:O ‘/q (wk77—)\/27—:0 VP (th)

wherep, ¢ are the indices of the separated sign®#lgws, 7) is the
gth element ofV (wy, 7), and7 is the number of frames. The deci-
sion on aligning the bins is made on the basis of the ratio

(10

_ pPP(wkvwl) +p¢Z¢Z(wkvwl)‘ (11)

Tkl
Ppa(Wi,wi) + pap (Wi, wi)

Itis assumed that withy; > 1 the bins are correctly aligned and oth-
erwise a permutation has occurred. Aligning consecutius bsing
(11) is not robust, as single wrong permutations lead to &/blmcks
of falsely permuted bins. The dyadic sorting scheme prapase
[15] approaches this problem. Here, at the first step, oniss ud
bins are depermuted. In the second step, these pairs anedlignd
then the resulting quadruples are depermuted. This scleroatin-
ued until all bins are processed. Within this procedureglsimrong
permuted bins at the early stages do not outbalance theitgajor

In [15] the depermutation of larger blocks is essentiallydzhon

whereH (n) is a sequence d¥ x IV matrices containing the impulse e correlation of the single bins within these blocks. Theéased

responses of the mixing channels. For the separation we lise F

filters of lengthM and obtain

M—-1

> W(ha(n—1)

1=0

(6)

robustness is only due to the fact that the maxima and ragekyct
the minima of the correlation coefficients are compared. hWib
many wrong permutations at the early stages, or too manylypoor
separated bins, this method also fails.

In the next section, we propose a new depermutation cniterio
It is based on the sparsity of the time domain representafldris

with W (n) containing the unmixing coefficients. Fig. 1 shows the formulation is able to use the dyadic sorting scheme anceatdime

scenario for two sources and sensors.
Using the short-time Fourier transform (STFT), the sigrals
be transformed to the time-frequency domain, where theatation
approximately becomes a multiplication [6]:
Y (wi,7) = W (wi) X (we, 7), k=0,1,...

>K_17 (7)

time is able to calculate the depermutation of blocks muchemo-
bust.

4. NEW ALGORITHM

The principle of the new algorithm is based on two obserwatio

whereK is the FFT length. The major benefit of this approach is the(1) Speech signals are sparse. (2) A mixture of speech siggal

possibility to estimate the unmixing matrices for each @iepy in-
dependently, however, at the price of possible permutaimhscal-
ing in each frequency bin:

Y(wk,T) = W(wk,)X(wk,,T) :D(wk)H(wk)S(wk,,T) (8)

less sparse than the single contributions. An example isngi
Fig. 2. In Fig. 2(a) two single speech signals are shown. dfthe
speech pauses between the words these signals are cleandg.sp
In Fig. 2(b) the upper halves of the frequency bins are swappe
between the two channels. In this case, both of the signatsikas



Table 1. Comparison of the results for different depermutatioralg
rithms in terms of separation performance in dB. Datasettdkisn

Amplitude

0 =
from [20]. Dataset 2 is recorded in higher reverberant rodtj.|
-2 : : : : Algorithm H Dataset 1| Dataset 2
0 0.5 1 15 2 25
Timeins Proposed 15.4 8.1
3 2 ‘ ‘ ‘ ‘ Dyadic sorting [15] 2.7 3.0
% o DOA-Approach [11] 17.3 3.4
g af-Algorithm [17] 18.4 0.3
25 o5 1 s 5 25 Non blind 18.4 9.4

Timeins

The principle of the dyadic depermutation procedure udiegée
definitions is shown in Fig. 3. At first, the depermutation &
successive pairs of single bins is estimated. This is qliite the
procedure from [15], but with the new depermutation crieri At
the next stages, where whole groups of bins are aligned aeacty
other, the situation becomes quite different. With the nemniula-

Amplitude

Timein s tion, all relevant frequency bins are taken into accountrwtecu-
o 2 w w w w lating the ratio in equation (14). The method from [15] esties
] the correlation coefficients for all single bins indepertjeand re-
g0 lies solely on the maxima. With higher number of frequenaysbi
5 at the higher stages of the dyadic sorting scheme, the pedpuesy

2, o 1 s > 25 formulation becomes even more robust.
Timeins
(b) 5. SIMULATIONS

Fig. 2. The demonstration of the sparsity criterion. (a) Two signa
with correct alignment of all bins. (b) Half of the bins areongly
permuted. In this case the signals are less sparse.

Simulations have been done on real-world data availablGit [
This data set consists of eight-seconds long speech ragasrdam-
pled at 8 kHz with individual contributions from the sourdeshe

. . microphones. The chosen FFT length wés= 2048 and every bin
pauses and are accordingly less sparse. This can be moralform poc peen separated usi2gQ iterations of (4). In Table 1 the re-
verified using the fact that with wrong permutations the auignal g its for different depermutation methods are summariBedaset

is the superposition of two or more statistically indepemidggnals, 1) \wjith the low reverberation, the direction of arrival apach and
resulting in an amplitude distribution that is less supesgéan than ¢ a3-algorithm from [17] are both able to depermute almost all
those of the individual signals. With correct permutatioos the bins, and the separation performance is almost as good &®in t
other hand, statistically dependent subband componeatgiaimed 1o plind case. The new proposed algorithm could also degter

up, leading to a clearly supergaussian distribution. almost all bins. With2dB less, the separation performance is only
For the derivation of the criterion, we define analogously t0gjightly reduced. The dyadic sorting based on correlatiils.f
equation (10) a sparsity measure With another dataset [21], recorded by the authors of thiepa
0qp (Whs, wit) = [|2q(Wks, n) + zp(wit, ) le,, (12)  ina higher reverberant room, the situation becomes quitereint.

. . . . ) .. AsTable 1 shows (Dataset 2), the direction of arrival apghdails,
with z(was, n) being the time-domain representation of the bins ingg the assumption of the single direction for every sournetisalid.
the frequency rangf, b] of Y (w, 7), which may be obtained using ¢ gyadic sorting scheme from [15] based on correlation fais.
the inverse STFT. Far < b, the time signak(was, ) IS a subband  the 3 Algorithm from [17] fails, too, as one of its steps is the
signal of the to be restored signgln), composed of the frequency  yy4ic sorting of frequency groups with the same problemthes
bins wa 0 wy. Otherwise, fora = b, z(wap, n) represents only  yjain dyadic sorting. The new proposed algorithm, howeigestill
a single bin, and can be abbreviatedz4s.,n). The sparsity is  ap|e to depermute almost all bins and nearly reaches therpeafice
measured using thé pseudo norm of the non-blind (i.e., Wiener filter) case. Itis the only@tdighm that

is able to perform the depermutation in a satisfactory maonsuch

N—-1 P
lz|le, = <Z |x(i)|p> ’ (13) highly reverberated data.
P
1=0
with 0 < p < 1. Agood choice i = 0.1. Analogously to equation 6. CONCLUSIONS
(11) the ratio
In this paper we proposed a new criterion for solving the peation
Thi,st = Opp(Wks, Wit) + 0qq(Whs, wit) (14) ambiguity in convolutive blind source separation. Thigesion is

2pa(wrs, wit) + 0gp(Wis, wit) based on the sparsity of speech signals and may be used iyetiie d
for the determining the permutation can be defined. Wijth,, > 1 sorting scheme. The robustness of this approach has been simo
rangegk, s] and|l, t] of the separated signajsandp are correctly  real world data, where it was able to significantly outperfather
aligned among each other. Otherwise they are permuted. state-of-the-art algorithms.
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Fig. 3. Dyadic permutation sorting scheme for the case when thénamber of frequency bins & = 8.
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