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Abstract—Designing filter banks for source coding purposes output distortion, while the synthesis bank follows directly

classically relies on perfect reconstruction filters. However, sev- from the choice of the analysis bank, independently of the
eral studies have shown recently that taking the quantization bit-rate allocation

noise into account in the design could yield noticeable reduction of H PR filter bank I id inimal
the reconstruction distortion. In particular, a joint optimization owever, liter banks only provide a minimal recon-

of the synthesis filters and quantizers with respect to the output Struction error when used in absence of subband quantization
mean squared error (MSE) was proposed, and the resulting and previous studies already aimed at optimizing quantizers
scheme was called an minimum MSE (MMSE) filter bank. How- and/or the synthesis filters [1]-[10]. The approach in [1]

ever, this approach was dedicated to parallel uniform filter banks, and [10], jointly optimizes the quantizers and the synthesis

which require a very large computational complexity. This paper . !
is concerned with the possibility of providing MMSE filters under  1I1t€rS with respect to the output mean squared error (MSE),

the constraint that the filter bank is either of a modulated or Yielding optimal (non-PR) filter banks having optimal quanti-

a tree-structured kind and thus of low implementation cost. zation steps in the subbands, here denoted as minimum MSE
Various approaches for the optimization of the synthesis bank (MMSE) filter banks. However, these global solutions for the
are presented, taking into account the structural constraint. - gynihesis filters were obtained for genefdtband critically
Dep_endmg on the number of parameters to be_optlmlzed_, we decimated lvsis EB's. Optimal thesis filt ving th
obtain various tradeoffs between decoder complexity, transmitted elc!mf"‘e_ analysis S. Upumal syn e§|s liters solving the
bit rate, and reconstruction distortion. minimization problem were not COhStl’alned to be Of any
particular structure, and therefore, even if the analysis FB
was structurally constrained to have low arithmetic complexity
(tree-structured or modulated), the synthesis filters did not
allow for efficient realizations via fast transforms or lattice
. INTRODUCTION implementations.

LASSICALLY, in a subband coding scheme, aftband ~ This paper proposes solutions for obtaining MMSE FB's
CFiIter Bank (FB) splits the signal to be encoded int®reserving distinctive implementation features of filter banks,
decorrelated subband components, prior to their quantizati®#s reducing the number of parameters that are adapted
This latter step, performing the lossy compression, is oft@¢cording to the second-order statistics of the signal—this
followed by an entropy-coding (or variable-length coding)nakes the optimization easier than in the general formulation.
stage, which is reversible on the decoder side without afyirthermore, the complexity of the implementation is reduced.
loss of information. Designing a coding scheme thus requiresTWo main types of solutions are presented: 1) solutions
the optimization of these various Stagesy joinﬂy or not. F(g}edicated to modulated filter banks and 2) solutions with tree-
example, a classical choice includes a perfect reconstructifHictured filter banks. For both cases, efficient algorithms
(PR) filter bank in conjunction with subband quantizers. Igerforming the optimization are proposed, and the improve-

such a scheme, only the quantizers are tuned for minimufent over PR schemes having optimal subband quantizers is
shown by means of rate-distortion curves. Moreover, each case
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Fig. 1. Compression system including a filter bank and a quantization stage.
A. Connection with Previous Works of each subband signal. On the other hand, this mechanism

an be partly restored by inserting a matdxn the subbands

Taking additive noise into account in filter design ha$ oo ) ;
er the quantization (see Fig. 2). Various forms fbenable

already been successfully applied in digital signal processirfQ. s - ; ;
it has led to Wiener filters and to MMSE equalizers in thi {une the optimization and implementation complexity.

digital communications field. The study in [3] generalizes Section IV is dedicated to tree-structured filter banks and
these scalar solutions by presenting matrix Wiener filters fE1€I Optimization in an MMSE sense. We show how to

subband coders. The same idea appears in [7] with FIR filtefgfmulate the problem so as to get an efficient algorithm

and is extended to the 2-D case. Further generalizationdgived from the one in Section Il. As in the modulated
shown in [1], where general solutions are given for jointlFaSe: the proposed method enables us to find flexible tradeoffs

optimizing parallel, critically sampled, synthesis filters anf&tWeen output SNR (signal-to-noise ratio) improvement and

uniform subband quantizers. In comparison, [3] is mainly dPtimization complexity. We conclude in Section V with a
asymptotic study of matrix Wiener filters with infinite lengthdiscussion on source coders based on MMSE filter banks,
Yet, in none of these works do the synthesis banks obtain8g'uding the time-adaptation problem.
keep the original structure (modulated or tree-structured) of

the synthesis filter bank.

In [4]-[6], the guantization noise is taken into account in |l. GENERAL FRAMEWORK FOR MMSE HLTER BANKS
the special case of nonuniform quantization, for which part of |, o subband coding scheme, as depicted in Fig. 1, the

the quantization noise is correlated to the signal, but no joigl,atizers introduce some distortion in the subbands, whose
optimization of synthesis filters and bit allocation was feaSiblﬁmount depends on the bit-rate allocation. The problem solved
since this work was restricted to the PR case. in [1] is to compute both the quantization steps and the

The work in [2] is related to the problem of modulated filteg, nyhesis filters so as to minimize the mean squared distortion
bank design. Optimal synthesis prototype filters are obtaingd_ E[|&n — Tn—n, |*] (€ stands for mathematical expectation,

for given subband quantizers. However, the optimization in- .. the reconstructed signal, ang|_,, for the stochastic

cludes neither the choice of the quantizers, nor the tuning iﬂT)ut signal delayed by, samples) under a bit-rate constraint.

additional degrees of freedom, as will be done here. Note tRgt, yqrefore need an expression of the reconstruction error as

the optimization of tree-structured filter banks in an MMSE nction of the synthesis filters and quantizers. As a result,

sense has not ‘?ee” addressed b_efore. Part of the work descrﬂgﬁidistortion curves for classical PR filter banks having their

here was previously presented in [8]-{10]. guantization steps tuned can be compared to those of MMSE

FB’s in which both the quantization steps and the synthesis

filters are tuned. Note that in order to enable a comparison to

the classical PR filter bank compression schemes, all analysis
Section Il briefly recalls the problem of optimizing a coding=B’s considered in this paper are chosen in such a way that

scheme based on parallel, critically sampled analysis filtgfeir PR synthesis counterpart exists, even if this property is

banks with subbands of equal widths and uniform quantizatigwt required in the MMSE framework.

