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Abstract—Designing filter banks for source coding purposes
classically relies on perfect reconstruction filters. However, sev-
eral studies have shown recently that taking the quantization
noise into account in the design could yield noticeable reduction of
the reconstruction distortion. In particular, a joint optimization
of the synthesis filters and quantizers with respect to the output
mean squared error (MSE) was proposed, and the resulting
scheme was called an minimum MSE (MMSE) filter bank. How-
ever, this approach was dedicated to parallel uniform filter banks,
which require a very large computational complexity. This paper
is concerned with the possibility of providing MMSE filters under
the constraint that the filter bank is either of a modulated or
a tree-structured kind and thus of low implementation cost.
Various approaches for the optimization of the synthesis bank
are presented, taking into account the structural constraint.
Depending on the number of parameters to be optimized, we
obtain various tradeoffs between decoder complexity, transmitted
bit rate, and reconstruction distortion.

Index Terms—Efficient realizations, filter bank optimization,
MMSE filter banks, rate-distortion optimization.

I. INTRODUCTION

CLASSICALLY, in a subband coding scheme, an-band
Filter Bank (FB) splits the signal to be encoded into

decorrelated subband components, prior to their quantization.
This latter step, performing the lossy compression, is often
followed by an entropy-coding (or variable-length coding)
stage, which is reversible on the decoder side without any
loss of information. Designing a coding scheme thus requires
the optimization of these various stages, jointly or not. For
example, a classical choice includes a perfect reconstruction
(PR) filter bank in conjunction with subband quantizers. In
such a scheme, only the quantizers are tuned for minimum

Manuscript received December 17, 1996; revised December 2, 1997. Part
of the work described here was previously presented in Proc. EUSIPCO,
Trieste, Italy, September 1996; Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, November 1996; and IEEE ICASSP, 1996.

K. Gosse is with the Centre de Recherche de Motorola, Espace Tech-
nologique de Saint-Aubin, F-91193 Gif-sur-Yvette cedex, France.

T. Karp is with the University of Mannheim, B6/26, D-68131 Mannheim,
Germany.

F. Moreau de Saint-Martin is with the Minist`ere de l’Economie, des
Finances et de l’Industrie, DGSI/SERICS, Sous Direction Communication
Audiovisuelle et Electronique Grand Public, F-75353 Paris 07 SP, France.

P. Duhamel is with Department Signal, ENST, 46, F-75634 Paris cedex 13,
France.

A. Mertins was with the University of Kiel, D-24143 Kiel, Germany. He is
now with the University of Western Australia, Nedlands, 6907WA, Australia.

Publisher Item Identifier S 1057-7130(98)04671-0.

output distortion, while the synthesis bank follows directly
from the choice of the analysis bank, independently of the
bit-rate allocation.

However, PR filter banks only provide a minimal recon-
struction error when used in absence of subband quantization
and previous studies already aimed at optimizing quantizers
and/or the synthesis filters [1]–[10]. The approach in [1]
and [10], jointly optimizes the quantizers and the synthesis
filters with respect to the output mean squared error (MSE),
yielding optimal (non-PR) filter banks having optimal quanti-
zation steps in the subbands, here denoted as minimum MSE
(MMSE) filter banks. However, these global solutions for the
synthesis filters were obtained for general-band critically
decimated analysis FB’s. Optimal synthesis filters solving the
minimization problem were not constrained to be of any
particular structure, and therefore, even if the analysis FB
was structurally constrained to have low arithmetic complexity
(tree-structured or modulated), the synthesis filters did not
allow for efficient realizations via fast transforms or lattice
implementations.

This paper proposes solutions for obtaining MMSE FB’s
preserving distinctive implementation features of filter banks,
plus reducing the number of parameters that are adapted
according to the second-order statistics of the signal—this
makes the optimization easier than in the general formulation.
Furthermore, the complexity of the implementation is reduced.

Two main types of solutions are presented: 1) solutions
dedicated to modulated filter banks and 2) solutions with tree-
structured filter banks. For both cases, efficient algorithms
performing the optimization are proposed, and the improve-
ment over PR schemes having optimal subband quantizers is
shown by means of rate-distortion curves. Moreover, each case
is formulated so that various choices for the tradeoff between
rate, distortion, and optimization complexity exist.

Since most real-world signals are not stationary, the prac-
tical use of MMSE FB’s in actual coding schemes is still
a difficult task. In fact, MMSE FB’s have to be adapted
according to variations of the signal statistics. Hence, the
synthesis FB has either to be recomputed at the receiver (very
large complexity), or has to be transmitted (at the cost of some
bit rate). In both cases, our approach brings some advantages.
The way to adapt the MMSE filters to nonstationary signals is,
in itself, not the subject of this paper, but is briefly discussed
in the last section.
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Fig. 1. Compression system including a filter bank and a quantization stage.

