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ABSTRACT

In this paper, we present a new algorithm for solving the permuta-
tion ambiguity in convolutive blind source separation. A common
approach for separation of convolutive mixtures is the transforma-
tion to the time-frequency domain, where the convolution becomes a
multiplication. This allows for the use of well-known instantaneous
ICA algorithms independently in each frequency bin. However, this
simplification leads to the problem of correctly aligning these sin-
gle bins previously to the transformation to the time domain. Here,
we propose a new criterion for solving this ambiguity. The new ap-
proach is based on the sparsity of the speech signals and yields a
robust depermutation algorithm. The results will be shown on real-
world examples.

Index Terms— Blind source separation, convolutive mixture,
frequency-domain ICA, permutation problem.

1. INTRODUCTION

Blind Source Separation (BSS) of linear and instantaneous mixtures
can be performed using the Independent Component Analysis (ICA).
For this case, numerous algorithms have been proposed [1, 2,3].

When dealing with real-world recordings of speech, this simple
approach is not effective anymore. As the signals arrive multiple
times with different delays, the mixing procedure becomes convolu-
tive. These characteristics can be modeled using FIR filters. For
realistic scenarios these filters can reach lengths of up to several
thousand coefficients. In this case, the separation is only possible
when the unmixing system is again a set of FIR filters with at least
the same length.

The calculation of such filters directly in the time domain isvery
demanding [4, 5]. Furthermore these algorithms often get trapped
in local minima. Due to these problems, another approach is often
used. When transformed to the time-frequency domain the convo-
lution becomes a multiplication [6], and the separation canbe per-
formed in each frequency bin independently by using an instanta-
neous algorithm.

However, this simplification has a major disadvantage. The sep-
arated signals usually have arbitrary scaling and are randomly per-
muted across the frequency bins. Without the correction of the scal-
ing, only filtered versions of the signals are restored. Thisambiguity
is often solved using the minimal distortion principle [7] or inverse
postfilters [8]. This method accepts the filtering done by themix-
ing system without adding new distortions. Newer approaches solve
the scaling ambiguity with the aim of filter shortening [9] orshaping
[10].

The random permutation of the single frequency bins has an
even bigger impact. Without a correct alignment, differentsignals
appear in the single outputs causing the whole process to fail. Many

different approaches for solving this problem have been proposed.
One class of algorithms make use of the properties of the unmixing
matrices. In [11] the authors propose to use these as beamformers.
This allows for the calculation of direction of arrival. By arranging
the single frequency bins to these directions, depermutation could
be achieved for most of the bins. An alternative formulationwith
the use of directivity patterns has been proposed in [12] and[13].
The major drawback of this approach is the assumption of sources
originating from specific directions, which is only valid inlow rever-
berant rooms with no diffuse background noise. In [14] the authors
proposed to utilize the sparsity of the unmixing filters. However, in
case of real world examples, this assumption is only valid for small
parts of the filters.

The other group of algorithms uses the time structure of the sep-
arated bins. Here, a common idea is the assumption of high corre-
lation between neighboring bins. This has been used for example
in [8] and [15]. In [16] the authors use the amplitude modulation
correlation for getting a separation criterion which avoids the per-
mutation problem. Other approaches include a statistical modeling
of the single bins using the generalized Gaussian distribution. Small
differences of the parameters lead to a depermutation criterion in
[17] and [18].

In low reverberant environments the algorithms from the first
group usually perform better. With longer reverberation times the
assumption of a single direction for the single sources at different
frequencies is no longer valid. In this case the algorithms from the
second group have to be used.

In this work, we propose a new criterion which is based on the
sparsity of the time domain representation of speech signals. For im-
proved robustness a dyadic depermutation scheme as in [15] is used.
The improved performance will be shown on real world examples.