[1]. In Section Ill, this optimization problem is modified so

as to constrain the synthesis filters to be modulated versions o o

of a low-pass prototype. At first glance, the only tunabif- The Optimality Criterion

parameters in this case seem to be the prototype coefficientdzor the sake of conciseness, some steps in distortion cal-

However, this does not allow for a tuning of the synthesisulations are omitted in the following development since they

filters’ frequency responses according to the spectral densitne already described in [1].

B. Outline of the Paper
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Fig. 2. Polyphase implementation of d@d-band coding system including an analysis filter baitk=), a quantization stage, a combination matAx
a modulation matrixW, and the prototypeP.

Quantization

The criterion to be minimized is chosen as the mathematia#l noise and signals from various subbands, Thus
expectation of the squared reconstruction effar— z,,—,, |2.
Since the reconstructed signg| is cyclostationary of period D=

M due to the up-sampling operatiod/(is also the number > -
of subbands), the output MSE is ] ML . .
‘72 + M Z (Fz R, F; —2F; S{ymaijan_f_i})
1 M-1 =0
D=— Z E[[Emmti — TmMtiono |- (1) 1 M-l
M prd 0 + M [F?(Rbb — 2Rby)Fz‘ + 2F?8{bm$m]\4_n0+i}] .
=0
D can be expressed by means of the following variables: Dy
« synthesis filters coefficients vectoR (5)

T o M1 0 M1 M1 The MSE is thus divided in two terms. The first error term

L (fi o e T z‘+(K—1)M)' Dy is due to the non-PR property of the filter bank. It cancels
- . if the synthesis filters, represented here by veclossform a

The components of’; appear to be the coefficients ofpg fiiter hank with the given analysis bank. The second term,

the ith polyphase components of the synthesis f'lterﬂ,, is due to additive quantization noise. At very high bit rates
K der;otes Fhe Ieng?h_ of these polyphase COMPONeNts, \ve|| as in absence of quantizatigr), approacheg,,, and

andf the th coefflment of thejth synthesis filter, D, tends to zero. Therefore, at high bit rates, the optimized

. gu‘{[ogor(,)r’eiét'iéév[r;atlr’im“ of the quantized subbangSynthesis filter bank converges to a filter bank providing PR

vy with the analysis bank. Note thd?; encompasses aliasing

signals and linear distortion. We did not distinguish between both,
Ryy = E{iimim™} 3) despite the fact that aliasing may be more perceptible. This is
95 = © 1 YmYm a deliberate choice, made for simplicity. Elaborating on our
o . N _ approach using perceptually weighted criteria instead of the
With g = (G, Gons; ) ys’—l"ﬂ) and gy, MSE may lead to improved subjective coding performance.
@0, g, -+, gM=1T (according to Fig. 1); note that

by construction, Rg; contains cross-correlation termsg Quantization Noise
between all quantized subband signals;
« cross correlations between the vecjgr and the delayed
input samplez,,,pr—ngy+4;
« the variance of the input signaf.
The resulting expression fab is given by the following
equation:

In [1], two additive noise models were introduced: the
classical white input-independent process and a more accurate
colored-noise model [11]. Since the latter did not improve
the performance of the resulting MMSE scheme, the subband
guantization noise resulting from uniform quantization is as-
sumed here to be uncorrelated across the subbands and inside
M—1 each subband. Under this assumption, maliy is zero,Ry,

D= % Z (F;ffRQQFi — gp;ffg{gmme_nOH}) +02. is diagonal, with diagonal terms},, and the distortion is
:=0

(4) X .
Modeling the quantization noise in subbahdas an additive M-1
noise §*, = y* — %), the MSE can be rewritten in termsD = o7 + i > (FTRyFi — 2F ] E{ymamr no+i})
of the autocorrelation matrix of the quantization noifg, = i=0
E{bmbiy,}, and the cross correlation matrix of the noise and ) Do .
the subband signals#t,, = E{bmyh,} Wherey,, andb,, are 1 M-l
defined in the same way dg,. Note thatR,;, and R;, have + i Z FIRy,F;. (6)

the same structure dg;; before and contain cross correlations i=0
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Under the high resolution assumption, noise variam;ﬁs simple if the other parameters are fixed. Starting with a PR

in subbandk are classically related to quantizess by o—fk = filter bank and assuming white and uncorrelated quantization
ai/12. noise, we perform the following.

Step 1: For the given synthesis filters, the noise tefpp
C. Bit-Rate Constraint has to be minimized over the set of quantizers. Expressing the

. ) . = S
The optimization is undertaken with the constraint of afixe%'agomal termsy;, of Ry, in (6) by (9), the distortion caused
total bit rate Ry y quantization noise is

M—1 N-1
&~ _ 2 k2 \o—2R,
E Ry = Rp 7) Dy = kéo ckayk< E In )2 k. (10)
k=0

n=0

where I, denotes the bit rate in subbagdIn the following, Trhae n ;Ig nr?:iiﬁg n:?_thgbs f tj\t&'?e%kbz ngr)nn:rl]z\llCr?l Ct: %kLa-
= % B , 4

the optimization is carried out upon the bit rates, and a ra%'constrained to be positivekf, — p2, see [1] and [13]).

distortion relation is required to express the reconstructionSte 2 For the obtained set of quantizers. we now optimize
distortion as a function of these variables. For source codiﬂge sypntHesis filters. setti /81?9 —0in (é) Vi 0 < ip<
i i ; i ) ngl) = ) >t >

purposes, two sr_[uauons are OT partlcular Interest. M — 1, which amounts to solving a set of linear equations.