A. Connection with Previous Works

Taking additive noise into account in filter design has
already been successfully applied in digital signal processing:
it has led to Wiener filters and to MMSE equalizers in the
digital communications field. The study in [3] generalizes
these scalar solutions by presenting matrix Wiener filters for
subband coders. The same idea appears in [7] with FIR filters,
and is extended to the 2-D case. Further generalization is
shown in [1], where general solutions are given for jointly
optimizing parallel, critically sampled, synthesis filters and
uniform subband quantizers. In comparison, [3] is mainly an
asymptotic study of matrix Wiener filters with infinite length.
Yet, in none of these works do the synthesis banks obtained
keep the original structure (modulated or tree-structured) of
the synthesis filter bank.

In [4]–[6], the quantization noise is taken into account in
the special case of nonuniform quantization, for which part of
the quantization noise is correlated to the signal, but no joint
optimization of synthesis filters and bit allocation was feasible,
since this work was restricted to the PR case.

The work in [2] is related to the problem of modulated filter
bank design. Optimal synthesis prototype filters are obtained
for given subband quantizers. However, the optimization in-
cludes neither the choice of the quantizers, nor the tuning of
additional degrees of freedom, as will be done here. Note that
the optimization of tree-structured filter banks in an MMSE
sense has not been addressed before. Part of the work described
here was previously presented in [8]–[10].

B. Outline of the Paper

Section II briefly recalls the problem of optimizing a coding
scheme based on parallel, critically sampled analysis filter
banks with subbands of equal widths and uniform quantization
[1]. In Section III, this optimization problem is modified so
as to constrain the synthesis filters to be modulated versions
of a low-pass prototype. At first glance, the only tunable
parameters in this case seem to be the prototype coefficients.
However, this does not allow for a tuning of the synthesis
filters’ frequency responses according to the spectral density

of each subband signal. On the other hand, this mechanism
can be partly restored by inserting a matrixin the subbands
after the quantization (see Fig. 2). Various forms forenable
to tune the optimization and implementation complexity.

Section IV is dedicated to tree-structured filter banks and
their optimization in an MMSE sense. We show how to
formulate the problem so as to get an efficient algorithm
derived from the one in Section II. As in the modulated
case, the proposed method enables us to find flexible tradeoffs
between output SNR (signal-to-noise ratio) improvement and
optimization complexity. We conclude in Section V with a
discussion on source coders based on MMSE filter banks,
including the time-adaptation problem.

II. GENERAL FRAMEWORK FOR MMSE FILTER BANKS

In a subband coding scheme, as depicted in Fig. 1, the
quantizers introduce some distortion in the subbands, whose
amount depends on the bit-rate allocation. The problem solved
in [1] is to compute both the quantization steps and the
synthesis filters so as to minimize the mean squared distortion

( stands for mathematical expectation,
for the reconstructed signal, and for the stochastic

input signal delayed by samples) under a bit-rate constraint.
We therefore need an expression of the reconstruction error as
a function of the synthesis filters and quantizers. As a result,
rate-distortion curves for classical PR filter banks having their
quantization steps tuned can be compared to those of MMSE
FB’s in which both the quantization steps and the synthesis
filters are tuned. Note that in order to enable a comparison to
the classical PR filter bank compression schemes, all analysis
FB’s considered in this paper are chosen in such a way that
their PR synthesis counterpart exists, even if this property is
not required in the MMSE framework.

A. The Optimality Criterion

For the sake of conciseness, some steps in distortion cal-
culations are omitted in the following development since they
are already described in [1].
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Fig. 2. Polyphase implementation of anM -band coding system including an analysis filter bankHHH(z), a quantization stage, a combination matrixAAA;
a modulation matrixWWW , and the prototypePPP .

The criterion to be minimized is chosen as the mathematical
expectation of the squared reconstruction error .
Since the reconstructed signal is cyclostationary of period

due to the up-sampling operation ( is also the number
of subbands), the output MSE is

(1)

can be expressed by means of the following variables:

• synthesis filters coefficients vectors

(2)
The components of appear to be the coefficients of
the th polyphase components of the synthesis filters.

denotes the length of these polyphase components,
and the th coefficient of the th synthesis filter,

;
• autocorrelation matrix of the quantized subband

signals

(3)

with and
(according to Fig. 1); note that

by construction, contains cross-correlation terms
between all quantized subband signals;

• cross correlations between the vector and the delayed
input sample ;

• the variance of the input signal .

The resulting expression for is given by the following
equation:

(4)
Modeling the quantization noise in subbandas an additive
noise ( ), the MSE can be rewritten in terms
of the autocorrelation matrix of the quantization noise,

, and the cross correlation matrix of the noise and
the subband signals, where and are
defined in the same way as . Note that and have
the same structure as before and contain cross correlations

of noise and signals from various subbands, Thus

(5)

The MSE is thus divided in two terms. The first error term
is due to the non-PR property of the filter bank. It cancels

if the synthesis filters, represented here by vectors, form a
PR filter bank with the given analysis bank. The second term,

, is due to additive quantization noise. At very high bit rates
as well as in absence of quantization, approaches , and

tends to zero. Therefore, at high bit rates, the optimized
synthesis filter bank converges to a filter bank providing PR
with the analysis bank. Note that encompasses aliasing
and linear distortion. We did not distinguish between both,
despite the fact that aliasing may be more perceptible. This is
a deliberate choice, made for simplicity. Elaborating on our
approach using perceptually weighted criteria instead of the
MSE may lead to improved subjective coding performance.