2. MODEL AND METHODS

2.1. BSS for instantaneous mixtures

In this section, we describe the instantaneous unmixing process
that we use in frequency bins of the convolutive one. The in-
stantaneous mixing process ofN sources intoN observations
is modeled by anN × N matrix A. With the source vector
s(n) = [s1(n), . . . , sN(n)]T and negligible measurement noise,
the observation signalsx(n) = [x1(n), . . . , xN(n)]T are given by

x(n) = A · s(n). (1)

The separation is again a multiplication with a matrixB:

y(n) = B · x(n) (2)
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Fig. 1. BSS model with two sources and sensors.

with y(n) = [y1(n), . . . , yN (n)]T . The single source of informa-
tion for the estimation ofB is the observed processx(n). The sep-
aration is successful whenB can be estimated so thatBA = DΠ

with Π being a permutation matrix andD being an arbitrary diago-
nal matrix. These two matrices stand for the two ambiguitiesof BSS.
The signals may appear in any order and can be arbitrarily scaled.

For the separation we use the well known gradient-based update
rule [1]

Bk+1 = Bk + ∆Bk (3)

with
∆Bk = µk(I − E

n

g(y)yT
o

)Bk. (4)

The termg(y) = (g1(y1), . . . gn(yn)) is a component-wise vec-
tor function of nonlinear score functionsgi(si) = −p′

i(si)/pi(si)
wherepi(si) are the assumed source probability densities. These
should be known or at least well approximated in order to achieve
good separation performance [19].

2.2. Convolutive mixtures

When dealing with real-world acoustic scenarios it is necessary to
consider reverberation. The mixing system can be modeled byFIR
filters of lengthL. Depending on the reverberation time and sam-
pling rate,L can reach several thousand. The convolutive mixing
model reads

x(n) = H(n) ∗ s(n) =

L−1
X

l=0

H(l)s(n − l) (5)

whereH(n) is a sequence ofN×N matrices containing the impulse
responses of the mixing channels. For the separation we use FIR
filters of lengthM and obtain

y(n) = W(n) ∗ x(n) =
M−1
X

l=0

W(l)x(n − l) (6)

with W(n) containing the unmixing coefficients. Fig. 1 shows the
scenario for two sources and sensors.

Using the short-time Fourier transform (STFT), the signalscan
be transformed to the time-frequency domain, where the convolution
approximately becomes a multiplication [6]:

Y (ωk, τ ) = W (ωk)X(ωk, τ ), k = 0, 1, . . . , K − 1, (7)

whereK is the FFT length. The major benefit of this approach is the
possibility to estimate the unmixing matrices for each frequency in-
dependently, however, at the price of possible permutationand scal-
ing in each frequency bin:

Y (ωk, τ ) = W (ωk)X(ωk, τ ) = D(ωk)Π(ωk)S(ωk, τ ) (8)

where Π(ω) is a frequency-dependent permutation matrix and
D(ω) an arbitrary diagonal scaling matrix.

Without correction of scaling, a filtered version of the sources is
recovered. The already mentioned minimal distortion principle uses
unmixing matrix

W
′(ω) = dg(W −1(ω)) · W (ω) (9)

with dg(·) returning the argument with all off-diagonal elements set
to zero.

The correction for permutation is essential, as otherwise differ-
ent signals will be restored at different frequencies and the whole
process will fail. In the next section we will review the correla-
tion approach for solving the permutation problem and the dyadic
scheme improvements.

3. DEPERMUTATION ALGORITHM

There exist many algorithms that relay on the statistics of the sep-
arated signals. Usually the high correlation of neighboring bins is
assumed [8]. WithV (ω, τ ) = |Y (ω, τ )|, the correlation between
two binsk andl is defined as

ρqp(ωk, ωl) =

P

T −1

τ=0
Vq(ωk, τ )Vp(ωl, τ )

q

P

T −1

τ=0
Vq

2(ωk, τ )
q

P

T −1

τ=0
Vp

2(ωl, τ )
(10)

wherep, q are the indices of the separated signals,Vq(ωk, τ ) is the
qth element ofV (ωk, τ ), andT is the number of frames. The deci-
sion on aligning the bins is made on the basis of the ratio

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
. (11)

It is assumed that withrkl > 1 the bins are correctly aligned and oth-
erwise a permutation has occurred. Aligning consecutive bins using
(11) is not robust, as single wrong permutations lead to whole blocks
of falsely permuted bins. The dyadic sorting scheme proposed in
[15] approaches this problem. Here, at the first step, only pairs of
bins are depermuted. In the second step, these pairs are aligned, and
then the resulting quadruples are depermuted. This scheme is contin-
ued until all bins are processed. Within this procedure, single wrong
permuted bins at the early stages do not outbalance the majority.