1) Subband signals are split into blocks, and the numbgy fact, the distortion is a quadratic function of the synthesis

of bits used for a given block depends on the dynamiGefricients, such that the new filter coefficients given by
ranged;, = max,(y*)—min,(y*) of these given signals.

2) Entropy coding is performed in each subband. The order F; = (Ryy + Ru) " E{ymempt—no+i} (11)

1 entropy of the quantized signals, defined in subband ) ) i ) , ,
necessarily form an optimum (assumption: invertible matrix

k as
[R,, + Ry]). The computation of”; relies on an estimation
Hy=— Zp](»k) log, pg»k) (8) of matrix R, that will be detailed in the simulation parts.
§>1 Steps 1 and 2 are performed in turn, always using the

updated values obtained in the previous step as constants.
may also be considered as bit-rate measpj@ @enotes Convergence is ensured by the fact that each step reduces the
the occurrence probability of thigh quantization step in distortion and thus increases the signal-to-noise ratio (SNR).
subband:, and H;, represents the amount of information Indeed, assume that iterati@nof Step 1 results in bit rates
brought by a realization of the quantized signal iR(™, filters F"") and corresponding SNR, a function f
subbandk, or, in other words, a lower bound of the¢ R("),FE"_I)], and now apply Step 2. Denote SNRY =

bit rate reached in practice after entropy coding.) In thi R F(n)] the distortion with the new optimal synthesis
case, the optimization is carried out under the constrai [( koot i

of a given entropy budgeH; = Y oy' Hi (ie., |t(i[s,lf’§"’). SNR™ ) < SNR@ 's clearly impossit))le, since
entropy-constrained optimization). F; would be a better choice for Step 2, aE@'" would
not be an optimum. Thus, SNR > SNR™.

For the same reasons, the SNR necessarily increases after
Step 1. The consecutive SNR values obtained form an increas-
ing and upper-bounded series that converges to a (possibly

o2 = ckaiﬂ—mk or o2 = cko—jﬂ_?”’“. (9) local) maximum. However, we cannot guarantee that it con-
verges toward the global one. Initializing the process with a
The positive parametet;, depends on the signal statisticR filter bank, the procedure either improves the classical PR
in subbandk as well as on the type of quantization and/osolution, or it stops in Step 2.
encoding process used.

For uniform quantizers,R; and ¢, verify R, = E. Spectral Interpretation of the Improvement

logy(di/qx), with dy, the dynamic range of the signalBrought by MMSE FB's

as defined above. Alternatively;, may be chosen as, - 0. . "
. . . The MMSE solution for general/-band criticall mpl
If the bit rate measure is the order 1 entropy of the signals, we © SE solution for gene band critically sampled

. . hesi ks with individuall i hesis fil
have ¢, = we/6 under the assumption of Gaussian subbanstynt esIs ban_s wit |nd|V|du§1 y o_peratm_g _synt esis ters
iS mainly a Wiener-type solution with optimized quantizers

s!gnals, ande;, = ¢*/6 under the agsgmp_hon of Laplamanm the subbands. From the classical Wiener filter theory,
S|_gnal§ [12]. Note. tha_t up to muItlpI|cat|V(_e constants, th\(?ve know the following. In the presence of white noise, the
?Az?rgﬂgbﬁr:(gr?ﬁjo;séso?otlr:]emggn:g g:)ltirt:it;:};gn n;?ggrlijtrﬁf?equen.cy response of a Wiener filtgr with an infinite qumber
i all cases i cqeff|C|ent§ has a higher attenuation at all f_requenues_ than
' the inverse filter. Hence, frequency bands with a low signal
) level being coarsely quantized will be more attenuated by the
D. The MMSE Solutions Wiener synthesis filters than bands with finer quantization. In
The optimization is carried out by optimizing the parametesibbands where the spectral density of the input signal is partly

iteratively, since each optimization (bit allocation, filters) igero, this will result in a passband of reduced width. Globally,

In the cases mentioned above, noise variarmgesbit rates
R;. (or entropiesH;,), and variancesrzk of subband signals

y* are related by
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the attenuation of the quantization noise results in a decredéise synthesis FB), since the result of the optimization of a
of the overall distortion although some filtering distortion iprototype is not necessarily of PR type.

introduced (see [1]). The paraunitary FB case is anyway helpful, as shown in the
simulation section, and it leads to simple expressions of the
Il. MMSE M ODULATED FILTER BANKS optimized parameters. This case occurs when one optimizes
only matrix A and the quantizers, with given paraunitary
A. Problem Statement analysis and synthesis filter&% = f&,, . with A} the

. . . nth coefficient of thekth analysis filter).
In some source coding applications, e.g., broadcasting, a

decoder part of low computational complexity is required. In 1) Optimization in a Nonparaunitary Filter BankWhen
particular, in audio coding where a large number of subban@gtimizing the synthesis prototype, the bit rate allocation,
is needed, modulated filter banks are widely used. In fact, thad/or the matrixA, we are working in the general nonpa-
analysis and synthesis subband filters are modulated versitmgnitary case. However, the equations are somewhat tedious
of a given prototype, thus enabling an implementation bastsiderive (although not very complicated). For simplicity, we
on fast algorithms. The purpose of this section is to propoBdly derive here the cases of a prototype optimization and/or
MMSE solutions of this modulated type. a diagonal gain matrid, denoted asAjiag-