B. Quantization Noise

In [1], two additive noise models were introduced: the
classical white input-independent process and a more accurate
colored-noise model [11]. Since the latter did not improve
the performance of the resulting MMSE scheme, the subband
quantization noise resulting from uniform quantization is as-
sumed here to be uncorrelated across the subbands and inside
each subband. Under this assumption, matrix is zero,
is diagonal, with diagonal terms , and the distortion is

(6)
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Under the high resolution assumption, noise variances
in subband are classically related to quantizersby

.

C. Bit-Rate Constraint

The optimization is undertaken with the constraint of a fixed
total bit rate

(7)

where denotes the bit rate in subband. In the following,
the optimization is carried out upon the bit rates, and a rate-
distortion relation is required to express the reconstruction
distortion as a function of these variables. For source coding
purposes, two situations are of particular interest.

1) Subband signals are split into blocks, and the number
of bits used for a given block depends on the dynamic
range of these given signals.

2) Entropy coding is performed in each subband. The order
1 entropy of the quantized signals, defined in subband

as

(8)

may also be considered as bit-rate measure (denotes
the occurrence probability of theth quantization step in
subband , and represents the amount of information
brought by a realization of the quantized signal in
subband , or, in other words, a lower bound of the
bit rate reached in practice after entropy coding.) In this
case, the optimization is carried out under the constraint
of a given entropy budget (i.e.,
entropy-constrained optimization).

In the cases mentioned above, noise variances, bit rates
(or entropies ), and variances of subband signals
are related by

or (9)

The positive parameter depends on the signal statistics
in subband as well as on the type of quantization and/or
encoding process used.

For uniform quantizers, and verify
, with , the dynamic range of the signal

as defined above. Alternatively, may be chosen as .
If the bit rate measure is the order 1 entropy of the signals, we
have under the assumption of Gaussian subband
signals, and under the assumption of Laplacian
signals [12]. Note that up to multiplicative constants, the
distortion expression is common to all bit-rate measures,
thus enabling the use of the same optimization algorithm
in all cases.

D. The MMSE Solutions

The optimization is carried out by optimizing the parameters
iteratively, since each optimization (bit allocation, filters) is

simple if the other parameters are fixed. Starting with a PR
filter bank and assuming white and uncorrelated quantization
noise, we perform the following.

Step 1: For the given synthesis filters, the noise term
has to be minimized over the set of quantizers. Expressing the
diagonal terms of in (6) by (9), the distortion caused
by quantization noise is

(10)

The bit rates are thus obtained by minimizing the La-
grangian functional , in which
is constrained to be positive ( , see [1] and [13]).

Step 2: For the obtained set of quantizers, we now optimize
the synthesis filters, setting in (6)

, which amounts to solving a set of linear equations.
In fact, the distortion is a quadratic function of the synthesis
coefficients, such that the new filter coefficients given by

(11)

necessarily form an optimum (assumption: invertible matrix
). The computation of relies on an estimation

of matrix that will be detailed in the simulation parts.
Steps 1 and 2 are performed in turn, always using the

updated values obtained in the previous step as constants.
Convergence is ensured by the fact that each step reduces the
distortion and thus increases the signal-to-noise ratio (SNR).

Indeed, assume that iterationof Step 1 results in bit rates
, filters and corresponding SNR , a function

of , and now apply Step 2. Denote SNR
, the distortion with the new optimal synthesis

filters . SNR SNR is clearly impossible, since
would be a better choice for Step 2, and would

not be an optimum. Thus, SNR SNR .
For the same reasons, the SNR necessarily increases after

Step 1. The consecutive SNR values obtained form an increas-
ing and upper-bounded series that converges to a (possibly
local) maximum. However, we cannot guarantee that it con-
verges toward the global one. Initializing the process with a
PR filter bank, the procedure either improves the classical PR
solution, or it stops in Step 2.

E. Spectral Interpretation of the Improvement
Brought by MMSE FB’s

The MMSE solution for general -band critically sampled
synthesis banks with individually operating synthesis filters
is mainly a Wiener-type solution with optimized quantizers
in the subbands. From the classical Wiener filter theory,
we know the following. In the presence of white noise, the
frequency response of a Wiener filter with an infinite number
of coefficients has a higher attenuation at all frequencies than
the inverse filter. Hence, frequency bands with a low signal
level being coarsely quantized will be more attenuated by the
Wiener synthesis filters than bands with finer quantization. In
subbands where the spectral density of the input signal is partly
zero, this will result in a passband of reduced width. Globally,
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the attenuation of the quantization noise results in a decrease
of the overall distortion although some filtering distortion is
introduced (see [1]).

III. MMSE M ODULATED FILTER BANKS

A. Problem Statement

In some source coding applications, e.g., broadcasting, a
decoder part of low computational complexity is required. In
particular, in audio coding where a large number of subbands
is needed, modulated filter banks are widely used. In fact, the
analysis and synthesis subband filters are modulated versions
of a given prototype, thus enabling an implementation based
on fast algorithms. The purpose of this section is to propose
MMSE solutions of this modulated type.