In [15] the depermutation of larger blocks is essentially based on
the correlation of the single bins within these blocks. The increased
robustness is only due to the fact that the maxima and respectively
the minima of the correlation coefficients are compared. With too
many wrong permutations at the early stages, or too many poorly
separated bins, this method also fails.

In the next section, we propose a new depermutation criterion.
It is based on the sparsity of the time domain representation. This
formulation is able to use the dyadic sorting scheme and at the same
time is able to calculate the depermutation of blocks much more ro-
bust.

4. NEW ALGORITHM

The principle of the new algorithm is based on two observations.
(1) Speech signals are sparse. (2) A mixture of speech signals is
less sparse than the single contributions. An example is given in
Fig. 2. In Fig. 2(a) two single speech signals are shown. Withsome
speech pauses between the words these signals are clearly sparse.
In Fig. 2(b) the upper halves of the frequency bins are swapped
between the two channels. In this case, both of the signals have less



0 0.5 1 1.5 2 2.5
−2

0

2

Time in s

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5
−2

0

2

Time in s

A
m

pl
itu

de

(a)

0 0.5 1 1.5 2 2.5
−2

0

2

Time in s

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5
−2

0

2

Time in s

A
m

pl
itu

de

(b)

Fig. 2. The demonstration of the sparsity criterion. (a) Two signals
with correct alignment of all bins. (b) Half of the bins are wrongly
permuted. In this case the signals are less sparse.

pauses and are accordingly less sparse. This can be more formally
verified using the fact that with wrong permutations the output signal
is the superposition of two or more statistically independent signals,
resulting in an amplitude distribution that is less supergaussian than
those of the individual signals. With correct permutations, on the
other hand, statistically dependent subband components are summed
up, leading to a clearly supergaussian distribution.

For the derivation of the criterion, we define analogously to
equation (10) a sparsity measure

̺qp(ωks, ωlt) = ‖zq(ωks, n) + zp(ωlt, n)‖ℓp
(12)

with z(ωab, n) being the time-domain representation of the bins in
the frequency range[a, b] of Y (ω, τ ), which may be obtained using
the inverse STFT. Fora < b, the time signalz(ωab, n) is a subband
signal of the to be restored signaly(n), composed of the frequency
bins ωa to ωb. Otherwise, fora = b, z(ωab, n) represents only
a single bin, and can be abbreviated asz(ωa, n). The sparsity is
measured using theℓp pseudo norm

‖x‖ℓp
=

 

N−1
X

i=0

|x(i)|p
!

1

p

(13)

with 0 ≤ p ≤ 1. A good choice isp = 0.1. Analogously to equation
(11) the ratio

rkl,st =
̺pp(ωks, ωlt) + ̺qq(ωks, ωlt)

̺pq(ωks, ωlt) + ̺qp(ωks, ωlt)
. (14)

for the determining the permutation can be defined. Withrkl,st > 1
ranges[k, s] and[l, t] of the separated signalsq andp are correctly
aligned among each other. Otherwise they are permuted.

Table 1. Comparison of the results for different depermutation algo-
rithms in terms of separation performance in dB. Dataset 1 istaken
from [20]. Dataset 2 is recorded in higher reverberant room [21].