At first glance, only prototype coefficients can be tuned. @) Optimization of Prototype Coefficient©One set of
However, by doing this, the frequency response of all synthegigrameters to be tuned is the synthesis prototype coefficients.
filters is changed in the same way, and this seems to blis optimization is undertaken assuming the other sets of
contradictory with the role of Wiener filters using differenparameters (matrixi, quantizers) are fixed.
shapes and attenuations for different subbands. Therefore, iBince the synthesis filters are modulated, the filter coeffi-
seems necessary to introduce some additional parameters. TigiBts in subband can be written ag} = p,, - w(k, n), with
is performed by inserting some matriin the subbands (seep, being the prototype filter and(k, ») being the modulation
Fig. 2). The form ofA highly influences the complexity of function. The distortion can be written as a function of the
the decoder. Thus, only simple structures are considered fgptotype and a modulation matrix. In order to describe the
A: a diagonal and a tridiagonal form. In the diagonal casdependencies, we gather the modulation matridés i =
introducing a weight (multiplicative constant) in each subbaritl - - -, K — 1 of size M x M, which verify W; = [w(k,n +
enables us to reduce the noise contribution of subbands wifH )]s, n—o0..a7—1, in @ block diagonal matrixW of size
small SNR. Moreover, by combining adjacent subbands in théM x KM by W = diag(Wo--- Wk _1). In addition, we
tridiagonal case, the fact that their passbands overlap in @efine a matrix”> of MMSE synthesis prototype coefficients as
frequency domain is taken into account. The simulation sectishown in (12), at the bottom of the page. Titie column of P
compares both structures with the results obtained using a giéndenoted ad>;. It containsK - M values, out of which only
eral MMSE M-channel filter bank with individually operating /& are nonzero. LeP; denote the stacking of thed¢ values
synthesis filters. The analysis bank is fixed in all cases.  (in other terms,P;, is equal toP; with all zero coefficients

The problem is at this point to optimize jointly the subbangemoved). Finally,A is defined as a block-diagonal matrix,
quantizers, the matrixd and/or the synthesis prototype filterwith K diagonal blocksA. With these notations, the distortion
of length N = KM under the bit rate constraint. Thein (6) becomes
optimization of these various types of parameters is now

. M-1
considered. D=2+ i Z [PTW' AT(R,, + Ry,) AW P;
B. Optimization Issues i Tl AT
. _2Pz WA g{ymxrnl\f*m)-f—i}] (13)

Optimizing one set of parameters (the synthesis prototype, .
the matrix A, or the quantization steps) is simple if theor, alternatively,
other variables are fixed. Hence, the optimization problem is Mol

. i 1
done separately,_ in turn on each subset of parameters,_uﬁﬂz o2 4+ — Z [lewf,i'AT(Ryy + Ry AW, . P;,
convergence. This was already the procedure used in Section I M =

for the M-band synthesis bank and the quantization steps. The opT T AT

X i oo —2P; W, . E{YmTmM —no+i }]- 14
strategy for an optimal bit rate allocation is not repeated here, aWoi AT Elymmnr—na+i}] (14)
(10) applies in all cases. W.; is extracted fromW, so that only the columns corre-

Several cases for the FB have to be treated separat@lyonding to theth polyphase component are kept:
The most useful case is unconstrained (no requirement on the

perfect reconstruction property or even paraunitariness [14] of Weile,t = Wk, iv+i-

- Po Pm Pk-1)Mm o
P = \ \ ...... \ (12)

o PM—-1 DPam—1 PKM-1
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Thus, the distortion is a quadratic function of the synthesis TABLE |
prototype coefficients. Hence, provided that the matrix to be MODULATED FiLTER BANKS OPTIMIZED AND COMPARED IN SECTION Il

. dh full K . | B . b (* THis NUMBER DOES NOT INCLUDE SUBBAND QUANTIZERS.
inverte as 1l rank, opt|ma vecto ;| are given py THE LAST CoLUMN DESCRIBES THESYNTHESIS FILTER BANK

IMPLEMENTATION COST IN MULTIPLICATIONS PER INPUT SAMPLE; N = KM

P, = [WiiATRggAW*7i]71W£i.AT8{ymme_n0+i}, DENOTES THEFILTER LENGTH AND M THE NUMBER OF SUBBANDS
i = 07 T M - 1 (15) 7777777 denomination synthesis FB | tuned parameters | no. of tuned | implement. cost
. . . . . type yarameters® | of synthesis bank
b) Optimization of Diagonal Gain FactorsBy develop- - : i o
ing the distortion as a function of scalar gain facters = o modubated | auaniers 0 K+ Oftogs 1)
|:14]z7Z (0 S 'L < M), the Crlterlon appears to be quadratIC mod. MMSE Agoq modulated diagonal A M K + O(log, M)
in terms of these coefficients. The analytical expression of unntizers o
these dependencies requires the definition of the matrices and® MMSE Avia | modulated |- uidiagonal A ) 3M =2} K+ Oflog, M)
vectors in (15a), shown at the bottom of the page. . | dantazers S Nk
Wlth the nOtatIOﬂS |n (15a), (14) now reads' mod. MMSE proto modulated prototype N K + O(log, M)
quantizers
D — O—i + i mod. MMSE Ay, proto | modulated diagonal A Nt M K + O(log, M)
M 11\1\44 1 M-—1 prototype +1
T T quantizers
- QO k P, W R;;oxeWy ; P;
ZO kzo < 59Tk K z% i Jatt ot ket mod. MMSE A modnlated plain A M- M K + O(logy, M)
Jj= =i = .
M_1 M—1 7 quantizers | M
T T 7 MMSE unconstr. synthesis filters M- N N-M
-2 Z <O‘j,j Z PiLWj,ig{y]mxan\l—ng-l—i}) ' )
—0 i—0 quantizers
(16)
. . . . i J T _ T
and optimal gain factors are solutions of the following set yyhere 4; is ghe Lch row (;f A, Ry = E{ynynt and
linear equations: Ry, = dlflg(%oa%lv EA _%M—})- .
To achieve minimum distortion in an MSE sense, we solve
M1 N dD/AAF = 0 and obtain
Z e,k Z Py W iRyig Wi iy T i, T -1
k=0 2=0 A7 = g{yrnyrn}(Ryy + Rbb) M (19)