At first glance, only prototype coefficients can be tuned.
However, by doing this, the frequency response of all synthesis
filters is changed in the same way, and this seems to be
contradictory with the role of Wiener filters using different
shapes and attenuations for different subbands. Therefore, it
seems necessary to introduce some additional parameters. This
is performed by inserting some matrix in the subbands (see
Fig. 2). The form of highly influences the complexity of
the decoder. Thus, only simple structures are considered for

: a diagonal and a tridiagonal form. In the diagonal case,
introducing a weight (multiplicative constant) in each subband
enables us to reduce the noise contribution of subbands with
small SNR. Moreover, by combining adjacent subbands in the
tridiagonal case, the fact that their passbands overlap in the
frequency domain is taken into account. The simulation section
compares both structures with the results obtained using a gen-
eral MMSE -channel filter bank with individually operating
synthesis filters. The analysis bank is fixed in all cases.

The problem is at this point to optimize jointly the subband
quantizers, the matrix and/or the synthesis prototype filter
of length under the bit rate constraint. The
optimization of these various types of parameters is now
considered.

B. Optimization Issues

Optimizing one set of parameters (the synthesis prototype,
the matrix , or the quantization steps) is simple if the
other variables are fixed. Hence, the optimization problem is
done separately, in turn on each subset of parameters, until
convergence. This was already the procedure used in Section II
for the -band synthesis bank and the quantization steps. The
strategy for an optimal bit rate allocation is not repeated here,
(10) applies in all cases.

Several cases for the FB have to be treated separately.
The most useful case is unconstrained (no requirement on the
perfect reconstruction property or even paraunitariness [14] of

the synthesis FB), since the result of the optimization of a
prototype is not necessarily of PR type.

The paraunitary FB case is anyway helpful, as shown in the
simulation section, and it leads to simple expressions of the
optimized parameters. This case occurs when one optimizes
only matrix and the quantizers, with given paraunitary
analysis and synthesis filters ( with the

th coefficient of the th analysis filter).

1) Optimization in a Nonparaunitary Filter Bank:When
optimizing the synthesis prototype, the bit rate allocation,
and/or the matrix , we are working in the general nonpa-
raunitary case. However, the equations are somewhat tedious
to derive (although not very complicated). For simplicity, we
fully derive here the cases of a prototype optimization and/or
a diagonal gain matrix , denoted as .

a) Optimization of Prototype Coefficients:One set of
parameters to be tuned is the synthesis prototype coefficients.
This optimization is undertaken assuming the other sets of
parameters (matrix , quantizers) are fixed.

Since the synthesis filters are modulated, the filter coeffi-
cients in subband can be written as , with

being the prototype filter and being the modulation
function. The distortion can be written as a function of the
prototype and a modulation matrix. In order to describe the
dependencies, we gather the modulation matrices

of size , which verify
, in a block diagonal matrix of size

by . In addition, we
define a matrix of MMSE synthesis prototype coefficients as
shown in (12), at the bottom of the page. Theth column of
is denoted as . It contains values, out of which only

are nonzero. Let denote the stacking of these values
(in other terms, is equal to with all zero coefficients
removed). Finally, is defined as a block-diagonal matrix,
with diagonal blocks . With these notations, the distortion
in (6) becomes

(13)

or, alternatively,

(14)

is extracted from , so that only the columns corre-
sponding to theth polyphase component are kept:

(12)
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Thus, the distortion is a quadratic function of the synthesis
prototype coefficients. Hence, provided that the matrix to be
inverted has full rank, optimal vectors are given by

(15)

b) Optimization of Diagonal Gain Factors:By develop-
ing the distortion as a function of scalar gain factors

( ), the criterion appears to be quadratic
in terms of these coefficients. The analytical expression of
these dependencies requires the definition of the matrices and
vectors in (15a), shown at the bottom of the page.

With the notations in (15a), (14) now reads.

(16)

and optimal gain factors are solutions of the following set of
linear equations:

(17)

2) Optimization in a Paraunitary Filter Bank:Optimizing
the prototype filter may not always be necessary, especially
when the analysis FB has a large number of subbands and
narrow transition bandwidths (see Section II-E). Assuming
that the filter bank is paraunitary for , the equations
for optimizing simplify due to

.
With white and uncorrelated noise, the output MSE can be

written in terms of the original subband signals and of the
quantized subband signals as [8]

(18)

TABLE I
MODULATED FILTER BANKS OPTIMIZED AND COMPARED IN SECTION III

(� THIS NUMBER DOES NOT INCLUDE SUBBAND QUANTIZERS.
THE LAST COLUMN DESCRIBES THESYNTHESIS FILTER BANK

IMPLEMENTATION COST IN MULTIPLICATIONS PER INPUT SAMPLE; N = KM
DENOTES THEFILTER LENGTH AND M THE NUMBER OF SUBBANDS

where is the th row of , and
.

To achieve minimum distortion in an MSE sense, we solve
and obtain

(19)

Note that this result somewhat generalizes the results of
[4]–[6]. Equation (19) still simplifies if is constrained to
be diagonal or tridiagonal, see [8].