Algorithm Dataset 1 Dataset 2

Proposed 15.4 8.1

Dyadic sorting [15] 2.7 3.0

DOA-Approach [11] 17.3 3.4

αβ-Algorithm [17] 18.4 0.3

Non blind 18.4 9.4

The principle of the dyadic depermutation procedure using these
definitions is shown in Fig. 3. At first, the depermutation forall
successive pairs of single bins is estimated. This is quite alike the
procedure from [15], but with the new depermutation criterion. At
the next stages, where whole groups of bins are aligned amongeach
other, the situation becomes quite different. With the new formula-
tion, all relevant frequency bins are taken into account when calcu-
lating the ratio in equation (14). The method from [15] estimates
the correlation coefficients for all single bins independently and re-
lies solely on the maxima. With higher number of frequency bins
at the higher stages of the dyadic sorting scheme, the proposed new
formulation becomes even more robust.

5. SIMULATIONS

Simulations have been done on real-world data available at [20].
This data set consists of eight-seconds long speech recordings sam-
pled at 8 kHz with individual contributions from the sourcesto the
microphones. The chosen FFT length wasK = 2048 and every bin
has been separated using200 iterations of (4). In Table 1 the re-
sults for different depermutation methods are summarized (Dataset
1). With the low reverberation, the direction of arrival approach and
the αβ-algorithm from [17] are both able to depermute almost all
bins, and the separation performance is almost as good as in the
non-blind case. The new proposed algorithm could also depermute
almost all bins. With2dB less, the separation performance is only
slightly reduced. The dyadic sorting based on correlation fails.

With another dataset [21], recorded by the authors of this paper
in a higher reverberant room, the situation becomes quite different.
As Table 1 shows (Dataset 2), the direction of arrival approach fails,
as the assumption of the single direction for every source isnot valid.
The dyadic sorting scheme from [15] based on correlation also fails.
The αβ-Algorithm from [17] fails, too, as one of its steps is the
dyadic sorting of frequency groups with the same problems asthe
plain dyadic sorting. The new proposed algorithm, however,is still
able to depermute almost all bins and nearly reaches the performance
of the non-blind (i.e., Wiener filter) case. It is the only algorithm that
is able to perform the depermutation in a satisfactory manner on such
highly reverberated data.

6. CONCLUSIONS

In this paper we proposed a new criterion for solving the permutation
ambiguity in convolutive blind source separation. This criterion is
based on the sparsity of speech signals and may be used in the dyadic
sorting scheme. The robustness of this approach has been shown on
real world data, where it was able to significantly outperform other
state-of-the-art algorithms.
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Fig. 3. Dyadic permutation sorting scheme for the case when the total number of frequency bins isK = 8.
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Malo France, 2009, Inria Rennes - Bretagne Atlantique.

[15] K. Rahbar and J. P. Reilly, “A frequency domain method for
blind source separation of convolutive audio mixtures,”IEEE
Trans. Speech and Audio Processing, vol. 13, no. 5, pp. 832–
844, Sept. 2005.

[16] J. Anemller and B. Kollmeier, “Amplitude modulation decorre-
lation for convolutive blind source separation,” inProceddings
of the second international workshop on independent compo-
nent analysis and blind signal separation, 2000, pp. 215–220.

[17] R. Mazur and A. Mertins, “An approach for solving the per-
mutation problem of convolutive blind source separation based
on statistical signal models,”IEEE Trans. Audio, Speech, and
Language Processing, vol. 17, no. 1, pp. 117–126, Jan. 2009.

[18] R. Mazur and A. Mertins, “Simplified formulation of a deper-
mutation criterion in convolutive blind source separation,” in
Proc. European Signal Processing Conference, Glasgow, Scot-
land, Aug 2009, pp. 1467–1470.

[19] S. Choi, A. Cichocki, and S. Amari, “Flexible independent
component analysis,” inNeural Networks for Signal Pro-
cessing VIII, T. Constantinides, S. Y. Kung, M. Niranjan, and
E. Wilson, Eds., 1998, pp. 83–92.

[20] http://www.kecl.ntt.co.jp/icl/signal/
sawada/demo/bss2to4/index.html

[21] http://www.isip.uni-luebeck.de/index.php?
id=479