_Aé_:lPTWT‘g{ J 1 Note that this result somewhat generalizes the results of
N — il 3 YmEmM—no+if> [4]-[6]. Equation (19) still simplifies ifA is constrained to
;: 0, -, M—1. 17) be diagonal or tridiagonal, see [8].
3) Overall Optimization Algorithm:

2) Opt|m|zat|pn in a Paraunitary Filter BankOptimizing '« Step 1: Optimization of the synthesis system.
the prototype filter may not always be necessary, especially

when the analysis FB has a large number of subbands and — Step 1.1:Synthesis prototype optimization accord-
narrow transition bandwidths (see Section II-E). Assuming ing to (15) (not in the paraunitary case),
that the filter bank is paraunitary foo = I, the equations — Step 1.2:Matrix A optimization, according to (17)
for optimizing A simplify due t0 £{||zn_pn, — &n||?} = in the diagonal, nonparaunitary case or according to
E{lly,, — Ag,,, ||} ! (19) in the paraunitary case,
With white and uncorrelated noise, the output MSE can be =~ — G0 t0 Step 1.1 u_nnl_convergencg of Step 1.
written in terms of the original subband signgls and of the ~ * Step 2:Bit-rate optimization as described in (10). The
quantized subband signads, as [8] synthesis polyphase filters can be calculated from the
s optimized parameters.
D =&{ly.m — A9,,[|°} « Go to Step 1 until global convergence of the algorithm.
M1 4) Implementation Cost of the Different Filter Bank¥he
_ Z ARy A+ AT R A; — 26 yT YA + o2, implementation cost of the different types of modulated
— |— N ot Y MMSE filter banks in terms of multiplications per input
D Dy sampling rate is given in Table I. We there assume that

(18) the modulation is performed via a fast transform with

Wi il i = [Wlitkn, j+im
! ! Vi, je {0, -, M—1)
(Ryigile,1 = [Rygligans, j4im (15a)
e ) ; VE, 1€ {0, K —1}
y]m = (y%lrzv y:n—h T y:n—K-i—l)
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Fig. 3. Prototypes for 8-channel paraunitary modulated filter banks. bits per sample

Fig. 4._ Measured SNR (dB) versus bit rate for ELM, = 8, N = 32, and
O(M log, M) multiplications everyM samples. It can be "Vvald"" signal
easily verified that the implementation cost for all modulated

MMSE schemes is significantly lower than for the general For the rate-distortion measure according to (9), we used

MMSE M-band case denoted as MMSE in Table I. c, = 12,VEk, in agreement with the observed Vivaldi signal
dynamics, in order to avoid any overload noise. The best
C. Simulations performance is of course obtained by optimizing all synthesis

) filters individually: the SNR improvement over PR is5
~We compare here the performance of various synthegig for pit rates of 1.5-4.5 b/s (bits per sample). However,
filter banks, as described in Table I, representing varioWtimizing the main diagonal ofA improves the SNR by
performance-complexity tradeoffs: _ >3 dB for low bit rates up to 3.5 b/s. This improvement,

1) a PR scheme having optimal subband bit rates (“clasgbtained at very low cost, reduces quickly for higher bit

cal” solution); rates. It can be kept3 dB for bit rates up to 4.5 b/s by
2) ageneral MMSEV-channel filter bank (optimization of optimizing the tridiagonal structure of. Optimizing the full

all synthesis filters, as in [1]); matrix A, which results in an increased implementation cost,
3) paraunitary schemes combined with 3 different matricggelds further improvement. This can be explained by the fact

A (plain, diagonalA;.e, and tridiagonald;.;q); that the analysis filters have a moderate attenuation in the
4) optimization of the synthesis prototype filter only (mastopband 440 dB), so that nonadjacent subband signals are

trix A is identity); still correlated. Concerning the prototype optimization, it turns

5) joint optimization of the synthesis prototype afdi.;. out that “mod MMSEA ;. proto” is slightly better thanitiod
This comparison is done by means of rate-distortion curvddMSE A” up to 4 b/s, see Table | for the definition of the
The unconstrained MMSE solutions are provided in order t@rious cases. For rates 4 b/s, its performance is close
show the loss in performance due to the fact that we restriot the “mod MMSE Ay;iy” case. The fnod MMSE Aj;a,
the optimization result to be a modulated FB. proto” scheme seems to be a good choice, since the result-
In all cases, the analysis filters are the same, in ordeg implementation complexity is very low (one additional
to enable fair comparisons. Two paraunitary analysis filtenultiplication per subband).
banks are considered: an 8-band extended lapped transforfexample 2: Fig. 5 gives the rate-distortion curves when
(ELT) [15] with filters of length N = 32 and a cosine- using an 8-channel cosine-modulated filter bank with filters
modulated bank [16] havindd = 8 and N = 128. Both of length 128 instead of the ELT in Example 1. This figure
prototype frequency responses are shown in Fig. 3. This chointends to show the influence of filters selectivity on MMSE
enables to illustrate the influence of the filter selectivity on thgerformance.
optimization procedure. In this case, all schemes yield almost the same rate-
The performance is evaluated on the audio signal “The Fadistortion curve. Due to the high stopband attenuation of
Seasons: The Spring” by Vivaldi, CD quality (the first 3 s)the prototype, the subband signals are better decorrelated than
The performance measure is the output SNR computed ibythe ELT case and no further improvement can be achieved
decomposing, quantizing, and reconstructing the signal. Thg combining them with a tridiagonal or plain matriA.
MMSE FB’s themselves are computed from an estimate ®herefore, for such analysis filters, introducing a diagonal
the autocorrelation matrix of the input signal over the wholmatrix on the synthesis side is the best solution for improving
considered Vivaldi signal. the output SNR of the filter bank, because it enables the use
Example 1: Fig. 4 shows the rate-distortion curves obtainedf the existing low complexity implementations of modulated
for the 8-channel analysis filter bank wifii = 32 taps under filters. Note that the only MMSE-based scheme that does
bit rate constrained optimization. The aim is to illustrate theot lead to noticeable improvements is the one in which the
relative performance of the compared schemes listed abovprototypeonly is optimized (i.e..A = I).