3) Overall Optimization Algorithm:

• Step 1: Optimization of the synthesis system.

— Step 1.1:Synthesis prototype optimization accord-
ing to (15) (not in the paraunitary case),

— Step 1.2:Matrix optimization, according to (17)
in the diagonal, nonparaunitary case or according to
(19) in the paraunitary case,

— Go to Step 1.1 until convergence of Step 1.

• Step 2: Bit-rate optimization as described in (10). The
synthesis polyphase filters can be calculated from the
optimized parameters.

• Go to Step 1 until global convergence of the algorithm.

4) Implementation Cost of the Different Filter Banks:The
implementation cost of the different types of modulated
MMSE filter banks in terms of multiplications per input
sampling rate is given in Table I. We there assume that
the modulation is performed via a fast transform with

(15a)
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Fig. 3. Prototypes for 8-channel paraunitary modulated filter banks.

multiplications every samples. It can be
easily verified that the implementation cost for all modulated
MMSE schemes is significantly lower than for the general
MMSE -band case denoted as MMSE in Table I.

C. Simulations

We compare here the performance of various synthesis
filter banks, as described in Table I, representing various
performance-complexity tradeoffs:

1) a PR scheme having optimal subband bit rates (“classi-
cal” solution);

2) a general MMSE -channel filter bank (optimization of
all synthesis filters, as in [1]);

3) paraunitary schemes combined with 3 different matrices
(plain, diagonal , and tridiagonal );

4) optimization of the synthesis prototype filter only (ma-
trix is identity);

5) joint optimization of the synthesis prototype and .

This comparison is done by means of rate-distortion curves.
The unconstrained MMSE solutions are provided in order to
show the loss in performance due to the fact that we restrict
the optimization result to be a modulated FB.

In all cases, the analysis filters are the same, in order
to enable fair comparisons. Two paraunitary analysis filter
banks are considered: an 8-band extended lapped transform
(ELT) [15] with filters of length and a cosine-
modulated bank [16] having and . Both
prototype frequency responses are shown in Fig. 3. This choice
enables to illustrate the influence of the filter selectivity on the
optimization procedure.

The performance is evaluated on the audio signal “The Four
Seasons: The Spring” by Vivaldi, CD quality (the first 3 s).
The performance measure is the output SNR computed by
decomposing, quantizing, and reconstructing the signal. The
MMSE FB’s themselves are computed from an estimate of
the autocorrelation matrix of the input signal over the whole
considered Vivaldi signal.

Example 1: Fig. 4 shows the rate-distortion curves obtained
for the 8-channel analysis filter bank with taps under
bit rate constrained optimization. The aim is to illustrate the
relative performance of the compared schemes listed above.

Fig. 4. Measured SNR (dB) versus bit rate for ELT,M = 8; N = 32, and
“Vivaldi” signal.

For the rate-distortion measure according to (9), we used
, in agreement with the observed Vivaldi signal

dynamics, in order to avoid any overload noise. The best
performance is of course obtained by optimizing all synthesis
filters individually: the SNR improvement over PR is5
dB for bit rates of 1.5–4.5 b/s (bits per sample). However,
optimizing the main diagonal of improves the SNR by

3 dB for low bit rates up to 3.5 b/s. This improvement,
obtained at very low cost, reduces quickly for higher bit
rates. It can be kept 3 dB for bit rates up to 4.5 b/s by
optimizing the tridiagonal structure of. Optimizing the full
matrix , which results in an increased implementation cost,
yields further improvement. This can be explained by the fact
that the analysis filters have a moderate attenuation in the
stopband ( 40 dB), so that nonadjacent subband signals are
still correlated. Concerning the prototype optimization, it turns
out that “mod MMSE proto” is slightly better than “
MMSE ” up to 4 b/s, see Table I for the definition of the
various cases. For rates b/s, its performance is close
to the “ MMSE ” case. The “ MMSE
proto” scheme seems to be a good choice, since the result-
ing implementation complexity is very low (one additional
multiplication per subband).

Example 2: Fig. 5 gives the rate-distortion curves when
using an 8-channel cosine-modulated filter bank with filters
of length 128 instead of the ELT in Example 1. This figure
intends to show the influence of filters selectivity on MMSE
performance.

In this case, all schemes yield almost the same rate-
distortion curve. Due to the high stopband attenuation of
the prototype, the subband signals are better decorrelated than
in the ELT case and no further improvement can be achieved
by combining them with a tridiagonal or plain matrix.
Therefore, for such analysis filters, introducing a diagonal
matrix on the synthesis side is the best solution for improving
the output SNR of the filter bank, because it enables the use
of the existing low complexity implementations of modulated
filters. Note that the only MMSE-based scheme that does
not lead to noticeable improvements is the one in which the
prototypeonly is optimized (i.e., ).
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Fig. 5. Measured SNR (dB) versus bit rate for COS FB,M = 8; N = 128,
and “Vivaldi” signal.

Fig. 6. Measured SNR (dB) versus entropy for ELT,M = 8; N = 32, and
“Vivaldi” signal.