GOSSEet al. MMSE DESIGN OF MODULATED AND TREE-STRUCTURED FILTER BANKS 1051

501

45F - .

SNRin dB
W
=}

o

3
T
]

N

o
%

F

+ -+ MMSE © O PR
— —  mod. MMSE A i
+-——+ mod. MMSE Ad. g proto

mod. MMSE A
x----x mod. MMSE Adiag
+ -+ mqd. MMSE proto

Fig. 5. Measured SNR (dB) versus bit rate for COS BB= 8, N = 128,

and “Vivaldi” signal.

4 5 6
bits per sample

5
//
A0t .//A./.j/,: R
s
s 4
m L
© L A
e g &
% . ¥, /
m30 ______________ ¢+ —+ MMSE O -0 PR
7 — —  mod. MMSE A
V
+—+ mod. MMSE Adiag proto
251 - —— mod. MMSE/-‘\}rid
x---x mod. MMSE A _
diag
20 . + -+ mod. MMSE proto
1 2 3 4 5

Fig. 6. Measured SNR (dB) versus entropy for EBY,= 8, N = 32, and

“Vivaldi” signal.

entropy per sample

SNR MMSE
MMSE _--

LAHER
PR

Rir  Riyse R R

Fig. 7. Translation of rate-distortion curves when the quantization-encoding
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overall system performance and brings the scheme closer to
optimality.

D. Some Remarks

1) Signal Duration: In the simulations, we used a rather
short extract of the “Vivaldi signal (3 s) assuming that the
signal is more or less stationary over this duration. For longer
signals, the last section of the paper gives some hints on the
time adaptation of the MMSE FB'’s, according to the second
order statistics of the input signal. Moreover, in [1] it has been
shown that the improvement in the SNR is kept when using
a sequence of 13 s for the estimation of the autocorrelation
matrix R,,, describing now the long term characteristics of the
input signal. The same qualitative results can also be expected
in the modulated case. Furthermore, an improvement in the
SNR can still be achieved, when modeling the autocorrelation
matrix as an AR(2) process or when coding synthetic AR
signals [1].

2) Bit-Rate Allocations:In Examples 1 and 2, the bit al-

Example 3: In this example, the bit rate measure is the ofocations resulting from MMSE optimization differ from their
der 1 entropy of the subband signals, thus yielding an entrofyR counterparts. Indeed, the simulations showed that the latter
constrained optimization of filters and quantizers. Fig. 6 showgnds to transmit all subbands (even with a very small bit rate)

the curves obtained in this case with the ELT analysis.

whereas the MMSE FB’s do not transmit subbands in which

We see that the improvement of MMSE schemes over Re signal variance is small. On the other hand, they encode
ones is reduced. The same conclusions as above can Hidise with signals of greater variances with increased accuracy
be given for plain and tridiagonal matrice4. Note that since they allocate the whole bit rate to these subbands.

introducing a diagonal matrid is not sufficient any more

3) Translation of Rate-Distortion CurvesAnother way of

to significantly improve the performance over a PR schemgxplaining the loss of performance observed with the entropy-
Globally, we observe a shrinking of the SNR axis whilgonstrained optimization is illustrated by the rate-distortion
switching from the bit rate constraint to the entropy constrairtyirve translation, see Fig. 7.

compare, e.g., Figs. 4-6.

An entropy-constrained optimization was also carried o
on the selectiveNV = 128 modulated filters. However, no
improvement appeared in that case. The reasons for this fagt = "b;;'

Consider two modelsg?, = aaiﬂ‘mf and o2, =
& B

%aiﬂ‘mf, for the quantization stage. For fixed distortion,

2., we haveRy = R} + 1 log,(a/p). Thus, the rates

are certainly manifold. First, we are dealing with asymmiffer by a constantC = %logQ(a/ﬁ). Assume that the same
totic performance. Then, increasing the selectivity (narromumber of subbandg/l™ = ML®, are transmitted in the PR
transition bandwidth and high stopband attenuation) of tlase with both models: and 4. Then, the total channel bit
analysis filters reduces the potential gain brought by MMSfate for the PR case with the model isR® = R® + MR C,
solutions. This shows that a good frequency selectivity isvehereas the output SNR remains the same as injtkase.
crucial criterion for the choice of PR filters. It improves théhis shows that the rate-distortion curve for modelis
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qhadtizarion

|

obtained by translating the rate-distortion curve corresponding o
to model 8 by MI® . C bis. 4@ )

Concerning the MMSE case, we have already noted that N :
the number of transmitted subbands is always smaller in the—® T'(z) Q*/ 51) D
MMSE case than in the PR cas#/}!MSF < ML), Again, /\
the rate-distortion curve for modelis obtained by translating @ T(2) @ §4(2)
the 3 curve by M}™SE . C' b/s. However, this is less than in R
the PR case, and, in consequeneeurves for PR and MMSE T'Z/ T3(z) \\14 SUS 1  —
get closer together thafi ones; the improvement brought by N e
MMSE optimization in thea case is reduced. Thus, for the TH(=) S ) —
same MMSE filters and bit allocations, we notice a different
improvement, brought by MMSE solutions over PR, when . T5(5) $zy |- -
changing the noise model.

Fig. 9. Equivalent synthesis for the 6-band tree-structured filter bank of
Fig. 8.

IV. MMSE TREESTRUCTURED FILTER BANKS

A. Problem Statement As it has already been mentioned at the end of Section Il,

In the previous sections, a parallé-band filter bank MMSE filters shape the quantization noise. In a tree-structured

was optimized according to an MMSE criterion. However, ifft€" bank, many synthesis filters act on the same frequency
source coding applications also other subband decompositi _d._ 'I_'herefore, at least in the case of infinite-length filters,
are of interest. In particular, tree-structured filter banks are n@@timizing the whole synthesis bank would be redundant. In
widely studied for image and audio coding. For example me case of FIR filters, convergence difficulties are expectable,
[17], the decomposition mimics the Bark scale used for audiyce_any variation of one cell can be compensated by a

coding purposes. Unfortunately, such filters do not fit in thériation of another cell. In order to shape the quantization
previous formulation of the reconstruction distortion. noise, we have chosen to optimize a single filter per subband,

In this section, the algorithms for finding optimal Synthesifglctually the filter following the quantization/dequantization
filters and subband bit rate allocations are adapted to tH&9€: TWO cases occur.
general case of tree-structured banks. We assume that thd) If the filters are long enough, the resulting degrees of
analysis tree can be built by splitting any branch (or subband) freedom should be sufficient to shape the quantization
with any 2-band PR cell, thus allowing different cells at ~ noise in each band and to obtain good suboptimal
different levels. This yields the maximum number of adaptable ~ solutions. This is described in Fig. 9.

parameters for a coding scheme designer and includes ai®)
possible divisions of the frequency axis. Moreover, recent
studies [18] have shown the usefulness of these additional
degrees of freedom. An example of a 6-band tree-structured
filter bank is given in Fig. 8.

Various strategies can be developed in order to carry out
an MMSE optimization in a tree-structured filter bank. A first
idea would consist in optimizing each filter of the synthesis
tree jointly with all quantizers. However, the method presented

In some cases, when the filters are very short [18], the
number of degrees of freedom may not be sufficient
for performing noise shaping. The solution we have
chosen is to tune an increased number of parameters:
instead of optimizing only the first filter in each branch
of the synthesis tree, 2, 3, or more filters in one path are
gathered into one equivalent filter of increased length. It
is optimized in the same way as before. This is depicted
in Fig. 10.

in Section Il for the parallel case cannot be directly applied 1o both cases, we merge all filters that are not tuned into an
tree-structured filter banks, because the distortion is no longezguivalent one for each branch, s&¥, the “filter” to be tuned
quadratic function of the cascaded synthesis filters. Therefongth an MMSE criterion being denoted Ig*.

let us consider our problem from a more intuitive point of The main advantage of dealing with tree-structured fil-
view, and let us look at the significant degrees of freedorter banks in this way is to enable the use of the general
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Fig. 11. Measured SNR (dB) versus bit rate for tree-structured filter bank

procedure. The optimization carried out in Section Il reli¢§ Example 4 (curve -o-: optimization of 8 parameters per subband; curve
-+-: optimization of 22 parameters per subband; curve -x-: optimization of 50

on a d|§tort|0n_ fgnctlon being quadratic V\_”T{h respect to tr-l%rameters per subband). The dashed line corresponds to the PR case.
synthesis coefficients, as well as on a specific relation between

distortion and subband bit rates. Both characteristics rema}iﬂe output sianal is cvclostationary of peridde max: J.
in our formulation of the tree-structured case. Moreover, the P gnat 1S cyclos y orp — ARk ke

: T . and the overall distortion is thus given by
computational cost of the optimization remains reasonable.

J—1
1
T . D=£ _Z|£n_£n|2
B. MMSE Optimization of Tree-Structured Filter Banks J =

The main difference compared to the initial description is _ 1 Z ig{|bk|2}”8k Ak
the appearance of an intermediate sampling factor, in branch J " Iy, "
k: I.. Let Ji be the total up-sampling factor in subbandrhe 1

quantized signafj* in the same subband is first up-sampled +5 Z S{Uffufj}
by a factor.Jy/1; and filtered by the MMSE synthesis filter n,k1 ko ,i1,45,51 2
T* (to be optimized). It is then up-sampled By and filtered 'Sﬁl—ile S Srf—z‘ka il
by S*, which remains fixed. Thus, the output signal is ' : 2 ?
(-t (- a) @3)
M-—1
X(2) = Z SE(YTH (2 )R, (20) wheret¥; denotes t* up-sampled by/;.."
= The MMSE optimization consists of minimizing the overall