Example 3: In this example, the bit rate measure is the or-
der 1 entropy of the subband signals, thus yielding an entropy-
constrained optimization of filters and quantizers. Fig. 6 shows
the curves obtained in this case with the ELT analysis.

We see that the improvement of MMSE schemes over PR
ones is reduced. The same conclusions as above can still
be given for plain and tridiagonal matrices. Note that
introducing a diagonal matrix is not sufficient any more
to significantly improve the performance over a PR scheme.
Globally, we observe a shrinking of the SNR axis while
switching from the bit rate constraint to the entropy constraint,
compare, e.g., Figs. 4–6.

An entropy-constrained optimization was also carried out
on the selective modulated filters. However, no
improvement appeared in that case. The reasons for this fact
are certainly manifold. First, we are dealing with asymp-
totic performance. Then, increasing the selectivity (narrow
transition bandwidth and high stopband attenuation) of the
analysis filters reduces the potential gain brought by MMSE
solutions. This shows that a good frequency selectivity is a
crucial criterion for the choice of PR filters. It improves the

Fig. 7. Translation of rate-distortion curves when the quantization-encoding
model changes;� model (dashed lines), and� model (solid lines).

overall system performance and brings the scheme closer to
optimality.

D. Some Remarks

1) Signal Duration: In the simulations, we used a rather
short extract of the “Vivaldi signal (3 s) assuming that the
signal is more or less stationary over this duration. For longer
signals, the last section of the paper gives some hints on the
time adaptation of the MMSE FB’s, according to the second
order statistics of the input signal. Moreover, in [1] it has been
shown that the improvement in the SNR is kept when using
a sequence of 13 s for the estimation of the autocorrelation
matrix describing now the long term characteristics of the
input signal. The same qualitative results can also be expected
in the modulated case. Furthermore, an improvement in the
SNR can still be achieved, when modeling the autocorrelation
matrix as an AR(2) process or when coding synthetic AR
signals [1].

2) Bit-Rate Allocations:In Examples 1 and 2, the bit al-
locations resulting from MMSE optimization differ from their
PR counterparts. Indeed, the simulations showed that the latter
tends to transmit all subbands (even with a very small bit rate)
whereas the MMSE FB’s do not transmit subbands in which
the signal variance is small. On the other hand, they encode
those with signals of greater variances with increased accuracy
since they allocate the whole bit rate to these subbands.

3) Translation of Rate-Distortion Curves:Another way of
explaining the loss of performance observed with the entropy-
constrained optimization is illustrated by the rate-distortion
curve translation, see Fig. 7.

Consider two models, and

, for the quantization stage. For fixed distortion,

, we have . Thus, the rates

differ by a constant . Assume that the same
number of subbands, , are transmitted in the PR
case with both models and . Then, the total channel bit
rate for the PR case with the model is ,
whereas the output SNR remains the same as in thecase.
This shows that the rate-distortion curve for model is
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Fig. 8. Example of a 6-band tree-structured filter bank.

obtained by translating the rate-distortion curve corresponding
to model by b/s.

Concerning the MMSE case, we have already noted that
the number of transmitted subbands is always smaller in the
MMSE case than in the PR case ( ). Again,
the rate-distortion curve for model is obtained by translating
the curve by b/s. However, this is less than in
the PR case, and, in consequence,-curves for PR and MMSE
get closer together than ones; the improvement brought by
MMSE optimization in the case is reduced. Thus, for the
same MMSE filters and bit allocations, we notice a different
improvement, brought by MMSE solutions over PR, when
changing the noise model.

IV. MMSE TREE-STRUCTURED FILTER BANKS

A. Problem Statement

In the previous sections, a parallel -band filter bank
was optimized according to an MMSE criterion. However, in
source coding applications also other subband decompositions
are of interest. In particular, tree-structured filter banks are now
widely studied for image and audio coding. For example, in
[17], the decomposition mimics the Bark scale used for audio
coding purposes. Unfortunately, such filters do not fit in the
previous formulation of the reconstruction distortion.

In this section, the algorithms for finding optimal synthesis
filters and subband bit rate allocations are adapted to the
general case of tree-structured banks. We assume that the
analysis tree can be built by splitting any branch (or subband)
with any 2-band PR cell, thus allowing different cells at
different levels. This yields the maximum number of adaptable
parameters for a coding scheme designer and includes all
possible divisions of the frequency axis. Moreover, recent
studies [18] have shown the usefulness of these additional
degrees of freedom. An example of a 6-band tree-structured
filter bank is given in Fig. 8.

Various strategies can be developed in order to carry out
an MMSE optimization in a tree-structured filter bank. A first
idea would consist in optimizing each filter of the synthesis
tree jointly with all quantizers. However, the method presented
in Section II for the parallel case cannot be directly applied to
tree-structured filter banks, because the distortion is no longer a
quadratic function of the cascaded synthesis filters. Therefore,
let us consider our problem from a more intuitive point of
view, and let us look at the significant degrees of freedom.

Fig. 9. Equivalent synthesis for the 6-band tree-structured filter bank of
Fig. 8.