distortion under bit rate constraint taking into account the

Now assume that the analysis bank has been chosen such fR4PUS sampling ratesy’, (Rx/Ji) = Rr. The MMSE
in absence of subband quantization it forms a PR system whlgorithm is straightforwardly derived from the parallel case.
the synthesis filter§™** . $* (this can be easily obtained with _ _
2-band PR cells). As in Section II, the delayed input signdf: Simulations
denoted asY(z) = z~™ X (z), can be written equivalently as We compare, by means of rate-distortion curves, tree-
the filtering of the unquantized subband signgfy~) by the structured PR schemes to tree-structured MMSE ones. In both
PR synthesis filterd** - S*. The reconstruction error is thencases, the quantizers are optimized.
Our MMSE formulation allows us to choose the number of
X(2) — X(2) synthesis coefficients to be tuned since one degree of freedom
M1 is the number of filtering stages to be optimized. Increasing
— Z SE()[T*(Z )Y *(27%) — T** (21 )Y*(z7¥)].  this number of parameters improves the rate-distortion per-
formance of the corresponding scheme, but it also increases
(21) the optimization complexity, while the implementation com-
plexity remains almost identical. The curves presented here
Here, all assumptions made in Section Il on the quantizaticr}ri%]hlight.the tradepffs bgtween performapce and optimization
noise model are still valid (additive, white, and uniformcomplexny' The S|mulqt|on (':ontextils similar to the one of the
process). In time domain, the reconstruction error becomesmodm"ﬂeOI C"?‘S‘? described in Section I.”'C'
Example 4: Fig. 11 shows the SNR improvement brought
X § N ok e e by the MMSE optimization of a full tree of depth 3/ = 8
Bno— it =Y sk g [FHRVF + (85 —£5)uF]. (22)  subbands, with Daubechies filters of length = 8, and
ki j “Vivaldi” signal.

k=0
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40f : : _ achievable in a wide range of bit rates when optimizing the
-o-M;MSE.com;pleleopnn:ﬂzalion whole SyntheSiS filter bank, see Flg 13.
; 2 ; ; : : : 5 The maximal improvement for tree-structured filter banks
35} .0 MMSE, lat stago optmizaton -+ S ...

is of course obtained when optimizing the whole equivalent
: 5 : , : : synthesis bank fod;, = 1 (parallel synthesis bank). If the
I S S S BN U S length of all filters in the tree isV, for a fully spread tree of
: : - Sy : g 2 depth J with 27 subbands, the number of parameters to be
i o ; ' : optimized is(1 + J)[L + (N — 1)(2/ — 1)]. If I is reduced
25k ...... / 3 ZTNT DR R TSR to I, = Jk/2 (optimization of the last stage in the tree), the
Al : 5 5 5 number of parameters decreaseg o+ .J)N.

SNR (dB)

. : 5 5 : v ; : The simulations show the flexibility and efficiency of the

s i ‘ - 5 MMSE approach. However, several questions arise; the most
crucial ones are the improvements to be expected when

Jptroducing these techniques in a real coding scheme and the

3 a5
Bit-rate (bits/sample)

Fig. 12. Measured SNR (dB) versus bit rate for tree-structured filter bal

in Example 5. way to adapt them to signal statistics variations.
40 e proeees .......... e , O A |mpr0vement to be Expected |n Practlce
—o—MM:SE.compleleppﬁmizatlon : : Thanks to MMSE Solutions
ash ... "OMMSE. lastslage opimizaton | i It is easily shown that the MMSE optimization consists of

making the reconstructed signal and the reconstruction error
: ; . R : : uncorrelated. If the analysis filter bank is orthogonal and
30 I B s N ideally decorrelates the input signal, and if the quantization

: 5 g ' : : is optimal, which implies that the quantization noise and the
: ' : : : ; guantized signal are uncorrelated, then the perfect reconstruct-
P Y] < ............. ............ ............ Ing synthesis filter bank is optimal up to a multiplicative

1 : ’ : : : coefficient per subband. This point partly explains why SNR
improvements vary depending whether the bit rate or the order
1 entropy is estimated: with entropy coding, the optimal bit
allocation leads to less correlation in the PR case and thus
. ; ; ; : : : reduces the SNR improvement. It complements the analysis
! 8 2 3 38 4 of Section IlI-D based on the translation of the rate-distortion
curves while switching from bit rate to entropy. The gain to
Be expected in practical situations lies in between these two
extreme situations.

By optimizing the last stage of the tree (8 parameters perNote that the use of subband coding for audio or video
subband), the gain brought by the MMSE scheme over the BRding should also tz_;\ke into account perpept_ual characteristics
one is more than 2 dB in the bit rate range of 1-4 b/s. This c&h the human hearing or vision, considering a perceptual
be improved by optimizing 22 degrees of freedom per subbafligtortion criterion rather than the pure MSE. Work in
or even the whole equivalent tree (50 parameters per subbafifp direction is complementary to the one presented here,
In these cases, the additional SNR improvement mainly occ§#§ce the schemes we describe may also yield interesting
at higher bit rates (above 2.5 b/s). This illustrates the trade®grformance/complexity tradeoffs if optimized according
between complexity and performance. Below 2 b/s, optimizirlg different perceptual criteria. Suggestions to the choice of
the last branch of the tree seems to be the best solutii@lity criteria for audio coding are given in [19] and [20]
(less complex optimization, but comparable rate-distortioMhere the MSE is replaced by a perceptual Mean Weighted
performance). Above 2.5 b/s, a system designer can cho&s€or (MWE) and brought a noticeable improvement over
the tradeoff according to his/her needs. the reference PR system.

Example 5: Figs. 12 and 13 show the rate-distortion curveg
with bit rate constrained and entropy-constrained optimization;
respectively, for another tree of depth & = 7 subbands, Whether and how the MMSE filters should vary with the
Daubechies filters of lengttv’ = 4, and an AR(2) model of Signal statistics is an open issue. There are actually two limit-
the “Vivaldi” signal. ing factors concerning this problem: the coder complexity, and

As in Example 4, the MMSE optimization improves thdhe necessary bit rate for the transmission of the corresponding
output SNR with respect to PR schemes. Again, two pe§ide information. We list below possible ways of addressing
formance/complexity tradeoffs are illustrated: 1) the full opthis issue.
timization of the tree and 2) the optimization of the last « Optimize the MMSE FB with reference to an “average”
stage only, bringing less improvement, but at a lower cost. situation (low cost, but will such a solution be still
For entropy-constrained optimization a gain of 2 dB is still  efficient?).

25
Entropy (bits/sample)

Fig. 13. Measured SNR (dB) versus entropy for tree-structured filter bal
in Example 5.

Possible Approaches for Time Adaptation
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