As it has already been mentioned at the end of Section II,
MMSE filters shape the quantization noise. In a tree-structured
filter bank, many synthesis filters act on the same frequency
band. Therefore, at least in the case of infinite-length filters,
optimizing the whole synthesis bank would be redundant. In
the case of FIR filters, convergence difficulties are expectable,
since any variation of one cell can be compensated by a
variation of another cell. In order to shape the quantization
noise, we have chosen to optimize a single filter per subband,
actually the filter following the quantization/dequantization
stage. Two cases occur.

1) If the filters are long enough, the resulting degrees of
freedom should be sufficient to shape the quantization
noise in each band and to obtain good suboptimal
solutions. This is described in Fig. 9.

2) In some cases, when the filters are very short [18], the
number of degrees of freedom may not be sufficient
for performing noise shaping. The solution we have
chosen is to tune an increased number of parameters:
instead of optimizing only the first filter in each branch
of the synthesis tree, 2, 3, or more filters in one path are
gathered into one equivalent filter of increased length. It
is optimized in the same way as before. This is depicted
in Fig. 10.

In both cases, we merge all filters that are not tuned into an
equivalent one for each branch, say, the “filter” to be tuned
with an MMSE criterion being denoted by .

The main advantage of dealing with tree-structured fil-
ter banks in this way is to enable the use of the general
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Fig. 10. Equivalent synthesis for the 6-band tree-structured filter bank of
Fig. 8.

procedure. The optimization carried out in Section II relies
on a distortion function being quadratic with respect to the
synthesis coefficients, as well as on a specific relation between
distortion and subband bit rates. Both characteristics remain
in our formulation of the tree-structured case. Moreover, the
computational cost of the optimization remains reasonable.

B. MMSE Optimization of Tree-Structured Filter Banks

The main difference compared to the initial description is
the appearance of an intermediate sampling factor, in branch

: . Let be the total up-sampling factor in subband. The
quantized signal in the same subband is first up-sampled
by a factor and filtered by the MMSE synthesis filter

(to be optimized). It is then up-sampled by and filtered
by , which remains fixed. Thus, the output signal is

(20)

Now assume that the analysis bank has been chosen such that
in absence of subband quantization it forms a PR system with
the synthesis filters (this can be easily obtained with
2-band PR cells). As in Section II, the delayed input signal,
denoted as , can be written equivalently as
the filtering of the unquantized subband signals by the
PR synthesis filters . The reconstruction error is then

(21)

Here, all assumptions made in Section II on the quantization
noise model are still valid (additive, white, and uniform
process). In time domain, the reconstruction error becomes

(22)

Fig. 11. Measured SNR (dB) versus bit rate for tree-structured filter bank
in Example 4 (curve -o-: optimization of 8 parameters per subband; curve
-+-: optimization of 22 parameters per subband; curve -x-: optimization of 50
parameters per subband). The dashed line corresponds to the PR case.

The output signal is cyclostationary of period ,
and the overall distortion is thus given by

(23)

where denotes “ up-sampled by .”
The MMSE optimization consists of minimizing the overall

distortion under bit rate constraint taking into account the
various sampling rates: . The MMSE
algorithm is straightforwardly derived from the parallel case.

C. Simulations

We compare, by means of rate-distortion curves, tree-
structured PR schemes to tree-structured MMSE ones. In both
cases, the quantizers are optimized.

Our MMSE formulation allows us to choose the number of
synthesis coefficients to be tuned since one degree of freedom
is the number of filtering stages to be optimized. Increasing
this number of parameters improves the rate-distortion per-
formance of the corresponding scheme, but it also increases
the optimization complexity, while the implementation com-
plexity remains almost identical. The curves presented here
highlight the tradeoffs between performance and optimization
complexity. The simulation context is similar to the one of the
modulated case described in Section III-C.

Example 4: Fig. 11 shows the SNR improvement brought
by the MMSE optimization of a full tree of depth 3,
subbands, with Daubechies filters of length , and
“Vivaldi” signal.
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Fig. 12. Measured SNR (dB) versus bit rate for tree-structured filter bank
in Example 5.

Fig. 13. Measured SNR (dB) versus entropy for tree-structured filter bank
in Example 5.

By optimizing the last stage of the tree (8 parameters per
subband), the gain brought by the MMSE scheme over the PR
one is more than 2 dB in the bit rate range of 1–4 b/s. This can
be improved by optimizing 22 degrees of freedom per subband
or even the whole equivalent tree (50 parameters per subband).
In these cases, the additional SNR improvement mainly occurs
at higher bit rates (above 2.5 b/s). This illustrates the tradeoff
between complexity and performance. Below 2 b/s, optimizing
the last branch of the tree seems to be the best solution
(less complex optimization, but comparable rate-distortion
performance). Above 2.5 b/s, a system designer can choose
the tradeoff according to his/her needs.

Example 5: Figs. 12 and 13 show the rate-distortion curves
with bit rate constrained and entropy-constrained optimization,
respectively, for another tree of depth 6, subbands,
Daubechies filters of length , and an AR(2) model of
the “Vivaldi” signal.

As in Example 4, the MMSE optimization improves the
output SNR with respect to PR schemes. Again, two per-
formance/complexity tradeoffs are illustrated: 1) the full op-
timization of the tree and 2) the optimization of the last
stage only, bringing less improvement, but at a lower cost.
For entropy-constrained optimization a gain of 2 dB is still

achievable in a wide range of bit rates when optimizing the
whole synthesis filter bank, see Fig. 13.

The maximal improvement for tree-structured filter banks
is of course obtained when optimizing the whole equivalent
synthesis bank for (parallel synthesis bank). If the
length of all filters in the tree is , for a fully spread tree of
depth with subbands, the number of parameters to be
optimized is . If is reduced
to (optimization of the last stage in the tree), the
number of parameters decreases to .

V. DISCUSSION

The simulations show the flexibility and efficiency of the
MMSE approach. However, several questions arise; the most
crucial ones are the improvements to be expected when
introducing these techniques in a real coding scheme and the
way to adapt them to signal statistics variations.

A. Improvement to be Expected in Practice
Thanks to MMSE Solutions

It is easily shown that the MMSE optimization consists of
making the reconstructed signal and the reconstruction error
uncorrelated. If the analysis filter bank is orthogonal and
ideally decorrelates the input signal, and if the quantization
is optimal, which implies that the quantization noise and the
quantized signal are uncorrelated, then the perfect reconstruct-
ing synthesis filter bank is optimal up to a multiplicative
coefficient per subband. This point partly explains why SNR
improvements vary depending whether the bit rate or the order
1 entropy is estimated: with entropy coding, the optimal bit
allocation leads to less correlation in the PR case and thus
reduces the SNR improvement. It complements the analysis
of Section III-D based on the translation of the rate-distortion
curves while switching from bit rate to entropy. The gain to
be expected in practical situations lies in between these two
extreme situations.

Note that the use of subband coding for audio or video
coding should also take into account perceptual characteristics
of the human hearing or vision, considering a perceptual
distortion criterion rather than the pure MSE. Work in
this direction is complementary to the one presented here,
since the schemes we describe may also yield interesting
performance/complexity tradeoffs if optimized according
to different perceptual criteria. Suggestions to the choice of
quality criteria for audio coding are given in [19] and [20]
where the MSE is replaced by a perceptual Mean Weighted
Error (MWE) and brought a noticeable improvement over
the reference PR system.

B. Possible Approaches for Time Adaptation

Whether and how the MMSE filters should vary with the
signal statistics is an open issue. There are actually two limit-
ing factors concerning this problem: the coder complexity, and
the necessary bit rate for the transmission of the corresponding
side information. We list below possible ways of addressing
this issue.

• Optimize the MMSE FB with reference to an “average”
situation (low cost, but will such a solution be still
efficient?).
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• Use a library of MMSE synthesis filters, known at both
the transmitter and receiver. The adaptation would then
consist in choosing the right filter bank in the library. For
instance, an AR(2) model of the signals could help in
this choice.

• Really adapt the filters to the signal statistics. The ques-
tion now is about the length of the signal segments (not
too long, not too short).

• The fact that the performance is less sensitive to the
change of the filters than to the changes of the bit rate
allocation can be taken into account in the approaches
above. Thus, the filters could be tuned seldom, while
the bit rate allocation should be changed much more
frequently.

• Joint optimization of synthesis filters and bit allocation
in the Kalman filtering framework. A Kalman filter is
a linear MMSE estimator [21]. It allows us to compute
an estimate of a signal thanks to a state equation
and an observation equation. The first one describes
recursively as a Gauss–Markov process. The second one
relates to the observed signal . As shown in [22], a
Kalman filter can be used for optimal signal reconstruc-
tion for a given bit rate allocation. However, there are
two main differences with the MMSE approach: The first
one is that Kalman filtering does not consist of a joint
optimization of synthesis filters and bit rate allocation.
The second point is that the statistical properties of the
signal are used through correlation matrices in the MMSE
formulation and through a prediction model in the Kalman
formulation.

VI. CONCLUSION

We have shown in this paper how to adapt MMSE optimiza-
tion procedures for source coding schemes to the special cases
of modulated and tree-structured filter banks. In both cases, no-
ticeable SNR improvements are obtained, even with a reduced
number of tuned parameters in comparison to the general
parallel MMSE filter bank [1]. This allows a reduction of the
decoding and optimization complexity as well as a reduction
of the number of parameters to be transmitted. For MMSE
implementations with preliminary off-line optimization, the
work presented in this paper provides complexity reduction of
the decoder. For implementations with on-line optimizations, it
reduces the cost of the synthesis filter adaptation to variations
of the input signal statistics (in bits to be transmitted and/or
in optimization complexity). This paper thus proposes several
performance-complexity tradeoffs, which can bring significant
SNR improvement at low cost.

Moreover, we have presented a thorough discussion on how
the MMSE optimization works and on its limits. The analysis
emphasizes the influence of the analysis bank, as well as the
quantization and coding methods, on the overall performance
of MMSE schemes.

Further work in this direction would require us to focus on a
given application, and to design a full coding scheme, solving
the adaptation problem and taking into account perceptual
characteristics of human receptors.
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Télécommunications (CCETT), a research center of
the France Telecom Group, Cesson-Sévigńe, France.
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